
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Lei Shu,
Nanjing Agricultural University, China

REVIEWED BY

Wen Zhang,
Southwest University of Science and
Technology, China
Jieli Duan,
South China Agricultural University, China
Teera Phatrapornnant,
National Electronics and Computer
Technology Center, Thailand

*CORRESPONDENCE

Jinzhu Lu

lujingzhu1103@163.com

RECEIVED 29 August 2024
ACCEPTED 05 November 2024

PUBLISHED 28 November 2024

CITATION

Wang Y, Lu J, Wang Q and Gao Z (2024)
A method of identification and
localization of tea buds based on
lightweight improved YOLOV5.
Front. Plant Sci. 15:1488185.
doi: 10.3389/fpls.2024.1488185

COPYRIGHT

© 2024 Wang, Lu, Wang and Gao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 28 November 2024

DOI 10.3389/fpls.2024.1488185
A method of identification and
localization of tea buds based on
lightweight improved YOLOV5
Yuanhong Wang1,2, Jinzhu Lu1,2*, Qi Wang1,2 and Zongmei Gao3

1Modern Agricultural Equipment Research Institute, Xihua University, Chengdu, China, 2School of
Mechanical Engineering, Xihua University, Chengdu, China, 3Department of Biological Systems
Engineering, Washington State University, Prosser, WA, United States
The low degree of intelligence and standardization of tea bud picking, as well as

laborious and time-consuming manual harvesting, bring significant challenges to

the sustainable development of the high-quality tea industry. There is an urgent

need to investigate the critical technologies of intelligent picking robots for tea.

The complexity of the model requires high hardware computing resources,

which limits the deployment of the tea bud detection model in tea-picking

robots. Therefore, in this study, we propose the YOLOV5M-SBSD tea bud

lightweight detection model to address the above issues. The Fuding white tea

bud image dataset was established by collecting Fuding white tea images; then

the lightweight network ShuffleNetV2 was used to replace the YOLOV5

backbone network; the up-sampling algorithm of YOLOV5 was optimized by

using CARAFE modular structure, which increases the sensory field of the

network while maintaining the lightweight; then BiFPN was used to achieve

more efficient multi-scale feature fusion; and the introduction of the parameter-

free attention SimAm to enhance the feature extraction ability of the model while

not adding extra computation. The improved model was denoted as YOLOV5M-

SBSD and compared and analyzed with other mainstream target detection

models. Then, the YOLOV5M-SBSD recognition model is experimented on

with the tea bud dataset, and the tea buds are recognized using YOLOV5M-

SBSD. The experimental results show that the recognition accuracy of tea buds is

88.7%, the recall rate is 86.9%, and the average accuracy is 93.1%, which is 0.5%

higher than the original YOLOV5M algorithm’s accuracy, the average accuracy is

0.2% higher, the Size is reduced by 82.89%, and the Params, and GFlops are

reduced by 83.7% and 85.6%, respectively. The improved algorithm has higher

detection accuracy while reducing the amount of computation and parameters.

Also, it reduces the dependence on hardware, provides a reference for deploying

the tea bud target detection model in the natural environment of the tea garden,

and has specific theoretical and practical significance for the identification and

localization of the intelligent picking robot of tea buds.
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1 Introduction

Tea is the second most consumed beverage globally; its unique

aroma and characteristic flavor make it famous worldwide. With

the booming economy of the tea market, the economic benefits of

tea are also increasing. According to the statistical data report of the

China Tea Circulation Association, in 2021, the total area of tea

gardens in the country was 32640.6 km2, with an increase of 5.51%

compared with that of 2020, of which the harvestable area was

29163.8667 km2, with a weighting of about 89.35%; the output was

about 3,029,400 tons, with an increase of 2% compared with that of

2020; the total amount of domestic sales was 2,319,900 tons, with an

increase of about 4.56%; total domestic sales amounted to

43,798,694,461.99 dollars, an increase of about 8.0% year-on-year;

the average price of domestic sales was 19.02 dollars/g, an increase

of 3.3% year-on-year. Tea buds with high nutritional value can be

made into high-quality tea with high economic value. The plucking

of tea buds must be graded and plucked on the tea buds, which are

generally classified into three main categories: single bud, one bud

and one leaf, and one bud and two leaves. The image of the tea bud

classification is shown in Supplementary Figure 1.

With the globalization of the tea buds industry, countries

worldwide are gradually researching the intelligent plucking of tea

buds, especially for the target detection of tea buds, which has

become a research hotspot. The tea buds’ target recognition

methods can be roughly divided into three categories: traditional

image processing algorithms based on color space, recognition

methods based on traditional machine learning, and recognition

methods based on deep learning (Bojie et al., 2019) achieved the

segmentation of tea bud targets in tea bud images by extracting the

RGB channels of the tea bud images and then performing HIS and

HSV spatial conversion of the RGB color space, respectively, and

calculating the channel component thresholds of the converted

spatial model (Zhang et al., 2019) utilized the improved B-G

algorithm for tea tree canopy processing to segment the tea bud

image in the canopy image and then combined it with Bayesian

discrimination to realize the recognition of tea buds and harvesting

status. Under natural conditions, traditional image processing

methods based on color or shape are difficult to perform well in

natural and complex infield environments due to problems such as

lighting and background complexity.

With the rapid development of machine vision technology, it

has received more and more attention as it has demonstrated

excellent capabilities in processing image features (Liu et al.,

2019). (Karunasena and Priyankara, 2020) proposed a stacked

class classifier based on the histogram of gradient features (HOG)

combined with a support vector machine (SVM) for tea bud

detection with an average detection rate of 55% (Wang et al.,

2018) used the HIS model to identify and separate tea buds using

the improved K-means algorithm after gray scaling the tea images

with the S-factor. A comprehensive analysis of the traditional

machine learning-based recognition method found that it relies

on image pre-processing and data conversion; pre-processing is

crucial, and if the processing is not reasonable, it will seriously

impact the model’s accuracy. Secondly, the external environment
Frontiers in Plant Science 02
dramatically affects the method and performs poorly in the natural

complex tea garden environment.

