The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Breeding
Volume 15 - 2024 |
doi: 10.3389/fpls.2024.1487106
Stability and adaptability of grain yield in quinoa genotypes in four locations of Iran
Provisionally accepted- 1 University of Guilan, Rasht, Iran
- 2 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Lower Saxony, Germany
The genotype × environment interaction is one of the effective factors in identifying and introducing cultivars with stable grain yield in different environments. There are many statistical methods for estimating genotype × environment interaction, among which AMMI and GGE-biplot analyses provide better and more interpretable results. The objective of this study was to assess the genotype × environment interaction, as well as the adaptability and stability of 40 quinoa genotypes. The experiment was carried out in a randomized complete block design with three replications in eight environments (four locations of Iran and two years). The AMMI analysis of variance showed that the main effects of genotype and environment, as well as the interaction effect of genotype × environment were significant on grain yield. Separation of genotype × environment interaction based on the principal component method showed that the first six principal components were significant and accounted for 47.6%, 22.5%, 9%, 7%, 6% and 4.3% of the genotype × environment interaction variance, respectively. Based on the AMMI model, genotypes G16, G19, G35, G30, G39, G24, and G18 were identified as high-yielding and stable genotypes with high general adaptability. In contrast, genotypes G36, G27, G38, G9, G28, G29, G23, G34, G13, and G12 were the most unstable genotypes in the studied environments. In GGE-biplot analysis, two megaenvironments were identified, and genotypes G16, G19, G25, and G17 were also identified as high-yielding and stable genotypes for these environments. Also, based on the biplot diagram of the ideal genotype, genotypes G16 ، G19, G17, and G35 were the nearest genotypes to the ideal genotype. In total, the results of various analyses showed that the three genotypes G16 and G19 were the superior genotypes of this experiment in terms of grain yield and stability. These genotypes can be introduced as high-yielding and stable genotypes to the climatic conditions of the studied areas.
Keywords: grain yield, Ideal genotype, Mega-environment, genotype × environment interaction, multivariate methods
Received: 27 Aug 2024; Accepted: 13 Nov 2024.
Copyright: © 2024 Jokarfard, Rabiei, Souri Laki and Börner. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Babak Rabiei, University of Guilan, Rasht, Iran
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.