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Application of deep learning for
real-time detection, localization,
and counting of the malignant
invasive weed Solanum
rostratum Dunal
Shifeng Du †, Yashuai Yang †, Hongbo Yuan* and Man Cheng*

College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China
Solanum rostratum Dunal (SrD) is a globally harmful invasive weed that has

spread widely across many countries, posing a serious threat to agriculture and

ecosystem security. A deep learning network model, TrackSolanum, was

designed for real-time detection, location, and counting of SrD in the field.

The TrackSolanmu network model comprises four modules: detection, tracking,

localization, and counting. The detection module uses YOLO_EAND for SrD

identification, the tracking module applies DeepSort for multi-target tracking of

SrD in consecutive video frames, the localizationmodule determines the position

of the SrD through center-of-mass localization, and the counting module counts

the plants using a target ID over-the-line invalidation method. The field test

results show that for UAV video at a height of 2m, TrackSolanum achieved

precision and recall of 0.950 and 0.970, with MOTA and IDF1 scores of 0.826 and

0.960, a counting error rate of 2.438%, and FPS of 17. For UAV video at a height of

3m, the model reached precision and recall of 0.846 and 0.934, MOTA and IDF1

scores of 0.708 and 0.888, a counting error rate of 4.634%, and FPS of 79. Thus,

the TrackSolanum supports real-time SrD detection, offering crucial technical

support for hazard assessment and precise management of SrD.
KEYWORDS

invasive plants, Solanum rostratum Dunal, deep learning, real-time detection,
localization, counting
1 Introduction

Invasive alien plants threaten biodiversity, ecosystem stability, and human health, and

require significant local community expenditures for remediation and eradication, causing

substantial economic losses (Larson et al., 2020; Yang et al., 2022). Solanum rostratum

Dunal (SrD) is a globally harmful invasive weed native to North America that has spread to

countries including Canada, China, Russia, and Australia (Zhao et al., 2019; Abu-Nassar
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and Matzrafi, 2021). The leaves, berries, and roots of SrD contain

cholinesterase inhibitory compounds, which can cause poisoning

and death in livestock when accidentally ingested (Wei et al., 2010).

Moreover, SrD is highly drought tolerant, and its berries dry out

and split, dispersing thousands of seeds upon maturity. Control and

eradication of SrD are challenging, as newly harvested seeds enter

dormancy and may germinate under certain conditions (Abu-

Nassar et al., 2022), Therefore, real-time detection, localization,

and enumeration of this invasive weed are critical for assessing its

impact and informing control measures.

Weeds compete with field crops for sunlight, water, nutrients,

and space, impeding crop growth and reducing yields. Real-time

weed detection is essential to assess invasion levels and provide

critical data for effective weed control (Xu et al., 2023). Weed

detection is fundamental to implementing control measures, and

deep learning techniques are increasingly replacing traditional

machine learning methods for real-time weed detection,

supported by new models and enhanced computational power

(Liu and Bruch, 2020). Effective deep learning-based detection

requires robust datasets, and Unmanned Ground Vehicles

(UGVs) and Unmanned Aerial Vehicles (UAVs) are two popular

platforms for field data collection (Gao et al., 2024). UGVs offer

flexibility and adaptability across various terrains as agricultural

data collection platforms. Kazmi et al. (2015) collected image data

of sugar beet and thistle using UGV and color cameras, detecting

thistle with a 97% accuracy using vegetation indices. Wendel et al.

(2018) developed a weed detection model for lettuce plots via

machine learning, enabling targeted weed removal. Kounalakis

et al. (2019) collected weed images using a robotic platform and

created a model combining deep learning-based feature extraction

with a linear classifier, achieving effective results in field trials. Ju

et al. (2024) developed an autonomous rice field weeding robot

equipped with the MW-YOLOv5s model to distinguish seedlings

from weeds in rice fields.

Compared to ground-based unmanned vehicles, UAV

platforms enhance data collection efficiency and provide high-

quality image data, forming a solid foundation for training deep

learning models. Torres-Sánchez et al. (2021) used artificial neural

networks with UGV imagery to detect broad-leaf and grassy weeds

in wide-row herbaceous crops, achieving detection accuracies of

approximately 75% and 65%, respectively. Su et al. (2022) detected

blackgrass weeds in wheat field by integrating UAV-acquired

multispectral images and machine learning, with average

precision, recall, and accuracy of 93.8%, 93.8%, and 93.0%,

respectively. Ong et al. (2023) combined a CNN-based classifier

with UAV images to detect weeds in cabbage fields, achieving a

recognition accuracy of 92.41%.

Counting plants in the field provides managers with valuable

data to inform better management strategies. Deep learning

techniques have also been applied to plant counting. Barreto et al.

(2021) achieved fully automated plant counting in sugar beet, corn,

and strawberry fields using UAV imagery and a fully convolutional

network (FCN), reporting counting errors of less than 4.6% for

sugar beet and under 4% for corn and strawberries. Chen et al.

(2023) proposed the RFF-PC cone counting algorithm based on

improved feature fusion, achieving an average counting accuracy of
Frontiers in Plant Science 02
89.80% on the UFPC 2019 dataset. Li et al. (2024) introduced

SoybeanNet, a new point-based counting network that performs

both pod counting and high-precision localization, achieving a

counting accuracy of 84.51%, which demonstrates its effectiveness

in real-world scenarios.

Our team previously utilized the U-Net convolutional network

for UAV image analysis to assess the extent of SrD invasion (Wang

et al., 2021a). However, the high flight altitude and low image

resolution of the UAV limit detection to instances when SrD has

reached a certain grown stage, which may already result in

ecological damage. To accurately identify and remove the SrD in

its early stages, we developed the YOLOv5_CBAM network for

detection (Wang et al., 2022). This model was deployed on vehicles

operating autonomously in the field for real-time detection. While

the effectiveness of SrD detection has been established, the model

has not been implemented for accurate counting and localization.

Accurate counting is essential for assessing the invasion status of

SrD, and localization provides precise location information for

targeted remova. Therefore, we designed the deep learning

network model TrackSolunam to achieve real-time detection,

localization, and counting for SrD. This model can can process

videos acquired by UAVs or UGVs in real-time, accurately

detecting, tracking, and locating SrD plants while providing

accurate counts. This technical support is crucial for evaluating

invasion damage and enabling precise management. Additionally,

the model’s real-time processing capability allows for faster

response to invasive events, facilitating timely preventive and

control measures.

The main contributions of this paper are: (1) constructing a

comprehensive dataset of the SrD, includes RGB images captured

from various devices-such as cameras, smartphones, and UAVs-at

different heights and growth stages; (2) developing a deep learning

network model, TrackSolanum, which integrates YOLO v8, EMA

attention mechanism, and DeepSort to enable real-time detection,

localization, and counting of SrD; (3) conducting a field trial using

UAV to validate the proposed method.
2 Material and method

2.1 Data acquisition

Research revealed that there are currently no public datasets

specifically for SrD. Therefore, our team conducted image data

collection in July 2020, June 2021, and June 2022. The data

collection sites were SrD monitoring points in Hebei Province,

China, located at the following coordinates: Monitoring Point (MP)