Regarding the recognition of tea bud targets, most scholars use

deep learning-based methods to realize the recognition of tea bud

targets (Kamilaris and Prenafeta-Boldú, 2018; Chen and Chen,

2020) used Faster RCNN to identify the one tip with two leaves

regions in tea bud images and then used the fully convolutional

model FCN to identify the tea bud picking points in the one tip with

two leaves regions (Yang et al., 2019) used an improved Yolo-V3

deep convolutional neural network to recognize tea bud picking

points, combined with the K-means method to cluster the target

box sizes and trained the model to recognize correctly up to more

than 90% (Qian et al., 2020) proposed a tea bud segmentation

method based on an improved deep convolutional coding network

(TS-Segnet), and the segmentation results were approximately the

same as the actual results (Yan et al., 2022) realized the recognition

and localization of tea bud targets by building an improved Mask

RCNN model (MR3P-TS model), and their experimental results

showed that the picking point localization precision was 0.949 and

the recall rate was 0.910. (Li et al., 2023) proposed a deep learning-

based method for tea bud yield estimation by augmenting the

YOLOV5 model with a squeeze and excitation network (SENet)

and then combining the Hungarian matching algorithm and

Kalman filtering algorithm to achieve reliable tea bud counts. The

final results found that the model has an average accuracy of 91.88%

(Chen et al., 2021) proposed a fresh tea bud detection method based

on image enhancement fusion SSD (FTSD-IEFSSD). The authors

used both the enhanced image and the original image for the

detection sub-network through the image enhancement algorithm

of RGB channel transformation, combined with multi-layer

semantic fusion and adaptive score fusion, to nearly improve the

target recognition accuracy (Gong and Wang, 2021) proposed an

improved YOLOV4 tea bud target recognition method based on

improved YOLOV4, and the final experimental results showed that

the average accuracy of the model was 93.08% and the recall rate

was 86.94%.

Currently, the main representative models for real-time target

detection algorithms include RNN series [Faster RCNN (Ren et al.,

2017), Mask RCNN (He et al., 2017)], YOLO series (V3 (Redmon and

Farhadi, 2018), V4 (Bochkovskiy et al., 2020), V5), and DETR series

[RTMDet (Lyu et al., 2022), DETRV2 (Chen et al., 2022)]. Considering

the special growth environment and physiological characteristics of tea

buds, we have chosen the single-stage object detection model YOLOV5

with faster detection speed as the benchmark model to meet the needs

of real-time detection of tea buds. Meanwhile, most of the tea bud

detection targets belong to regular growth. More research is needed on

the multi-target detection of tea buds in complex environments. In

contrast, most research has focused on improving the accuracy of tea

bud detection for the tea buds detection model without considering the

difficulty and cost of model deployment. Detecting tea buds in complex

environments using lightweight models is a great challenge; this paper

proposes a lightweight tea bud detection model (YOLOV5M-SBSD)

for identifying tea buds in complex tea plantation environments, and

the method proposed in this paper achieves fast real-time detection of

tea buds.
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2 Materials and methods

2.1 Data acquisition

In this study, the images of Fuding No. 4 white tea were

collected on May 08, 2022, in the open tea garden of Chengdu

Liangfeng Tea Co. in Pujiang County, Chengdu City, Sichuan

Province, China (N: 30°09′56.45″ E: 103°23′49.90″)—Pujiang

Liangfeng Tea Plantation as shown in Supplementary Figure 2.

After a series of processing of the collected raw images, the final

white tea dataset contained 5,287 images of tea buds, with a size of

960*1080 pixels, and saved in JPEG format. The iPhone 12 rear

camera took the dataset’s original images, and the camera’s specific

parameters are shown in Table 1.
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In this paper, when acquiring images, an acquisition device was

used to capture images of tea buds at a distance of 300 mm-800 mm

from the tea garden, and the shooting conditions included the

background complexity Figure 1A, the shelter Figure 1B, and the

camera angle Figure 1C, and an example of a sample image is shown

in Figure 1.

In this paper, manually labeling is used to annotate the tea bud

images to ensure the effectiveness of the annotation. Considering

the quality of tea bud picking and the speed of tea bud positioning,

we mainly focus on picking single buds and one bud with one leaf,

and label their identification tags as burgeen uniformly. The tea

buds with more than 2/3 occlusion are not annotated, and the XML

file containing the coordinate information of the tea buds is

generated after the annotation. The labeled dataset is divided into

training set, validation set, and test set in the ratio of 8:1:1, and there

is no repetition between each group.
2.2 Algorithm description of YOLOV5

The YOLOV5 model with relatively balanced accuracy and

speed is selected in the first stage of the target detection algorithm

model. However, the network width and depth will affect the

training and detection time of the model, and there are four

versions of the YOLOV5 model with differences in the network

width and depth, namely YOLOV5S, YOLOV5M, YOLOV5L, and

YOLOV5X. To meet the model’s lightweight deployment and real-

time requirements and to consider image inputs of arbitrary size,

YOLOV5M version 6.0 was finally selected as the benchmark model

for Fuding white tea, and its network structure is shown in Figure 2.

The network structure of YOLOV5 is divided into the input

side, as shown in the Backbone network Figure 2A, Neck network
TABLE 1 Camera Setup Parameters for collecting tea buds images.

Variable value Status

Image size 1920*1080 Pixels

Flash Off

Zoom Off

Aperture f/1.6

Exposure time 1/180 s

Focal distance 26mm

Operation Manual

Macro Off

Type JPG
FIGURE 1

Acquisition of tea bud images under different conditions. (A) Tea bud background complexity; (B) Tea bud shelter; (C) Tea bud camera angle.
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Figure 2B, and Head network Figure 2C. It mainly includes Mosaic

data enhancement, adaptive anchor frame computation, and

adaptive picture scaling at the input side; the Backbone mainly

consists of the CBS module Figure 2G, C3 module Figure 2F, and

SPPF module Figure 2D; Neck mainly consists of the CBS, up-

sampling module (Upsample), Concat module, and C3; the Head

mainly comprises three detection head Detect module Figure 2E.

The CBS mainly consists of a convolutional layer, batch-

normalized (BN) layer, and sigmoid weighted linear unit (SiLU)

activation function, in which the BN layer solves the problems of

gradient vanishing and gradient explosion through data

normalization. The SiLU activation function is a smooth and

non-monotonic function that prevents the gradient from

diminishing to 0 during the slow training process. C3 (Park et al.,

2018) is a convolution module in YOLOV5, which serves to

increase the receptive field of the network and improve the

feature extraction capability of the network. The SPPF refers to a

feature extraction module for target detection. The SPPF structure

improves the model’s detection ability for targets of different sizes

by pooling and fusing the feature maps of different sizes of receptive

fields to obtain feature information of different scales. At the same

time, the SPPF structure also has a specific downsampling effect,

which can reduce the resolution of the feature map and improve the

computational speed.