1# (40.42.27N, 114.45.6E), MP 2# (40.39.58N, 114.46.12E), MP 3#

(40.47.6N, 114.42.7E), and MP 4# (40.43.5N, 114.43.13E). At each

site, SrD was in its natural growth state. Image capture devices

included a NIKON D610 (Nikon, Tokyo, Japan), a smartphone

(HUAWEI Nova 3, Shenzhen, China), and a MAVIC AIR (DJI,

Shenzhen, China). The NIKON D610 and smartphone images were

taken from approximately 1.2 meters above ground, while the

MAVIC AIR captured images from altitudes of 2, 3, and 5

meters. A total of 513 valid images were collected: 222 images
frontiersin.org
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from the NIKON D610, 150 images from the smartphone, 45

images from the MAVIC AIR at 2meters, 44 images at 3 meters,

and 52 images at 5 meters. At MP 4#, video data were captured

using UAV from heights of 2 and 3 meters. The video data collected

were effective for 143 seconds at a two-meter height and 122

seconds at three-meter height. The choice of shooting heights for

different devices was based on our team’s previous research, which

showed that images captured at these heights effectively highlight

the botanical characteristics of SrD for identification. The images

and videos obtained cover multiple growth stages of SrD, including

the seedling, growth stage, and flowering and fruiting stage. Table 1

provides details on the acquisition devices and images resolutions.
2.2 Data preprocessing and
dataset generation

The pixel proportions of individual plants in different images

vary significantly due to differences in equipment, altitude, and the

growth stages of SrD. In UAV images, SrD pixels account for

roughly 0.1% to 0.6% of the entire image during the seedling and

grow thing stages. In contrast, SrD can occupy up to 93.6% of the

image in photos captured by cameras during the growing stage.

Images are often resized when fed into a deep learning network,

typically reduced in size. For instance, YOLO v8 resizes images to

640×640 pixels. To avoid losing detailed information due to image

compression during network training, an overlapping image
Frontiers in Plant Science 03
segmentation method was applied to images where the SrD

occupies a small pixel area (Wang et al., 2021). This method

involves dividing the original images into segments, preserving

plant integrity and increasing the number of samples in the

dataset, which enhances the model’s generalization and

robustness. Additionally, data augmentation techniques were used

to enlarge the dataset for images where SrD occupies a large pixel

area (Figure 1). This processing not only increases the number of

images but also helps to balance the dataset, preventing significant

bias. After processing, a total of 10,094 images were obtained,

containing 51,297 SrD plants.

A target tracking dataset was constructed to train the model’s

ability to track the same SrD in a video stream. From the UAV-

acquired video sequences at two and three meters, one frame was

extracted every ten frames, resulting in a total of 62,664 image pairs

with temporal relationships for the dataset.
2.3 Deep learning network construction

2.3.1 TrackSolanum deep learning network
In this paper, a TrackSolanum network was designed for the

real-time detection, localization, and counting of SrD. It mainly

comprises four components: the detection module, tracking

module, localization module and counting module. The detection

module is primarily based on YOLO_EAND, which quickly and

accurately detects SrD plants, providing a reliable database for
TABLE 1 Imaging devices, resolutions and image examples.

Imaging devices Resolution Image examples

NIKON D610 6016×4016

Mobile phone 4608×3456

MAVIC AIR 4056×3040

MAVIC AIR 3840×2160
(Video)
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subsequent processing. The tracking module uses DeepSort to

enable multi-object tracking based on the output from the

detection module, identifying the same SrD plant across

consecutive video frames to avoid repeated identification and

counting. The localization module locates the detected SrD plants

by searching for their centroids and outputs the specific coordinates

of these centroids in each frame, facilitating subsequent removal

processes. The counting module prevents repeated counts by

invalidating the target ID once it crosses the detection line.

When applying the TrackSolanum model, it is loaded onto

ground terminal devices, allowing video streams collected by drones

or unmanned vehicles to be directly input into the network after

transmission. Each frame of the video stream first enters the

YOLO_EAND module, which detects the SrD and generates

detection boxes. The detection results are then processed by the

tracking module, which assigns a unique identity ID to each

detected target. These results are input into the localization

module, which calculates the centroid coordinates of the detection

box as the position of the SrD plant. The counting module counts

the number of SrD plants in consecutive video frames based on the

identity IDs output by the tracking module. Figure 2 illustrates the

TrackSolanum model’s working process.

2.3.2 Detection module YOLO_EAND
YOLO treats the detection task as a regression problem,

predicting the bounding box of an object and the corresponding

class probabilities directly from the image using a separate neural

network (Redmon et al., 2016). In previous work, our team designed

a seedling detection network model, YOLO_CBAM, based on

YOLO v5 combined with the CBAM attention mechanism. In the

current study, we utilized YOLO v8 (Jocher et al, 2023), which offers

several advantages over its predecessor, including higher detection

accuracy, faster inference, and more efficient utilization of

computational resources. These improvements are particularly

significant for target detection, especially in real-time tasks where

accuracy and speed are crucial. In this paper, we incorporate the

EMA (Efficient Multi-Scale Attention) attention mechanism
Frontiers in Plant Science 04
(Ouyang et al., 2023), the ADown downsampling module (Wang

et al., 2024), and the NWD (Normalized Wasserstein Distance) loss

function (Wang et al., 2021b) into the detection module

YOLO_EAND of the TrackSolanum network model .

YOLO_EAND consists of three main components: backbone,

neck, and head (Figure 3). The backbone is responsible for

extracting features from the input image, serving as the

foundation for subsequent layers in the network for target

detection. The neck network, situated between the backbone and

the head, performs feature fusion and enhancement. Finally, the

head network functions as the decision-making component of the

detection model, generating the final detection outcomes.

To enhance the model’s feature extraction capabilities for SrD,

YOLO_EAND incorporates the EMA attention mechanism in the

Backbone and Neck sections of YOLO v8. This mechanism

reorganizes input features into multiple sub-feature groups by

reconstructing their channel dimensions, ensuring uniform

distribution of spatial semantic features within each group to

utilize global information fully. EMA recalibrates channel weights

and captures pixel-level pairwise relationships through global

information encoding and cross-dimensional interactions within

each sub-feature group. This approach preserves critical channel

information, reduces computational complexity, and improves

model efficiency, as shown in Figure 3H. The SrD often appears

in complex backgrounds, where its morphological features can be

confused with other distracting elements. EMA emphasizes relevant

feature channels highlighting SrD-related information and

suppressing irrelevant data, enabling more accurate detection in

challenging environments (Zhang et al., 2024a). Compared to the

CBAM attention mechanism, EMA achieves faster inference speeds

while maintaining higher detection accuracy (Xu et al., 2024).

The original YOLO v8 model uses convolution (Conv) for

downsampling, which reduces the size of the feature map but can

result in the loss of important details, impacting SrD detection

performance. To address this, the CBS modules in the Backbone

and Neck sections are partially replaced with ADown downsampling

modules (Figure 3G). The ADown module is an innovative
FIGURE 1

Data augmentation methods and examples.
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FIGURE 3

Structure diagram of YOLO_EAND module. (A) YOLO_EAND network structure. (B) CBS component. (C) BottleInet component. (D) C2F component.
(E) Detect component. (F) SPPF component. (G) ADown component.
FIGURE 2

Schematic diagram of the TrackSolanum working process.
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downsampling approach that combines average pooling and max

pooling along different processing paths. This combination retains

critical feature information while reducing the feature map size,

optimizing the number of covariates in the convolutional layer,

lowering model complexity, and enhancing detection accuracy and

efficiency in resource-constrained environments (Wei et al., 2024;

Zhang et al., 2024b). Detecting SrD in real-time tasks often involves

small targets, such as newly sprouted seedlings, where feature loss can

severely impact model performance. The ADown module’s use of

both average and max pooling enriches feature information,

enhancing the model’s ability to detect small targets. Additionally,

to facilitate system deployment, the ADown module reduces

parameters and computational complexity, allowing easier

integration into UAVs or other resource-limited platforms.