The Neck network is an intermediate feature extraction network

added based on the Backbone, which is mainly used to enhance the

feature expression ability and sensory field of the model to improve

the detection performance of the model further. It mainly fuses the
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image features through the structure of the Feature Pyramid

Network (FPN) and Path Aggregation Network (PAN) and

transmits them to the detection end. The top-level semantic

features are passed down through the top-down FPN (Lin et al.,

2017), concatenating the lower and higher-level features using the

bottom-up PAN (Liu et al., 2018). Finally, the feature information

of different scales is fused, and the CIOU loss function is used at the

output to measure the degree of gap between the predicted and

natural frames. At the same time, the weighted non-maximum

suppression (NMS) method is used for post-processing to remove

the redundant candidate frames. The CIOU loss function (Zheng

et al., 2022) increases the loss of the detection frame scale based on

DIOU and increases the loss of the length and width, and the

predicted frames are more in line with the actual frames, which

improves the regression accuracy. The formula is shown in

(Equation 1):

CIOU = IOU − r2(b,bgt )
c2 − av (1)

where r2(b, bgt) represents the Euclidean distance between the

centroids of the prediction and real frames, respectively, and c

represents the diagonal distance of the smallest closure region that

can contain both the prediction and real frames. The equations for

a and v are shown in (Equations 2, 3):

a = v
1−IOU+v (2)

v = 4
p2 tan−1 wgt

hgt − tan−1 w
h

� �2 (3)
FIGURE 2

YOLOV5 network structure. (A) Backbone module; (B) Neck module; (C) Head module; (D) SPPF module; (E) Detect module; (F) C3 module;
(G) CBS module.
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At the prediction layer, CIOU_Loss is utilized to transfer the

loss and weighted NMS is used to obtain the optimal target frame.

The model computation and complexity of the YOLOV5

algorithm in this study are too high, and the arithmetic power of

agricultural embedded devices needs to be higher. Therefore, it is

imperative to reduce the amount of computation, improve the

detection speed, and ensure the detection accuracy.
2.3 Improving the YOLOV5 network design

The YOLOV5M-SBSD network proposed in this paper consists

of a Backbone network, Neck network, and Head network. The

Backbone network replaces the original backbone network by

utilizing ShuffleNetV2 (Ma et al., 2018), which reduces the

computational effort and the number of parameters through

channel rearrangement and group convolution. Channel

rearrangement introduces cross-group connections in the

network, reducing information transmission paths and improving

feature interaction. Grouped convolution divides the input channels

into multiple groups for convolutional operations, reducing the

amount of computation in a single convolutional layer. The

CARAFE (Wang et al., 2019) module structure was used in the

Neck network to optimize the up-sampling algorithm of YOLOV5,

which increases the sensory wildness of the network while

maintaining lightweight. Due to the complex background

environment of the tea plantation, significant differences in light

intensity at different times and weather, inconsistent angles of the

dataset, and other disturbing factors, the SimAM (Yang et al., 2021)

attention module was embedded in the Neck network to improve

the focusing on the tea bud target. To improve the accuracy of tea

bud detection. In this study, SimAM is embedded into the tandem

layer of PANet after giving higher weights to the semantic

information of tea buds. Then, the C2F module replaces the C3

module in the Neck network. The C2F module can better adapt to

targets of different sizes and shapes by using a variety of

convolutional kernel sizes and step sizes, as well as a feature

pyramid structure to capture feature information at different

scales, improving the model’s detection capability and accuracy.

The weighted bidirectional feature pyramid network (BiFPN) (Tan

et al., 2020) replaces the PANet in the original model to achieve

more efficient multi-scale feature fusion. In the Head network, we

incorporate a dynamic target detection head (Dyhead) (Dai et al.,

2021) to significantly improve the performance of the model target

detection head without increasing the computational effort. Dyhead

significantly improves the representation of the target detection

head without any computational overhead by coherently combining

the multi-head self-attention mechanism within the scale-aware

feature layer, the spatial location for spatial awareness, and the

output channel for task awareness. Finally, we replace the CIOU

loss function of this model with MPDIOU (Ma and Xu, 2023) and

incorporate the NWD (Wang et al., 2021) module, which can obtain

faster convergence and more accurate regression results, effectively

improving the detection accuracy and localization speed of the tea
Frontiers in Plant Science 05
bud target. The YOLOV5M-SBSD network structure is shown

in Figure 3.

2.3.1 Backbone network improvements
We replace the original backbone of YOLOV5M with the

ShuffleNetV2 lightweight Backbone network, and the V2 version

introduces a new operation, Channel Split. First, at the beginning,

the input feature map is divided into two branches in the channel

dimension, with the channel numbers C’ and C-C,’ and the actual

implementation is C’= C/2. The left branch is mapped equally; the

right branch contains three consecutive convolutions and has the

same input and output channels, while the two 1x1 convolutions are

not group convolutions; the two branches are equivalent to two

groups. The output of these two branches will not be an Add

element but a Concat operation for both branches. Then, Channel

shuffle for the result of the Concat operation to ensure the exchange

of information between the two branches. Moreover, the Concat

and Channel shuffle can be combined with the Channel Split of the

next module to form an element-level operation. Instead of having

Channel Split, the downsampling module has one copy of the input

for each branch, and each branch has a stride=2 downsampling.

Finally, after Concat together, the feature map space size is halved,

but the number of channels doubles. Meanwhile, V2 adds a Conv5

convolution before global Pooling, which differs from the V1

version. Under the same condition, ShuffleNetV2 is slightly faster

and more accurate than other lightweight models. The network

structure of ShuffleNetV2 is shown in Figure 4.

2.3.2 Lightweight upsampling CARAFE module
CARAFE is divided into two main modules, which are the up-

sampling prediction module and feature reorganization module;

assuming that the multiplicity of up-sampling is s, given an input

feature map with shape H*W*C, CARAFE firstly measures the up-

sampling kernel by using the up-sampling prediction module and then

completes the up-sampling by using the feature reorganizationmodule,

to get the output feature map with the shape of sH ∗sW ∗C, and the
network structure diagram of CARAFE is shown in Figure 5.