The original YOLO v8 model utilizes CIOU as its loss function,

but traditional IoU metrics are sensitive to positional deviations,

especially for small objects, which can degrade detection

performance. To address this, a new bounding box measurement

method, NWD, is introduced to improve small object detection

accuracy. NWD, based on the Wasserstein distance, offers

significant advantages over IoU, as it can effectively evaluate

similarity even when two frames do not overlap or overlap

minimally. This characteristic overcomes IoU’s limitations in

small-target detection, especially under conditions of minimal

overlap or uncertain target positions, thereby enhancing the

model’s adaptability to complex scenes (He and Wan, 2024;

Zhang et al., 2024c).

2.3.3 Tracking module DeepSort
When conducting real-time detection of SrD by UAV or UGV,

the same plants may appear in consecutive video frames, which can

lead to duplicate counts if these instances are not differentiated. This

affects the accuracy of the detection. A common approach to

address this issue is to set up a detection line in the image and

count only the targets that pass through it (Zhang et al., 2023; Li

et al., 2024; Ye et al., 2024). However, while this method is effective

for counting, it falls short of providing precise localization of

detected targets. Accurate localization is essential for target

elimination. For instance, each SrD plant must be assigned a

unique identifier to distinguish individual plants during herbicide

spraying. This ensures that no plant is missed in the video stream

and prevents redundant spraying caused by repeated detection.

Introducing a tracking module can effectively address these

challenges. First, during the movement of the operation platform,

the same SrD plant may appear in consecutive frames. If a plant has

already been sprayed in a previous frame, the tracking module can

associate it with the same plant in subsequent frames, preventing

redundant operations. Additionally, the tracking module helps

manage intermittent detection due to occlusions or limited

viewing angles. For instance, an SrD plant might not be detected

in initial frames due to obstructions. However, as the platform

moves and the plant becomes visible in later frames, the tracking

module can identify it as an untreated target, assign an identifier,

and trigger a spraying operation, preventing missed detection. The

tracking module also has significant advantages in dynamic

environments. For example, during UAV flight, airframe
Frontiers in Plant Science 06
vibrations or wind-induced plant movement can affect detection

stability. The tracking module mitigates these detection

uncertainties by leveraging temporal continuity. Even when some

frames are occluded or fail to detect the plant, the module can use

the target’s historical trajectory to link information from previous

and subsequent frames, maintaining consistent detection and

counting. By incorporating a tracking module, this study

overcomes the limitations of static detection methods, improving

the accuracy of weed localization and counting. This approach

provides reliable technical support for the precise removal of SrD in

practical applications.

The tracking module, DeepSort, in the TrackSolanum network

designed in this paper, tracks the results output by the

YOLO_EAND detection module and assigns a unique identity ID

to each target. DeepSort is developed based on SORT (Bewley et al.,

2016), a simple and efficient method for multi-target tracking.

However, SORT’s association metric, which primarily relies on

Kalman filtering and the Hungarian algorithm, may struggle in

complex scenarios such as overlapping targets and occlusions.To

address these issues, DeepSort enhances the SORT algorithm by

incorporating cascade matching and new trajectory confirmation,

thereby improving the accuracy of target association and reducing

the frequency of ID switches. By integrating deep learning-based

appearance feature extraction with traditional Kalman filtering and

the Hungarian algorithm, DeepSort achieves more robust multi-

target tracking, particularly in scenarios involving target overlap,

occlusion, and appearance changes. This structure is illustrated

in Figure 4.
2.3.4 Localization module
Under natural conditions, SrD plants exhibit symmetry, and

their leaves are arranged alternate. Previous studies have

demonstrated that the geometric center of the smallest enclosing

rectangle of a SrD plant closely align with the center of plant itself.

The YOLO_EAND detection module outputs a bounding box for

each detected SrD plant. Therefore, this study uses the geometric

center of the bounding box as the plant’s coordinate position within

the image. The calculation for determining these localization

coordinates is shown in Equation 1.

x0 = (x1 + x2)=2

y0 = (y1 + y2)=2

(
(1)

Where, x0 and y0 represent the horizontal and vertical

coordinates of the geometric center of the bounding box,

respectively. x1 and y1 are the horizontal and vertical coordinates of

the upper left corner of the bounding box, while x2 and y2 indicate the

horizontal and vertical coordinates of the lower right corner.

After the video is input into the TrackSolanum network, the

YOLO_EAND module processes each frame, generating detection

boxes for the identified SrD plants and calculating the coordinates

of their center points. A txt file is then created to log the identity

IDs, detection box coordinates, and center point coordinates of all

detected SrD in each frame. The primary goal of localizing SrD is to

facilitate subsequent real-time removal. Using the centroid of the

detection box for localization enables quick positioning of each
frontiersin.org
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plant, minimizing responses time for future real-time clearing

operations. The localization results are shown in Figure 5. In

Figure 5A, the visualization of centroid localization is presented,

with the centroids of the detection boxes marked by solid red dots,

indicating the precise position of the plants. Figure 5B shows the

coordinate information for each SrD, as recorded in the txt file,

which provides critical data for subsequent statistical analysis.

2.3.5 Counting module
Counting the number of SrD plants in a specific region allows

for the quantification of their density and distribution, providing an

accurate assessment of their impact and essential data for

developing targeted control measures. Precise counting results

enable agricultural departments and related organizations to

allocate resources more effectively and implement more efficient

eradication or control strategies in high-density invasion areas,

reducing the adverse effects of Solanum rostratum on ecosystems

and agriculture. Additionally, counting facilitates the prediction of

the SrD’s spread patterns and trends.

For each frame in the video, the YOLO_EAND detection

module identifies SrD plants, while the DeepSort tracking module

assigns a unique identity ID to each detected plant. Ideally, the

identity ID of the same SrD plant should remain consistent across

consecutive video frames. However, changes in perspective during

detection and tracking can sometimes cause the same target to be

identified as a different object in adjacent frames, leading to the
Frontiers in Plant Science 07
assignment of new IDs. Calculating the total number of SrD directly

from these IDs could result in inaccurate counts. To address this

issue, we developed a counting method where the target ID becomes

invalid once the SrD crosses a designated detection line.

This program integrates the coordinated functions of target

detection, tracking and counting to enhance counting accuracy. In

this approach, a detection line is set within the program as a trigger for

counting. When the lower boundary of the detection box (i.e., the

vertical coordinate y2) is greater than the y-coordinate of the detection

line, and the y-coordinate of the detection line is less than the upper

boundary of the detection box (i.e., the vertical coordinate y1), the

counting condition is triggered, indicating that the detection box for

SrD has crossed the detection line. Once this condition is met, the

system checks whether the unique ID of the current detection box has

been previously counted. If the ID has not yet been counted, the system

increments the count by one and saves the ID in a list named

Count_ids to prevent duplicate counts. If the ID has already been

counted, the system continue to monitor and track the SrD to ensure

consistent observation. Finally, the counting results are output to the

detected video for further analysis and evaluation.The total number of

SrD in the video can be calculated using Equation 2.

Z =on
i=0Ci (2)

Where, Z represents the cumulative number of SrD, Ci denotes

the number of SrD that passed through the detection line in frame i,

and n is the total number of frames in the video.
FIGURE 4

Structure diagram of DeepSort module.
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A schematic diagram of the counting method for the ID over-

the-line failure counting method is shown in Figure 6. This

method effectively reduces counting errors caused by changes in

ID and mitigates the impact of variations in the speed of UAV or
Frontiers in Plant Science 08
ground vehicles, which can lead to the detection box of the same

target repeatedly crossing the counting line in consecutive video

frames. As a result, it enhances the counting accuracy and

reliability of SrD.
FIGURE 6

Schematic diagram for calculating the number of SrD plants.
FIGURE 5

Localization examples of SrD.
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2.4 Network model hyperparameter setting
and operating environment

In this paper, the deep learning model TrackSolanum is

constructed using the PyTorch 2.1.2 framework, with the

program code written in Python. The model operates on a

desktop computer equipped with a 12th Gen Intel® Core™ i9-

12900K CPU, an NVIDIA GeForce RTX 4090 GPU, CUDA version

11.8, and the Microsoft Windows 11 operating system.

The batch size was set to thirty-two during model training, and

the probability of performing Mosaic in the image enhancement

part was set to ten. The Stochastic Gradient Descent (SGD)

optimizer was employed, with the maximum iteration period

(Epoch) set to 300. The initial learning rate was set to 0.01, the

final learning rate to 0.0001, the momentum of the optimizer to

0.937, the weight decay coefficient to 0.0005, the image mosaic

probability to 1.0, the image panning ratio to 0.1, the image scaling

ratio to 0.5, and the image left-right flip ratio to 0.5. To ensure

fairness and comparability of model performance in the

experiments, no pre-trained weights were used during model

training. The training input image size was set to 640×640. The

total dataset comprises 10,094 image pairs, which are randomly

partitioned in an 8:1:1 ratio. The training set includes 8,077 images,

the validation set comprises 1,010 images, and the test set contains

1,007 images.

The tracking module DeepSort has the maximum iteration

period (Epoch) set to one hundred, the learning rate to 0.1, and

the batch size (Batch_size) set to sixty-four for model training. The

min_confidence is set to 0.2, max_iou_distance is set to 0.3, and

nms_max_overlap is set to 0.5.The dataset for target tracking

comprises a total of 62,664 pairs of images, which are randomly

divided using a ratio of 8:1:1, where the training set contains 50,127

pairs of consecutive images with temporal relationships, the

validation set contains 6,265 pairs of consecutive images with

temporal relationships, and the test set contains 6,272 pairs of

consecutive images with temporal relationships.
2.5 Network model performance
evaluation metrics

2.5.1 Evaluation metrics for the YOLO_EAND
detection module

In this paper, precision (P), recall (R), average precision (AP),

and frames per second (FPS) are used as evaluation metrics to assess

the performance of the YOLO_EAND module. P quantifies the

ratio of correctly identified SrD (true positives) to the total number

of instances classified as SrD by the model. R is the proportion of

SrD instances correctly identified by the model to the total number

of SrD. AP is the average precision across different recall rates and

can also be viewed as the area under the precision-recall curve. AP is

a crucial evaluation metric for object detection algorithms, and a
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higher AP value indicates better detection performance of the model

on the given dataset. Detection speed can be evaluated by FPS,

which represents the number of images that can be processed per

second. P, R, AP, and FPS can be calculated using Equation 3.

P = TP
FP+TP

R = TP
FN+TP

AP =o
Z 1

0
P(R)dR

FPS = 1
t

8>>>>>>><
>>>>>>>:

(3)

Where, TP denotes the number of SrD plants correctly

identified by the network model, while FP indicates the number

incorrectly detected. FN refers to the SrD plants that the model

failed to detect. The variable t signifies the time required to process a

single image, measured in seconds.
2.5.2 Evaluation metrics for the DeepSort
tracking module

The performance of the tracking module DeepSort can be

evaluated using Identification Switch (IDSW), Multiple Object

Tracking Accuracy (MOTA) and Identification F1 (IDF1) (Rong

et al., 2023; Villacres et al., 2023). IDSW refers to the number of ID

switches of SrD during video tracking. It counts the occurrences of

incorrect target ID switches throughout the video sequence,

revealing whether the algorithm can correctly maintain target

identity during occlusion, disappearance, or reappearance. A

lower IDSW value indicating better performance. MOTA,

recognized as a standard metric for assessing the efficacy of

multi-object tracking systems, accounts for three key types of

tracking errors: false positives, false negatives, and identity

switches. MOTA provides an overall evaluation of the tracking

algorithm’s performance through a single metric, allowing direct

comparison between different algorithms. A higher MOTA score,

nearing the value of one, denotes superior tracking performance.

IDF1 is an important metric for evaluating the consistency of

identity assignments in multi-object tracking scenarios. IDF1

represents the proportion of detected and tracked targets assigned

the correct ID. It is a comprehensive metric that evaluates correctly

detected targets, false positives, and missed detections, similar to the

traditional F1 Score. By using the harmonic mean, IDF1 balances

precision and recall. The performance of DeepSort in weed

detection and tracking can be comprehensively evaluated using

the three metrics mentioned above. These metrics effectively reflect

the model’s robustness in handling complex scenarios. Considering

these evaluation metrics together helps provide a holistic

understanding of DeepSort’s strengths and weaknesses in

detecting SrD.

It represents the proportion of detected and tracked objects that

are assigned the correct ID. A value of IDF1 closer to one indicates

higher precision in tracking specific targets.MOTA and IDF1 can be

calculated using Equation 4.
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MOTA = 1 − ot
(FNtþFPt+IDSWt )

ot
GTt

IDF1 = 2IDTP
2IDTP+IDFN+IDFP

8<
: (4)

Where, t represents the index number of the current video

frame. FPt denotes the number of SrD misidentified as other objects

in the t-th frame, FNt denotes the number of SrD not detected in the

t-th frame. GTt represents the total number of SrD detected in the t-

th frame, and IDSWt denotes the number of ID switches of SrD in

the t-th frame. IDTP represents the number of SrD correctly tracked

throughout the video, IDFP represents the number of SrD

incorrectly tracked, and IDFN represents the number of SrD lost

during the tracking process.

2.5.3 Counting accuracy evaluation metrics
The counting performance of SrD can be evaluated using the

error rate (ER). The ER can be calculated using Equation 5.

ER =
Count − Ground Truthj j

Ground Truth
(5)

Where, Count represents the number of SrD detected by the

model in the video, and Ground Truth represents the manual count

of SrD in the video.
2.6 Field test

To verify the effectiveness of the TrackSolanum network model

designed in this paper for practical applications, field tests were

conducted on June 23, 2024, and July 30, 2024, at the invasion sites of

SrD in Zhangjiakou City, Hebei Province, specifically at MP 5#

(40.46.57N, 114.42.4E) and MP 6# (40.51.5N, 114.54.20E). The test

site featured SrD in a natural state of growth, and video data were

collected using aMAVIC AIR. The video captured by the drone had a

resolution of 3840 × 2160 and a frame rate of 30 frames per second.

The camera was kept perpendicular to the ground while the drone

was in flight. At theMP 5#, flight heights of 2 and 3 meters were used;

at the MP 6#, heights of 2, 3, 4 and 5 meters were used. Throughout

the field tests, the drone flew at a speed of 1 m/s along a straight line at

a constant speed, ensuring no overlap in the flight paths.,
3 Results

3.1 Detection results of the test set

The 1,007 images in the test set were fed into the trained

TrackSolanum network model, and the detection results from the

YOLO_EANDmodule are presented in Table 2. The test set contained

a total of 5,871 SrD plants. The model detected 5,543 plants, indicating

that it accurately identified the weed in most cases. However, there
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were 308 instances of detection errors, where the model incorrectly

identified some objects that were not SrD as targets. Further analysis of

these false positive samples revealed that other crops and weeds in the

detection images were misidentified as SrD due to morphological

similarities. These errors not only increased the counting

inaccuracies but could also affect the model’s practical application in

complex environments. The model missed 328 instances of SrD, with

false negatives primarily occurring when the plants were obscured,

small, or had indistinct features, affecting detection comprehensiveness.