In the up-sampling feature prediction module the feature map

channels are first compressed, and for input shape feature maps

with shapes such as H * W * C, the number of channels is

compressed to Cm using 1 * 1 convolution to reduce the amount

of computation in the subsequent steps. Then it is subjected to

content encoding and up-sampling kernel prediction, assuming that

the size of the up-sampling kernel is kup ∗ kup, and the amount of

computation increases with the increase of the up-sampling kernel,

and if we use a different up-sampling kernel for each position of the

output feature map, then we need to predict the shape of the up-

sampling kernel as sH ∗sW ∗ kup ∗ kup, and the shape of the up-

sampling kernel is sH ∗sW ∗ kup ∗ kup, for the compressed input

feature maps in the first step, utilizing a kencoder ∗ kencoder
convolutional layer to predict the upsampling kernel, the number

of input channels is Cm, the number of output channels is s 2K2
up,

and then the channel dimensions are expanded in the spatial

dimension, and finally we get an upsampling kernel with the
frontiersin
.org
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shape of sH ∗sW ∗ k2up, and then finally the upsampling kernel in

the second step is subjected to a normalization operation using

softmax to make the convolution kernel’s weights sum to 1. In the

feature reorganization module, each position of the output feature

map is mapped back to the input feature map, the kup ∗ kup region
centered on it is taken out, and at the same time the up-sampling

kernel of the point is predicted as a dot product, to get its output

value, and different channels at the same position share the same

up-sampling kernel.

2.3.3 C2F module
We use the idea of a C2F module in YOLOV8 to replace the

original C3 module; the C2F module is a stage Partial Network,

which is used for feature fusion, and its central role is to fuse

different levels of features to improve the performance of target

detection.C2F module mainly consists of two parts, the upsampling

and feature fusion two The up-sampling part matches the size of the

high-level feature map by scaling the low-resolution feature map to

high resolution through interpolation operation. The feature fusion

part adds the up-sampled feature maps with the corresponding low-

level feature maps element by element to fuse the semantic

information of different levels. Through the operation of C2F,

YOLOV5M-SBSD can fuse multi-level feature information while

maintaining high resolution, thus improving the accuracy and

robustness of the tea bud target detection, better capturing the

detailed information of the target, and reducing the leakage and

misdetection. The network structure of C2F is shown in

Supplementary Figure 3.
Frontiers in Plant Science 06
2.3.4 BiFPN module
We introduce a BiFPN in the Neck network to replace the

original Concat layer. The BiFPN network structure is weighted and

bidirectionally connected, i.e., top-down and bottom-up structures,

and cross-scale connectivity is achieved by constructing

bidirectional channels, which directly fuse the features in the

feature extraction network with the relative-size features in the

bottom-up paths, retaining shallower semantic information and less

loss of deep semantic information. At the same time, BiFPN sets

different weights according to the importance of different input

features while repeatedly adopting this structure to enhance the

feature fusion. The weighted fusion in the BiFPN structure adopts

the fast normalized fusion, which is proposed for the slow training

speed, and scales down the weights to the range of 0~1, and the

training is fast because it does not use the Softmax method. The

cross-scale connection is realized by adding a jump connection and

a bi-directional path; the weighted fusion and bi-directional cross-

scale connection have been realized. The structure of FPN is shown

in Figure 6A, the structure of PANet is shown in Figure 6B, and the

structure of BiFPN is shown in Figure 6C.

2.3.5 SimAm attention mechanism
We introduce a parameterless attention mechanism, SimAm, in

the new model, which is simple and efficient compared to other

attention modules. Unlike existing channel or spatial attention

modules, this module does not require additional parameters to

derive 3D attention weights for the feature map. Currently, existing

attention modules are usually inherited into each block to improve
FIGURE 3

YOLOV5M-SBSD network structure diagram. (A) Backbone module; (B) Neck module; (C) DyHead module; (D) CBM module; (E) Detect module;
(F) C2F module; (G) CBS module.
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FIGURE 5

CARAFE network structure.
FIGURE 4

ShuffleNetV2 network structure diagram. (A) Basic unit; (B) Spatial downsampling unit DWConv depth convolution.
Frontiers in Plant Science frontiersin.org07
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the output from previous layers. This refinement step usually

operates along the channel dimension (Figure 7A) or the spatial

dimension (Figure 7B), and these methods generate one- or two-

dimensional weights and treat neurons at each channel or spatial

location equally. Among them, channel attention belongs to 1D

attention, which treats different channels differently and treats all

locations equally. Spatial attention belongs to 2D attention, which

treats different locations differently and treats all channels

differently. SimAm belongs to 3D weighted attention (Figure 7C),

which can learn more discriminative cues and is significantly better

than traditional 1D and 2D weighted attention. Compared to other

mainstream attention mechanisms, SimAm performs best and does

not introduce additional parameters. The attention to different

dimensional weights is shown in Figure 7.

2.3.6 MPDIOU loss function
We introduced the MPDIOU loss function in YOLOV5M-

SBSD to replace the original CIOU loss function. The MPDIOU

loss function is a kind of bounding box regression loss function,

which is used to measure the difference between the predicted box

and the real box, and the use of MPDIOU can effectively solve the

optimization problem of the bounding box regression loss function

in the case that the predicted box and the actual labeled box have

the same aspect ratio, but the width value and the height value are

completely different. and height values are completely different, and

can obtain faster convergence and more accurate regression results.

MPDIOU is computed as follows, two arbitrary convex shapes: A, B

⊆ S ∈ Rn, the width and height of the input images are w, h. For A

and B, (xA1 , y
A
1 ),  (x

A
2 ,  y

A
2 ) denote the coordinates of the upper-left

and lower-right points of A, and (xB1 , y
B
1 ),  (x

B
2 ,  y

B
2 ) denote the

coordinates of the upper-left and lower-right points of B. The

MPDIOU is computed as follows.

d21 = (xB1 − xA1 )
2 + (yB1 − yA1 )

2 (4)

d22 = (xB2 − xA2 )
2 + (yB2 − yA2 )

2 (5)
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MPDIOU = A∩B
A∪B −

d21
w2+h2 −

d22
w2+h2

(6)

This MPDIOU loss function is defined as follows:

LMPDIOU = 1 −MPDIOU (7)

All factors of the existing bounding box regression loss function

can be determined from the coordinates of the 4 points, and the

conversion formula is shown below.

Cj j = (max (xgt2 , x
prd
2 ) −min (xgt1 , x

prd
1 )) * (max (ygt2 , y

prd
2 ) −min (ygt1 , y

prd
1 ))

(8)

xgtc = xgt1 +x
gt
2

2 ,   ygtc = ygt1 +y
gt
2

2 ,   yprdc = yprd1 +yprd2
2 ,   xprdc = xprd1 +xprd2

2
(9)

wgt = xgt2 − xgt1 ,   hgt = ygt2 − ygt1 , hprd = yprd2 − yprd1 ,wprd = xprd2 − xprd1

(10)

In the above equation:

|C| denotes the minimum outer rectangle area covering Bgt and

Bprd; (xgtc , y
gt
c ) and (xprdc , yprdc ) denote the coordinates of the centers

of the real labeled bounding box and the predicted bounding box,

respectively; wgt and hgt denote the width and height of the real

labeled bounding box; wprd and hprd denote the width and height of

the predicted bounding box.