Although the YOLO_EAND model incorporated the EMA, ADown

downsampling, and NWD loss function to enhance feature extraction

and small target detection capabilities, the analysis indicates that it still

exhibits certain errors under complex background conditions and

specific scenarios.

The P, R and AP of the YOLO_EAND model are 0.947, 0.944

and 0.981 respectively. The model processed 1,007 images in a total

time of 80.326 seconds, with an FPS of 98. Figure 7 shows the

detection results for some images from the test set. It can be

observed that the TrackSolanum network applicable to images

captured by different devices and is capable of detecting SrD

plants at various growth stages.
3.2 Field test results

At MP 5#, most of the SrD plants were in the growth stage with

more than six leaves, although a few seedlings had fewer than six

leaves. Four video segments were captured at heights of 2 and 3

meters, respectively. The videos captured at 2 meters had a total

duration of 106 seconds, while those at 3 meters totaled 95 seconds.

Table 3 presents the test results of the field videos.

At a height of 2 meters, the P and R for detecting SrD reached

0.950 and 0.970, respectively. The tracking performance metrics

MOTA and IDF1 in consecutive video frames reached 0.828 and

0.960, with an IDSW of 34 and an ER of 2.438%. The FPS was 17.

Although the model performs excellently in detection and tracking,

the need to save the location information of SrD in real-time to a

specified txt file during the processing of each frame results in a

decrease in video processing speed compared to single-frame image

processing. This additional data storage operation may cause a

delay when processing a large number of video frames, but this

delay mainly occurs during the data storage phase and does not

have an impact on the real-time nature of data acquisition during

UAV flight. In this system architecture, video data is transmitted to

the ground terminal devices for processing via the UAV, allowing

detection results to be output quickly after input into the model,

ensuring that the real-time of the field operation is not affected.

At a height of 3meters, the P and R for detecting SrD reached 0.846

and 0.934, respectively. The tracking performance metricsMOTA and

IDF1 in consecutive video frames were 0.708 and 0.888, with an IDSW

of 10 and an ER of 4.634%. The FPSwas 45. Although the FPS is higher
TABLE 2 YOLO_EAND identification results on the test set.

Actual number TP FP FN AP P R Time consume FPS

5,871 5,235 308 328 0.981 0.947 0.944 80.326 98
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and processing faster at a 3-meter altitude, the performance at 2 meters

is superior in terms of detection, tracking and counting accuracy.

Overall, the TrackSolanum model efficiently accomplishes the

detection, localization, and counting tasks for SrD at various flight

heights. While the processing speed is slightly reduced due to the need

to save detection results for each frame, this does not affect the real-

time application of the drone. The data processing delay primarily

occurs on the ground terminal devices; once data analysis is completed,

the system can quickly output detection results. Therefore, the

TrackSolanum model ensures real-time data collection and

transmission during drone flight, making it suitable for on-

site applications.
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At the MP 6#, the plants were in a growth stage with more than

six leaves. Table 4 presents the test results from the field video. At 2

and 3 meters flight altitude, the model showed better detection

performance, with P values of 0.925 and 0.941, and R values of

0.943 and 0.946, respectively, indicating that the model accurately

identified most targets with a low false detection rate. As the flight

altitude increased, detection performance declined, particularly at 5

meters where P dropped to 0.774, and R also decreased. This suggests

that higher altitudes may result in some targets being inaccurately

detected or missed, though overall accuracy remained within

acceptable limits. For the MOTA, the 2 and 3 meter altitudes

performed better with scores of 0.819 and 0.830, respectively,
TABLE 3 Experimental results for videos at different flight altitudes at MP 5#.

Video Flight
altitude

Time P R MOTA IDF1 IDSW Ground
truth

Model
count

ER/% FPS

1 2m 26s 0.930 0.936 0.749 0.934 31 229 222 3.057 21

2 2m 25s 0.941 0.976 0.867 0.958 27 506 497 1.779 19

3 2m 21s 0.975 0.981 0.833 0.976 33 246 236 4.065 15

4 2m 34s 0.955 0.985 0.861 0.972 43 471 467 0.849 13

average 26.5s 0.950 0.970 0.828 0.960 34 363 356 2.438 17

5 3m 21s 0.887 0.921 0.717 0.907 13 70 66 5.714 40

6 3m 50s 0.806 0.961 0.646 0.859 14 173 169 2.310 26

7 3m 14s 0.860 0.914 0.765 0.889 6 71 75 5.634 56

8 3m 10s 0.829 0.940 0.702 0.897 5 41 39 4.878 57

average 23.75s 0.846 0.934 0.708 0.888 10 89 87 4.634 45
fro
FIGURE 7

Partial test set detection results. (A) Growth period images obtained from the drone at a height of 2 meters. (B) Growth period images obtained from
the drone at a height of 3 meters. (C) Growth period images obtained from the drone at a height of 5 meters. (D) Cell phone images of seedlings. (E)
Growth period images captured by the camera.
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indicating effective target tracking at these altitudes. However,MOTA

decreased significantly at 4 and 5 meters, likely due to factors such as

reduced resolution and motion blur. The IDF1 value peaked at 0.915

at at 3 meters, indicating optimal tracking quality at this altitude, but

gradually decreased with increasing height, reaching 0.740 at 5

meters. IDSW was lower at 2 and 3 meters, with 38 and 32

switches, indicating more stable tracking, while at 4 and 5 meters,

IDSW increased to 43 and 57, suggesting a greater tendency for ID

mis-switching. Counting results indicated ER of 5.116% and 4.859%

at 2 and 3 meters, respectively, showing good detection performance

at these altitudes. As flight altitude increased, counting errors rose

significantly, with the ER reaching 10.803% at 5 meters, indicating a

greater likelihood of missed detections at higher altitude, impacting

counting accuracy. Due to the relatively sparse density of SrD in this

plot, the amount of positional information processed per frame was

low, leading to a notable increase in detection speed. Detection speed

varied with flight height, being highest at 2 meters (reaching 83 FPS),

and decreasing to 36 FPS at 4 meters. At 5 meters, detection speed

showed a slight improvement, likely because fewer targets were

detected at this height, reducing the positional information needed

per frame and leading to an increase.
4 Discussion

4.1 Performance analysis of trackSolanum
network in detecting SrD

To validate the effectiveness of the YOLO_EAND module within

the proposed TrackSolanum network model, an ablation experiment
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was conducted. This experiment assessed the performance impact of

the EMA, ADown downsampling, and the NWD loss function on the

YOLO v8 detection network under different configurations, using the

same training and testing sets for comparison. Table 5 displays the

ablation test results. Incorporating the EMA led to significant

improvements in P, R, AP, TP and FPS, while reducing the numbers

of FP and FN. This indicates that the EMA enhances the model’s

feature extraction capability, allowing for more accurate SrD detection

in complex backgrounds or occluded situations. It improves detection

accuracy and reduces false positives, aiding in the precise extraction of

target centroids for the localizationmodule.While edge detail detection

enhances accuracy, real-world large-scale applications often prioritize

overall model performance and real-time capabilities. The ADown

downsampling module effectively reduces model parameters,

decreasing the model size from 6.3MB to 5.5MB, and significantly

cuts FP, thereby improving model accuracy. This demonstrates that

ADown maintains crucial semantic information while lowering the

spatial dimension of the feature map, optimizing detection efficiency.

Compared to YOLO v8n, the ADown module results in fewer false

positives and better background handling, essential for processing

high-resolution images with complex scenes during UAV operations,

enhancing system adaptability. The addition of the NWD loss function

improves all performancemetrics, particularly FPS, which rises from 72

to 102, greatly enhancing real-time video processing capabilities. This

boost ensures that the model is suitable for large-scale field

environments, providing efficient detection while maintaining high

accuracy. Compared to the original YOLO v8n network,

YOLO_EAND raises P by 2.5 percentage points, R by 1.8 percentage

points, AP by 0.9 percentage points, and increases FPS from 72 to 98,

achieving a 12.698% model reduction.
frontiersin.org
TABLE 5 Results of ablation experiments.

Model Model size TP FP FN P R AP FPS

YOLOv8n 6.3MB 5439 458 432 0.922 0.926 0.972 72

YOLOv8n+EMA 6.3MB 5496 369 375 0.937 0.936 0.978 91

YOLOv8n+ADown 5.5MB 5437 285 434 0.950 0.926 0.979 70

YOLOv8n+NWD 6.3MB 5478 311 393 0.946 0.933 0.978 102

YOLOv8n+EMA+ADown 5.5MB 5448 279 423 0.951 0.928 0.978 91

YOLOv8n+EMA+NWD 6.3MB 5532 396 339 0.933 0.942 0.979 89

YOLOv8n+ADown+NWD 5.5MB 5495 330 376 0.943 0.936 0.978 94

YOLO_EAND 5.5MB 5543 308 328 0.947 0.944 0.981 98
TABLE 4 Field test results at MP 6#.

Video Flight
altitude

Time P R MOTA IDF1 IDSW Ground
truth

Model
count

ER/% FPS

9 2m 75s 0.925 0.943 0.819 0.910 38 215 204 5.116 83

10 3m 60s 0.941 0.946 0.830 0.915 32 247 235 4.859 79

11 4m 53s 0.885 0.910 0.743 0.874 43 315 294 6.667 36

12 5m 43s 0.774 0.827 0.631 0.740 57 361 322 10.803 42
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Our team previously employed the DeepSolanum network to detect

and segment established populations of SrD and calculated

coverage. Although effective detection was achieved at higher

flight altitudes (15 meters), it depended on the plants reaching a

certain growth stage and forming a population. In drone images,

SrD tends to appear in clusters or groups, making individual plant

identification and counting impossible. This suggests that SrD has

begun to negative impact the local ecosystem. Therefore, to detect

SrD invasion at an early stage, our team developed a YOLO_CBAM

model based on YOLO v5 for the early recognition of

individual plants.

To further improve the identification accuracy of SrD, this

paper enhances the recognition model using YOLO v8 as the

foundational network. It incorporates the EMA, ADown

downsampling, and the NWD loss function to construct the

YOLO_EAND module within the TrackSolanum model for

detecting SrD. Table 6 presents a comparison of the recognition

results of YOLO_EAND with the SSD and YOLO_CBAM models

under the same training and testing datasets. As shown in Table 7,

YOLO_EAND is the lightest model, with a memory footprint of 5.5

MB, demonstrating significant advantages in storage and

computational efficiency compared to other models. When

compared to SSD, YOLO_EAND exhibits substant ia l

improvements across all performance metrics, with TP increasing

from 5,109 to 5,543, indicating better performance in accurately

detecting targets. FP decreased by 318, and FN were reduced by 434,

highlighting a significant enhancement in reducing misdetections

and omissions. P, R, and AP improved by 5.6 percentage points, 7.4

percentage points, and 8.0 percentage points, respectively.

Additionally, the inference speed of YOLO_EAND is 2.579 times

that of SSD, showcasing its strong real-time processing capability

while being only 6.071% of the size of SSD. Compared to

YOLO_CBAM, although YOLO_EAND shows a slight decline in

TP and R, along with an increase in FN, it outperforms in model

size, FP, P, and AP, with a more notable enhancement in FPS,

reaching 1.849 times that of YOLO_CBAM. Furthermore, the size

of the YOLO_EAND model is only 36.913% that of YOLO_CBAM,

making it more suitable for deployment on edge devices for on-

site detection.
4.2 The impact of different growth stages
of SrD on detection performance

The leaf shape of SrD varies at different growth stages. During

the seedling stage, the plant features two lanceolate cotyledons,

which transform into pinnate leaves during the growth stage

(Figure 8). Although the TrackSolanum network model was
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trained on a mixed dataset without distinguishing between the

seedling and growth stages, further analysis is required to assess its

performance when testing the SrD at these different stages. To this

end, the test set was divided into two subsets representing the

seedling and growth stages, with each subset undergoing separate

testing. Table 7 presents the test results, indicating that the

TrackSolanum model achieved P, R, AP, and FPS scores of 0.954,

0.986, 0.990, and 120, respectively, for the SrD seedling test set. For

plants in the growth stage, the model achieved P, R, AP, and FPS

scores of 0.950, 0.967, 0.972, and 87, respectively. These results

demonstrate that the TrackSolanum model maintains consistent

detection performance across both the seedling and growth stages,

exhibiting high precision and recall in each instance. This

consistency suggests that the TrackSolanum model can effectively

recognize SrD plants throughout their various growth stages.
4.3 Effect of image quality on
detection results

Detection during the early stages of SrD growth holds

significant practical importance, as mature plants can establish

population dominance, leading to considerable ecological impacts.

SrD’s strong environmental adaptability allow it go germinate

earlier and grow faster than other plants. At this stage, the

contrast with the background is pronounced, and the influence of

other vegetation is relatively minimal, creating favorable conditions

for detection. Test results show that the model developed in this

study performed well in recognizing SrD during both seedling and

growing stages. However, real field environments introduce variable

such as lighting, which can affect detection accuracy. To assess the

model’s performance under low- light conditions, we modified the

dataset images to simulate varying lighting conditions by adjusting

brightness. The 602 images captured by the UAV at altitudes of 2, 3

and 5 meters were processed. Brightness adjustments were made

using a scale factor ranging from 0.2 to 1.8, where a factor of 1.0

indicated no change, factors below 1.0 represented decreased

brightness, and factors above 1.0 indicated increased brightness.

A total of eight gradients were set (Figure 9).

Table 8 presents the impact of image brightness variation on the

model’s detection performance. When the brightness coefficient

ranges from 0.8 to 1.0, the model achieves optimal performance

across all detection accuracy, with a P value of 0.951, R value of

0.924, AP of 0.984, and an FPS of 83. As the brightness coefficient

increases or decreases from this range, the model’s performance

gradually declines. Under reduced brightness, all evaluation metrics

drop. At a brightness coefficient of 0.2, the P, R, AP, and FPS fall to

0.913, 0.840, 0.935, and 76, respectively, indicating a higher
TABLE 6 Results of comparative experiments.

Model Model size TP FP FN P R AP FPS

SSD 90.6MB 5109 626 762 0.891 0.870 0.901 38

YOLO_CBAM 14.9MB 5614 427 257 0.929 0.956 0.954 53

YOLO_EAND 5.5MB 5543 308 328 0.947 0.944 0.981 98
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likelihood of missed detections under low-light conditions.

Conversely, as the brightness coefficient increases to 1.8, the

model’s detection capabilities diminish significantly, with P

dropping to 0.890, R to 0.756, and AP to 0.851. This decline is

attributed to overexposure, which impairs the model’s ability to

accurately identify targets.