The correlation diagram of the MPDIOU loss function is shown

in Figure 8.

2.3.7 Dyhead dynamic inspection head
We introduce the Dyhead dynamic detection head in our new

algorithmic detection model, which significantly improves the

representation of the target detection head without additional

computational overhead by coherently combining the multi-head

Self-attention mechanism within the scale-aware feature layer,

spatial-aware spatial location, and task-aware output channel. By

embedding Dyhead into the YOLOV5M-SBSD one-stage detection

algorithm model, tea bud detection performance is significantly
FIGURE 6

BiFPN network design. (A) FPN introduces a top-down path to fuse multi-scale features from P4 to P8; (B) PANet adds a bottom-up path on top of
FPN; (C) BiFPN removes redundant nodes from PANet and adds additional connections.
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improved. The above three attention modules are defined as

follows: for the scale-aware attention module, Scale-aware

Attention (pL), which fuses features of different scales through

semantic importance to enhance the scale-awareness of target

detection.

pL(F) ∗ F = s f 1
SCoS,CF
� �� �

∗ F (11)
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where f(·) is a linear function, approximated with the use of 1*1

convolution; s (x) = max(0,min(1, x+12 )) is a hard-sigmoid function.

For the spatial-aware attention module Spatial-aware Attention

(pS), focusing on the discriminative ability of different spatial

locations, deformable convolutional sparsification is first used.

Then, the aggregated features of the feature layer are acquired at

the exact location to enhance the spatial location awareness of target

detection.

pS(F) * F = 1
LoL

l=1oK
k=1wl,k ∗ F(l; pk + Dpk; c) ∗Dmk (12)

where K is the number of sparsely sampled locations; pk + Dpk
does a location shift to focus on discriminative regions; and Dmk is a

self-learnable importance metric factor with respect to location pk.

All of the above features are obtainable by learning the input

features from the F intermediate layer.

For the task-aware attention module Task-aware Attention

(pC), different tasks are selected by dynamically turning on or off

the feature channel to enhance the target detection’s ability to

perceive different tasks.

pC(F) ∗ F = max (a1(F) ∗ FC + b1(F),  a2(F) ∗ FC + b2(F)) (13)

where ½a1,a2, b1, b2�T = q( · ) is the hyperfunction to control

the activation thresholds; q( · ) first performs global pooling over

the dimensions of L*S, then uses two fully-connected layers, a

normalization layer, and finally normalizes the outputs using the

Shifted sigmoid function.

The network structure of Dyhead is shown in Figure 9, and the

structure of the embedded one-stage target detection model is

shown in Figure 10.
FIGURE 7

Comparison of weighted attention in different dimensions. (A) Channel-wise attention; (B) Spatial-wise attention; (C) Full 3-D weights for attention.
FIGURE 8

MPDIOU loss function.
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2.4 Experimental environment and
parameter configuration

This paper performs tests and runs on the same device, i.e., a

desktop mainframe, with specific accessory configurations and

experimental environments, as shown in Table 2.

Based on the hardware conditions, we set the hyperparameters

with a learning rate of 0.01, momentum of 0.937, weight_decay of

0.0005, batch size of 16, workers of 2, and the optimizer uses

stochastic gradient descent (SGD) and a single graphics processing

unit (GPU) to accelerate training.
2.5 Evaluation indicators

The evaluation metrics used in this paper employ both

performance and complexity; for the performance of the model,

there are four metrics: Precision (P), Recall (R), Mean Accuracy

(mAP), and F1-Score. P has been used to measure the performance

of the model detection, and R has been used to assess the

comprehensiveness of the detection (Hsu and Lin, 2021).

The combination of P and R is the average precision (AP), and

the average accuracy (map) is the mean value of AP, which is used

to measure the performance of the whole model (Guo et al., 2022).
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mAP(0.5,0.95) denotes the mAP for different thresholds ranging

from 0.5 to 0.95, in steps of 0.05. Since P and R are conflicting

performance metrics, the F1-Score is the P and R, the reconciled

mean of P and R with a range value of (0,1), which uses both P and

R to assess the quality of the model. The specific formula is as

follows: the quality of the model. The specific formula is as follows:

P = TP
TP+FP ∗ 100% (14)

R = TP
TP+FN ∗ 100% (15)

where TP is a positive sample predicted to be a positive class, FN

is a positive sample predicted to be a negative class, and FP is a

negative sample predicted to be a positive class:

AP =
Z 1

0
P(R)dR (16)

mAP(0:5) = o
n
i=1APi
n

(17)

where n is the number of categories

F1 = 2 ∗ P ∗R
P+R (18)

For the model complexity aspect, there are three metrics:

Params, GFlops and Size (Rampriya et al., 2022), which are
FIGURE 9

Dyhead network structure.
FIGURE 10

Dyhead embedded one-stage detection model.
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formulated as follows:

Params = ½r ∗ (f ∗ f ) ∗ o� + o (19)

GFlops = o o
n

i=1
k2i ∗C

2
i−1 ∗Ci+o

n

i=1
M2 ∗Ci

 !
(20)

Where r is the input size, f is the convolution kernel size, o is the

constant order, K is the convolution kernel size, C is the number of

channels, M is the input image size and i is the number of iterations.
3 Results and discussion

3.1 YOLOV5M modeling
improvement experiments

3.1.1 Lightweighting module experiments
In this paper, YOLOV5M is chosen as the Backbone network,

and its Backbone network is replaced by MobileNetV3,

ShuffleNetV2, GhostNetV1, and GhostNetV2 for a comparison

test. The careful consideration of the lightweight effect and the

recognition accuracy finally determines the Backbone network of

YOLOV5M-SBSD. It can be seen from Table 3 that the

comprehensive rate of the lightweight effect and the recognition

accuracy of YOLOV5M-ShuffleNetV2 are significantly better than

those of other types. Although the P and mAP of the benchmark

model Backbone network are improved by replacing the Ghost

series, the Params and GFlops are higher than those of

MobileNetV3 and ShuffleNetV2 as the Backbone networks. After

replacing the Backbone network of the original benchmark model

with a lightweight network, the Params and GFlops of the tea bud

detection model are reduced to a certain extent, while the P and
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mAP of the Ghost series are improved, the P and mAP of

MobileNetv3 and ShuffleV2Net are reduced, and the R of the tea

bud detection model is reduced to a certain extent. For the accuracy

P of YOLOV5M-MobileNetV3, the mAP is 1.4% and 0.8% lower

than those of the original benchmark model, and the number of

Params, GFlops and Size are reduced by 89.99%, 91.65% and

89.16%, respectively; For the accuracy P of YOLOV5M-

ShuffleNetV2, the mAP is 1.0% and 0.6% lower than those of the

original benchmark model, and the number of Params, GFlops and

Size were reduced by 90.31%, 91.03% and 89.51%, respectively; For

the P and mAP of YOLOV5M-GhostNetV1 is 0.7% and 0.1%

higher than those of the original benchmark model, and the

number of Params, GFlops and Size were reduced by 59.19%,

62.11% and 54.73%, respectively; For the P and mAP of

YOLOV5M-GhostNetV2 is 0.3% and 0.8% higher than those of

the original benchmark model, and the number of Params, GFlops

and Size were reduced by 4.05%, 10.44% and 3.49%, respectively.

Considering the detection performance of the model, the detection

accuracy and average accuracy of YOLOV5M-ShuffleNetV2 are

better than those of YOLOV5M-MobileNetV3, and finally the

Backbone network of YOLOV5M-SBSD is ShuffleNetV2.

3.1.2 Comparative experiments on
attention mechanisms

After replacing the Backbone of YOLOV5M with ShuffleNetV2,

the P and mAP are subsequently lost. Therefore, we consider

introducing BiFPN to replace the original Concat layer of the

model first and then introducing an attention mechanism to

improve the recognition effect of YOLOV5M-ShuffleNetV2-

BiFPN. This experiment adds CBAM, CA, ShuffleAttention,

NAM, and SimAM attention mechanisms at the exact position of

the Neck network of the YOLOV5M-ShuffleNetV2 base network to

conduct comparative experiments. As seen from Table 4, the

model’s detection is improved by embedding the attention

mechanism, and the addition of all types of attention mechanisms

except the SimAM attention mechanism leads to a slight increase in

Params and GFlops. Although the improvement of CA for mAP is

0.1% higher than that of SimAM, its P is 1% lower than that of

SimAM, and its Params, GFlops, and Size are 0.026616M,0.1G, and

0.05M higher than that of SimAM, respectively. Other types of

attentional mechanisms have lower P and mAP than that of

SimAM, and their Params, GFlops, and Size are higher than that

of SimAM. They are all higher than SimAM. The introduction of
TABLE 3 Comparison of YOLOV5M results under different backbone networks.

Model P R mAP Params/M GFlops/G Size/M

YOLOV5M 88.2% 89.3% 92.9% 20.852934 47.9 40.2

+MobileNetV3 86.8% 87.5% 92.1% 2.296612 4.0 4.76

+ShuffleNetV2 87.2% 87.9% 92.3% 2.020998 4.3 4.22

+GhostNetV1 88.9% 88.7% 93.0% 8.509854 18.2 16.8

+GhostNetV2 88.5% 88.3% 93.7% 20.009622 42.6 38.8
TABLE 2 Hardware configuration and operating environment.

Hardware Configure Environments Version

System Windows10 python 3.10.11

CPU Intel(R) i5-13400F pytorch 1.13.1

GPU NVIDIA RTX 3060 Ti pycharm 2023.1

RAM 32.0 GB CUDA 11.7

Hard-disk 1TB CUDNN 8.4.1.5
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the SimAM attention mechanism improves the P of YOLOV5M-

ShuffleNetV2 by 0.4%. The experimental results show that using

SimAM, a participantless attention mechanism, improves the

feature extraction ability of the tea bud target, suppresses the

interference of the complex background, and effectively improves

the detection effect in detecting tea buds without increasing the

complexity of the model.

3.1.3 Comparative experiments on loss
functions mechanisms

The introduction of parameter-free attention SimAM improves

the detection effect of the target detection model on tea buds, and

the loss function of the target detection model is replaced to

improve the robustness of the training model. In this experiment,

the EIOU, SIOU, WIOU, a_IOU, F_CIOU, F_EIOU, and

MPDIOU loss functions were replaced for comparison

experiments based on YOLOV5M-ShuffleNetV2-BiFPN-SimAM.

From Table 5, it can be seen that different loss functions have no

effect on the model complexity and have some effect on the P and

mAP. The experimental results show that when the loss function is

replaced with MPDIOU, the base P and mAP are increased by 0.1%

and 0.2%, respectively, and nothing changes. The effect of other

types of loss function relative to the base model loss function of the

P have some reduction for the mAP, except for the loss function

EIOU and WIOU remain unchanged, the rest of them are reduced
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than the base model. The MPDIOU loss function can obtain faster

convergence speed and more accurate regression results.

3.1.4 Ablation experiments
We conducted ablation experiments on the lightweight module

ShuffleNetV2, BiFPN, SimAM, loss function MPDIOU, C2F, NWD,

lightweight Upsample CARAFE, and Dyhead, to evaluate the

effectiveness of the YOLOV5M-SBSD detection algorithm in the

detection of tea buds. It is worth noting that in order to make Table 6

more aesthetically pleasing and concise, we have abbreviated the

relevant modules in the ablation experiment results of Table 6, where

Tag represents the serial number, Basic represents the baselinemodel,

SNetV2 represents ShuffleNetV2, CAFE represents CARAFE, and

Dhead represents Dyhead. From Table 6, it can be seen that a variety

of model structures and algorithmic strategy-based improvement

methods are effective, and compared with the original YOLOV5M,

the P is improved by 0.5%, the mAP is improved by 0.2%, the Size is

reduced by 82.89%, and the Params and GFlops are reduced by 85.6%

and 83.7%, respectively.

Replacing the Backbone of YOLOV5M using Shufflev2Net

significantly reduced the performance and complexity of the

detection model, with the Size reduced by 82.89%, the Params

and GFlops, reduced by 85.6% and 83.7%, respectively. However,

the cost of changing the model to reduce the model complexity and

computational volume was to reduce the effectiveness of tea bud
TABLE 5 Comparison of YOLOV5M-ShuffleNetV2-BiFPN-SimAM results under different loss functions.

Model P R mAP Params/M GFlops/G Size/M

YOLOV5M+Sh+Bi+Si(CIOU) 87.8% 87.1% 92.4% 2.057871 4.4 4.29

+EIOU 87.6% 87.2% 92.4% 2.057871 4.4 4.29

+SIOU 86.8% 87.9% 92.2% 2.057871 4.4 4.29

+WIOU 87.4% 87.3% 92.4% 2.057871 4.4 4.29

+a_IOU 86.0% 86.8% 90.6% 2.057871 4.4 4.29

+F_CIOU 86.9% 88.2% 92.2% 2.057871 4.4 4.29

+F_EIOU 87.0% 86.9% 92.0% 2.057871 4.4 4.29

+MPDIOU 87.9% 87.1% 92.4% 2.057871 4.4 4.29
TABLE 4 Comparison of YOLOV5M-ShuffleNetV2-BiFPN results with the addition of different attention mechanisms.