To further assess the impact of lighting conditions on model

performance, an additional test was conducted at MP #5 at 6 p.m.,

when the light levels were lower. The flight height was set to 2

meters. The results of the field test are shown in Table 9. As shown

in the table, the model still demonstrated a reasonable level of

robustness despite the insufficient lighting, with P, R, MOTA, and

IDF1 reaching 0.810, 0.940, 0.617, and 0.870, respectively. However,

the lack of sufficient light had a negative impact, leading to a

decrease in detection accuracy and errors during tracking, with the

IDSW reaching 4. The Ground truth of SrD plants in the test area

was 58, while the model counted 50 plants, resulting in an ER of

13.793%. Figure 10 illustrates the results of the field test. The

lighting conditions in the field were relatively poor, similar to the

simulated test in which the brightness variation coefficient was set

to 0.4, though slightly lower. At this point, the model’s precision (P)

was 0.810, lower than the 0.938 observed in the simulation. Recall

(R) was 0.940, higher than the simulation result of 0.916.

Comparing the simulation and field test results, the model’s

detection performance for SrD plants remained consistent. This

indicates that the model maintained relatively high performance

even under low-light conditions.

When UAVs are used to capture videos or images for SrD

detection, high flight speeds can result in motion blur in the images.

To assess how motion blur affects model performance, 602 images

were collected from UAV flights at altitudes of 2, 3, and 5 meters.

Six different blur pixel lengths, ranging from 0 to 25 pixels, were
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applied to simulate varying degrees of motion blur, mirroring the

real-world image quality changes caused by UAV flight (Figure 11).

Table 10 summarizes the model’s detection performance on blurred

images. When the blur pixel length is 0-indicating no blur-the

model achieves its best results, with a P value of 0.951, R value of

0.924, and an AP of 0.984, along with an FPS of 83, showcasing

excellent detection performance. As the blur pixel length increases,

the model’s detection accuracy gradually declines. Notably, at blur

lengths of 20 and 25 pixels, P drops to 0.678 and 0.723, R falls to

0.688 and 0.463, and AP decreases to 0.749 and 0.628, indicating

that motion blur significantly impacts the model’s detection

capability. Although FPS slightly increases with greater blur

lengths-reaching 86 and 91, this comes at the expense of a

substantial reduction in detection accuracy and recall. In general,

as blur pixel length increases, both P and R exhibit a declining trend.

When the blur length surpasses 20 pixels, the model’s detection

quality deteriorates markedly. This underscores that motion blur,

especially at higher levels, can significantly impair the model’s

ability to accurately localize and identify targets during UAV flights.

To further assess the impact of image quality changes caused by

flight speed on model performance, tests were conducted at MP6#

with the UAV flying at a height of 3 meters. Video data were captured

at three speeds: 0.5 km/h, 1.0 km/h, and 1.5 km/h. The test results are

shown in Table 11. As the flight speed increases, both P and R slightly

decrease. At 0.5 km/h, the values of P and R are 0.941 and 0.946,

respectively. When the speed increases to 1.0 km/h and 1.5 km/h, the

value of P drops to 0.935 and 0.916, respectively, while R decreases to

0.942 and 0.933. The primary reason for the decline is the loss of

image details caused by higher speeds, which significantly impacts

small target detection accuracy, especially at higher speeds. Regarding

tracking performance, MOTA and IDF1 decrease as the flight speed

rises. At 0.5 km/h, the values ofMOTA and IDF1 are 0.830 and 0.915,
FIGURE 8

Seedling and growth stages of SrD.
TABLE 7 Detection results at different growth stages.

Dataset Number
of images

P R AP FPS

Seedling stage 230 0.954 0.986 0.990 120

Growth Stage 183 0.950 0.967 0.972 87
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indicating high tracking accuracy. At 1.0 km/h and 1.5 km/h,MOTA

decreases to 0.817 and 0.776, while IDF1 drops to 0.910 and 0.901.

The increased speed accelerates the relative motion between targets,

complicating the frame-to-frame matching process and increasing

the miss-match rate. However, overall tracking performance remains

high. In the counting task, the increase in flight speed also affects

counting accuracy. At 0.5 km/h, 1.0 km/h, and 1.5 km/h, the ER is

4.859%, 5.668%, and 9.312%, respectively. Faster speeds lead to more

missed or incorrect detection, negatively impacting the final count.

Additionally, IDSW fluctuates slightly with increasing speed, with

values of 32, 33, and 30 at 0.5 km/h, 1.0 km/h, and 1.5 km/h,

indicating some instability in tracking performance. Despite these

variations, the FPS remains within the range of 79 to 81,

demonstrating that the TrackSolanum model can maintain real-
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time detection and tracking across all tested speeds. This

underscores the model’s efficiency and effective use of resources.
4.4 The significance of enriching the
dataset with noisy images

In practical applications, noise is often unavoidable, as it

interferes with the effective signals obtained (Mercorelli, 2007(a);

Mercorelli, 2007(b) Mercorelli, 2013). Some factors such as lighting,

motion, and equipment operation can introduce noise into the

captured images during image acquisition. Therefore, this study

superimposed three noise signals onto the dataset images to

simulate interference caused by different scenarios.In this study,
TABLE 9 Field test results in low light conditions.

Flight
Altitude

Time P R MOTA IDF1 IDSW Ground
truth

Model
count

ER/% FPS

2m 16s 0.810 0.940 0.617 0.870 4 58 50 13.793 63
fr
TABLE 8 Impact of image brightness on detection accuracy.

Brightness coefficient P R AP FPS

0.2 0.913 0.840 0.935 76

0.4 0.938 0.916 0.977 76

0.6 0.943 0.926 0.981 77

0.8 0.952 0.920 0.981 83

1.0 0.951 0.924 0.984 83

1.2 0.943 0.913 0.974 82

1.4 0.943 0.913 0.974 78

1.6 0.909 0.869 0.940 81

1.8 0.890 0.756 0.851 81
FIGURE 9

Example of UAV images with varying brightness levels. (A) Original image. (B) Reduce brightness. (C) Increase brightness.
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the model was trained using two datasets: one containing noisy

images and the other without noisy images. The trained models

were then tested on the same test set to verify whether enriching the

dataset with noisy images enhances the model’s detection capability.

The test results are shown in Table 12. After adding noisy images to

the training dataset, the model’s P-value increased from 0.932 to

0.947, the R-value improved from 0.931 to 0.944, and the AP-value

rose from 0.977 to 0.981. This indicates that accounting for noise

during training enables the model to better distinguish between
Frontiers in Plant Science 16
targets and the background, reducing false positives and missed

detections, and improving overall performance. Therefore,

incorporating noisy images into the training dataset enriches the

sample diversity and helps enhance the model’s performance.

To further verify the impact of adding noisy images to the

dataset on the model’s tracking performance, the model was trained

using a dataset without noisy images. It was then tested on UAV

videos captured at location MP5 #, with the results shown in

Table 13. A comparison of Table 13 and Table 3 reveals that
FIGURE 11

Effect of motion blur pixel length in UAV images.
FIGURE 10

Detection results of the model under low light conditions.
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when the model is trained on a dataset without noisy images, its

performance metrics, except for FPS, decrease when detecting the

same video. The improvement in FPS can be attributed to the

following reason: the model’s detection speed is inversely

proportional to the number of SrD plants detected per frame. The

more plants detected, the more positional information the model

needs to process. When the model’s detection capability declines,

the number of detected plants decreases, resulting in less positional

information to process, thereby improving detection speed.

Training the model on a dataset without noisy images results in

decreased detection accuracy, which increases the likelihood of

missed detections and false positives, directly affecting the MOTA

performance. Furthermore, the decline in detection accuracy can

cause temporary target loss or confusion between multiple targets,

compromising tracking continuity and accuracy, and leading to an

increase in IDSW. These comparison results indicate that

incorporating noisy images into the training dataset has a positive

impact on improving the model’s performance.
4.5 Analysis of field test results

During field tests, it was noted that vegetation density, plant

size, the degree of occlusion, and flight altitude had a significant
Frontiers in Plant Science 17
impact on detection, tracking, and counting results (Figure 12).

Detection and tracking of SrD are more accurate when it is isolated

from other plants (Figure 12A). For small SrD seedling, tracking

failures or missed detections can occur in certain video frames,

Conversely, when the plant is large, a single SrD may be mistakenly

identified as two separate plants (Figure12B). In cases of dense SrD

growth, multiple plants might be detected as a single one,

potentially causing ID switches (Figure12C). Tracking errors or

ID switches are also common when other crops obtruct the SrD, as

illustrated in Figure 12D). Additionally, at lower drone flight

altitudes, rotor interference can affect SrD plants with large

leaves, causing them to sway. Excessive leaf movement may lead

to failures or undetected targets (Figure 12E).
4.6 Applicability analysis of the
trackSolanum network model

The TrackSolanum network was used to detect, locate, and

count SrD in UAV-captured videos taken at various altitudes. The

results highlight the TrackSolanum network ’s real-time

performance and efficiency. In this study, we selected the RGB

color model for weed identification. RGB is the default format for

UAV-acquired images, simplifying data processing by eliminating
TABLE 11 Effect of different flight speeds on model performance.

Flight
Speed

Time P R MOTA IDF1 IDSW Ground
truth

Model
count

ER/% FPS

0.5km/h 60s 0.941 0.946 0.830 0.915 32 247 235 4.859 79

1.0km/h 33s 0.935 0.942 0.817 0.910 33 247 233 5.668 79

1.5km/h 21s 0.916 0.933 0.776 0.901 30 247 224 9.312 81
TABLE 12 The impact of including noisy images in the training dataset on model performance.

Training set Number of
testing images

P R AP FPS

Without noisy images 1007 0.932 0.931 0.977 98

Include noisy images 1007 0.947 0.944 0.981 98
TABLE 10 Impact of motion blur on UAV image detection.

Blur pixel length P R AP FPS

0 0.951 0.924 0.984 83

5 0.922 0.918 0.974 85

10 0.879 0.859 0.944 84

15 0.895 0.710 0.866 84

20 0.678 0.688 0.749 86

25 0.723 0.463 0.628 91
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the need for color space conversion. Moreover, most computer

vision algorithms and deep learning models are commonly trained

on RGB images, making them well-suited for the image processing

methods applied in this research. Although other color models,

such as HSV or HSI, offer benefits in handling hue and luminance

variations, our experiments showed that RGB images provided

sufficient color and luminance information in real-world

environments. Additionally, the high resolution of RGB images

ensures better compatibility and flexibility, combined with low data

acquisition and processing costs. Implementing the TrackSolanum

model offers notable advantages in resource allocation and cost

reduction. Firstly, the model minimizes the need for manual

inspection and monitoring, optimizing the use of human

resources. Secondly, the precise data generated by the model

enables more informed decisions regarding herbicide application

and mechanical weed control. From a cost perspective,

TrackSolanum lowers labor demands by automating inspection

tasks, reducing labor expenses, and alleviating pressure on

farmers and businesses.

Several factors must be considered when deploying the

TrackSolanum network model in real-world conditions. First, the

DeepSort algorithm is sensitive to the UAV’s speed and flight path.

Although it can handle some camera shake and partial occlusion,

high flight speeds or unstable motion may result in tracking loss or

ID switching. Second, in large-scale agricultural settings,

TrackSolanum’s performance can be constrained by weather,

flight altitude, and UAV battery life; poor weather conditions

may affect system stability, while higher altitudes can reduce

detection accuracy. Third, in densely vegetated areas or when

other crops cause occlusions, TrackSolanum may experience false

detections and ID switching. Fourth, RGB images are highly

sensitive to lighting conditions. Bright light, shadows, and varying

angles of illumination can impact image quality, affecting detection

accuracy. In complex environments or areas with dense vegetation,

targets with similar colors may be challenging to differentiate.
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The future work plan includes the following: First, to support

real-time processing, efforts will focus on optimizing the

computational efficiency of the TrackSolanum model, enabling it

to handle longer video streams or higher frame rates without

encountering performance bottlenecks. The model will be

deployed on UAV or unmanned vehicles through optimized

algorithm structures and computational resource allocation. The

next step is to incorporate multispectral data to identify targets that

are difficult to detect in RGB images, thereby enhancing the model’s

robustness and accuracy. Third, continue to explore how to further

improve the generalization ability of the model, especially in terms

of acquiring more diverse datasets, in order to better adapt it to new

detection tasks. Fourth, the model will be tested and optimized in

different crops and different environments to improve its

adaptability in various complex scenarios. Fifth, propose more

advanced localization techniques to solve the problem of locating

the unique coordinates of the SrD in the physical world. Through

these efforts, the TrackSolanum model is expected to achieve wider

application and higher effectiveness in the future.
5 Conclusion

This paper proposes a deep learning model, TrackSolanum, capable

of real-time detection, localization, and counting of the invasive weed

SrD. The TrackSolanum model comprises a detection module

YOLO_EAND, a tracking module DeepSort, a localization module,

and a counting module. It can detect SrD plants in video streams,

assign unique identity IDs, and output their coordinate locations in each

image frame image. The YOLO_EAND detection module was tested on

SrD at various growth stages. The experimental results indicated that at

the seedling stage, the P, R, AP and FPS of the YOLO_EAND module

reached 0.954, 0.986, 0.990 and 120, respectively. During the growth

stage, these metrics were 0.950, 0.967, 0.972 and 87. The results
TABLE 13 Results of detecting the video captured at MP5# using a model trained on a dataset without noisy images.

Video Flight altitude Time P R MOTA IDF1 IDSW FPS

1 2m 26s 0.922 0.930 0.731 0.926 32 27

2 2m 25s 0.927 0.966 0.843 0.947 30 23

3 2m 21s 0.968 0.975 0.819 0.968 35 20

4 2m 34s 0.939 0.973 0.845 0.960 47 17

average 26.5s 0.939 0.961 0.810 0.950 36 22

5 3m 21s 0.876 0.914 0.703 0.895 14 47

6 3m 50s 0.793 0.949 0.628 0.850 17 31

7 3m 14s 0.845 0.901 0.751 0.878 6 64

8 3m 10s 0.813 0.927 0.690 0.880 5 64

average 23.75s 0.832 0.923 0.693 0.876 11 52
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demonstrate that YOLO_EAND module is effective for accurate

detection of SrD at different growth stages.

Field validation was conducted using drone-captured videos.

The results showed that at a flight height of 2 meters, the SrD

detection performance metrics, P and R, reached a maximum of

0.955 and 0.985, respectively. At this altitude, the tracking

performance metrics, IDSW, MOTA, and IDF1 were 43, 0.861

and 0.972, respectively, with a counting error rate of only 0.849%
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and an FPS of 13. For the video captured at 3 meters, the P and R of

the TrackSolanum model reached 0.941 and 0.946, while the

tracking performance metrics IDSW, MOTA, and IDF1, were 32,

0.830 and 0.915, respectively, with a counting error rate of 4.859%

and an FPS of 79. The TrackSolanum network presented in this

paper is not only proficient in the on-site detection of the invasive

weed SrD but is also well-suited for the real-time detection and

processing of various other weeds and crop seedlings.
FIGURE 12

On-site test results for SrD in different situation. (A) Unobstructed detection and tracking results. (B) Effect of plant size on detection and tracking.
(C) Effect of vegetation density on detection and tracking. (D) Effect of crop occlusion on detection and tracking. (E) Effect of flight altitude on
detection and tracking.
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