Model P R mAP Params/M GFlops/G Size/M

YOLOV5M+Sh+BiFPN 87.4% 87.1% 92.4% 2.057871 4.4 4.29

+CBAM 87.4% 87.4% 92.1% 2.076810 4.5 4.33

+CA 86.8% 88.3% 92.5% 2.084487 4.5 4.34

+ShuffleAttention 87.2% 87.7% 92.3% 2.061183 4.5 4.29

+NAM 87.6% 86.6% 92.1% 2.061807 4.5 4.29

+SimAM 87.8% 87.1% 92.4% 2.057871 4.4 4.29
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identification, resulting in a 0.7% reduction in mAP. By replacing

the original Concat layer with the introduction of BiFPN in the

Neck network, the P was improved by 0.2%, and the mAP was

improved by 0.1%, which improved the ability of mAP in the model

to recognize tea bud targets. In addition, introducing the parameter-

free attention mechanism SimAM without increasing the model

complexity improves the P by 0.4%, and the mAP is unchanged. By

replacing the loss function MPDIOU combined with NWD to

achieve the optimization of the loss function, the P is improved

by 0.6%, the mAP is improved by 0.5%, and finally, the Dyhead is

replaced with the original detection head. Finally, the P is improved

by 0.3%, and the mAP is improved by 0.2%. As shown in Figure 11,
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during the improvement process of the above method, the mAP is

gradually improved, and the model complexity changes are minor,

finally forming the YOLOV5M-SBSD detection model.
3.2 Experiments comparing the
performance of different models

To verify the comprehensive performance of the YOLOV5M-

SBSD model proposed in this paper, we used a total of Seven

detection models: Faster RCNN, YOLOV3, YOLOV4, YOLOV4-

tiny, YOLOV5S, YOLOV5M, and YOLOV5M-SBSD, for
TABLE 6 Ablation experiment results.

Tag Basic SNetV2 BiFPN SimAM MPIOU C2F NWD CAFE Dhead P mAP Params/M GFlops/G Size/M

0 √ 88.2% 92.9% 20.85293 47.9 40.2

1 √ √ 87.2% 92.3% 2.020998 4.3 4.22

2 √ √ √ 87.4% 92.4% 2.057871 4.4 4.29

3 √ √ √ √ 87.8% 92.4% 2.057871 4.4 4.29

4 √ √ √ √ √ 87.9% 92.4% 2.057871 4.4 4.29

5 √ √ √ √ √ √ 87.9% 92.5% 2.057871 4.4 4.29

6 √ √ √ √ √ √ √ 88.4% 92.9% 2.659599 5.7 5.43

7 √ √ √ √ √ √ √ √ 88.4% 93.0% 2.793559 5.9 5.70

8 √ √ √ √ √ √ √ √ √ 88.7% 93.1% 3.400287 6.9 6.88
fro
FIGURE 11

mAP curves for different stages of improvement.
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comparison, and the results of the performance tests are shown

in Table 7.

Table 7 shows that the YOLOV5M-SBSD target detection

model has the best performance in terms of precision P, mAP,

Params, GFlops, and Size. The YOLOV5M-SBSD target detection

model has the best performance in terms of P, mAP, Params,

GFlops, and Size than Faster RCNN, YOLOV3, YOLOV4,

YOLOV4-tiny, YOLOV5S and YOLOV5M. The P is 39.22%,

0.5%, 15%, 21.1%, 17.1% and 0.5% higher respectively, the mAP

is 9.08%, 1.7%, 5.2%, 12%, 22.2% and 0.2% higher respectively, and

the Params is 98.53%, 94.48%, 93.53%, 42.12%, 51.52% and 83.7%

lower respectively, and the GFlops is 98.14%, 95.54%, 92.33%,

42.98%, 56.33% and 85.6% lower respectively, and the Size is

93.63%, 94.43%, 96.56%, 52.23%, 84.68%, and 82.89% lower

respectively. The YOLOV5 version of the follow-up is widely used

due to its flexibility, and the model complexity of YOLOV5M is

high, which is not conducive to model deployment on low-

computing-power devices, but after lightweight its detection

performance will be reduced to a certain extent, so by making a

series of improvements to the lightweight YOLOV5M to achieve its

detection performance, which shows that YOLOV5M-SBSD has the

best performance among the one-stage target detection algorithms.
3.3 Analysis of model detection effect

The improved model YOLOV5M-SBSD has a better overall

performance for tea bud detection, and it is the best for different

background complexity, different tea bud complexity, and different

shooting angles; it has the lowest leakage and misrecognition rate,

and the average detection rate of the model is above 80%, as shown

in Figures 12–18. Among them, Faster RCNN, YOLOV3, YOLOV4,

YOLOV4-tiny, YOLOV5S, and YOLOV5M have different degrees

of misrecognition and even some leakage detection, and YOLOV4-

tiny has the most severe leakage detection. In this research,

black dashed boxes were utilized to indicate false detections,

purple dashed boxes were used to indicate missed detections, and

blue dashed boxes were used to indicate duplicate detections. For

the Faster RCNN target detection algorithm, certain misdetections

and omissions exist, such as Simple in Figure 12A and Top in Figure

12C. For the YOLOV3 target detection algorithm, certain duplicate
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identifications and omissions exist, such as Shelterless in Figure 13B

and Top in Figure 13C. There are certain omissions for the

YOLOV4 target detection algorithm, such as Shelterless and

Partial shelter in Figure 14B and Top in Figure 14C. There are

serious omissions for the YOLOV4-tiny target detection algorithm,

such as Simple in Figure 15A, Shelterless and Partial Shelter in

Figure 15B and Top in Figure 15C. The YOLOV5S target detection

algorithm has certain misdetections and omissions, such as Top in

Figure 16C and Shelterless in Figure 16B. The YOLOV5M target

detection algorithm has certain duplicate identifications and

misdetections, such as Simple in Figure 17A, Shelterless in Figure

17B and Top in Figure 17C. For our proposed YOLOV5M-SBSD

target detection model, there is no such existing situation as

mentioned above, which effectively illustrates the excellent

performance of our proposed model.
3.4 Discussion

Visual recognition is a prerequisite for the intelligent picking of

tea buds, which is of great significance for developing intelligent

picking equipment for tea buds. With the advancement of computer

technology and the development of agricultural robots, the

application scope of deep learning has become more and more

extensive. The single-stage target detection algorithm YOLO series

has received extensive attention from scholars to meet the need for

real-time detection and adapt to the real-time detection of

intelligent picking equipment (Li et al., 2022) proposed a method

to achieve real-time detection of tea buds using the YOLOV3SPP

deep learning algorithm combined with channel pruning; they

achieved this by adding a pyramid pooling module to the

YOLOV3 model while combining the channel pruning algorithm

and then fine-tuning the model, and through experiments, it was

ultimately found that the size of the model and the detection time

was reduced relative to the previous model by 96.81% and 59.62%.

The detection speed of the compressed model is 15.9 fps, which is

3.18 times that of the original model (Zhang et al., 2023) proposed a

ShuffleNetv2-YOLOV5Lite-E-based edge device detection method

for one-bud and two-leaf tea. The final experimental results show

that the file size of the improved model is reduced by 27% relative to

the previous model, and the detection speed of the improved model
TABLE 7 Comparison of experimental results for different models.

Model P mAP Params/M GFlops/G Size/M

Faster RCNN 49.48% 84.02% 137.099 370.210 108

YOLOV3 88.2% 91.4% 61.497430 154.5 123.5

YOLOV4 73.7% 87.9% 52.496000 89.8 200

YOLOV4-tiny 67.6% 81.1% 5.874210 12.1 44.9

YOLOV5S 71.6% 70.9% 7.012822 15.8 14.4

YOLOV5M 88.2% 92.9% 20.852934 47.9 40.2

YOLOV5M-SBSD 88.7% 93.1% 3.400287 6.9 6.88
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is 3.2 times faster than the original YOLOV5 model (Cao et al.,

2022) proposed a tea bud detection algorithm combining GhostNet

and YOLOV5 by comparing the newly improved model with Faster

RCNN, YOLOV5, and YOLOV5- lite correlation models, and the

final experimental results showed that the target recognition

accuracy of the newly improved model was improved by 1.31%,

4.83%, and 3.59%, respectively, concerning the compared models.
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The mAP of the YOLOV5M-SBSD target detection model proposed

in this paper is 93.1%, and the average detection speed of a single

image is 15.41ms, which meets the requirement of real-time

detection. In addition, from Table 7, it can be seen that compared

with Faster RCNN, YOLOV3, YOLOV4, YOLOV4 tiny, YOLOV5S,

YOLOV5M and YOLOV5M-SBSD the model proposed in this

paper has higher detection accuracy and average detection rate, as
FIGURE 13

YOLOV3 detection accuracy. (A) Tea bud background complexity; (B) Tea bud shelter; (C) Tea bud camera angle.
FIGURE 12

Faster RCNN detection accuracy. (A) Tea bud background complexity; (B) Tea bud shelter; (C) Tea bud camera angle.
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well as lower model volume, Params and GFlops. In order to

distinguish the difference between the newly proposed lightweight

detection model and other detection models, we took the initials of

the main modules added by the improvement as the suffix, and

renamed the newly proposed lightweight detection model.

Therefore, we named the newly proposed lightweight tea bud
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detection model YOLOV5M-SBSD. Our newly proposed

lightweight tea bud detection model, YOLOV5M-SBSD, has a

wide range of application prospects, such as crop yield estimation

and intelligent picking robot equipment development. The

YOLOV5M-SBSD tea bud detection model can effectively adapt

to the equipment with low computing power and reduce the impact
frontiersin.o
FIGURE 15

YOLOV4-tiny detection accuracy. (A) Tea bud background complexity; (B) Tea bud shelter; (C) Tea bud camera angle.
FIGURE 14

YOLOV4 detection accuracy. (A) Tea bud background complexity; (B) Tea bud shelter; (C) Tea bud camera angle.
rg

https://doi.org/10.3389/fpls.2024.1488185
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1488185
of insufficient computing power on the detection effect of tea buds.

In addition, the model can provide a new idea for the detection of

other target crops, and provide technical support for target

detection under low computing power equipment.

In future research, the tea bud detection model will be optimized

through transfer learning by combining the characteristics of other
Frontiers in Plant Science 17
representative tea varieties. In addition, multi-source information

fusion methods are used to reduce the influence of factors such as

solid light on tea buds and to improve the ability to extract features

from tea buds. We try to collect images of tea buds of the same variety

in different periods and make corresponding data sets to reduce the

influence of the growth characteristics of tea buds on the
FIGURE 17

YOLOV5M detection accuracy. (A) Tea bud background complexity; (B) Tea bud shelter; (C) Tea bud camera angle.
FIGURE 16

YOLOV5S detection accuracy. (A) Tea bud background complexity; (B) Tea bud shelter; (C) Tea bud camera angle.
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identification of tea buds. Finally, the improved lightweight model is

deployed to a low-computing-power device to carry out picking

experiments in the complex environment of tea gardens to verify the

excellent performance of the improved algorithm.
4 Conclusions

In order to achieve accurate detection of tea buds in the

complex environment of limited computing power equipment

and tea gardens, this paper proposes an improved target detection

model YOLOV5M-SBSD. The experimental results show that

YOLOV5M-SBSD outperforms the YOLOV5M target detection

algorithm model, with Params, GFlops, and Size decreasing from

20.852934M to 3.400287M, from 47.9G to 6.9G, and from 40.2M to

6.88M, respectively. Params, GFlops, and Size are reduced by 83.7%,

85.6%, and 82.89%, respectively. Meanwhile, the P of the target

detection model improves by 0.5%, and the mAP improves by 0.2%.

Compared with other mainstream target detection models

YOLOV3, YOLOV4, YOLOV4-tiny, YOLOV5S, YOLOV5M, and

Faster RCNN, YOLOV5M-SBSD has the highest detection accuracy

of 88.7%, the highest average detection rate of 93.1%, and the lowest

Params, GFlops, and Size, respectively, of 3.400287M, 6.9G, and

6.88 M. This effectively demonstrates that YOLOV5M-SBSD can

effectively and accurately detect tea buds in complex environments

and on computationally underpowered devices, provide technical

support for the development of intelligent picking equipment for

high-quality tea, and promote the intelligent development of the

high-quality tea industry.
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SUPPLEMENTARY FIGURE 1

Classification image of tea buds. The blue box is single tea; the purple box is
one leaf; the red box is two leaves.

SUPPLEMENTARY FIGURE 2

Pujiang Liangfeng Tea Plantation.

SUPPLEMENTARY FIGURE 3

C2F network structure. (A) C2F module; (B) CBS module.
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