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Introduction: Potatoes and tomatoes are important Solanaceae crops that require

effective diseasemonitoring for optimal agricultural production. Traditional disease

monitoring methods rely on manual visual inspection, which is inefficient and

prone to subjective bias. The application of deep learning in image recognition has

led to object detection models such as YOLO (You Only Look Once), which have

shown high efficiency in disease identification. However, complex climatic

conditions in real agricultural environments challenge model robustness, and

current mainstream models struggle with accurate recognition of the same

diseases across different plant species.

Methods: This paper proposes the SIS-YOLOv8 model, which enhances

adaptability to complex agricultural climates by improving the YOLOv8

network structure. The research introduces three key modules: 1) a Fusion-

Inception Conv module to improve feature extraction against complex

backgrounds like rain and haze; 2) a C2f-SIS module incorporating Style

Randomization to enhance generalization ability for different crop diseases and

extract more detailed disease features; and 3) an SPPF-IS module to boost model

robustness through feature fusion. To reduce the model’s parameter size, this

study employs the Dep Graph pruning method, significantly decreasing

parameter volume by 19.9% and computational load while maintaining accuracy.

Results: Experimental results show that the SIS-YOLOv8 model outperforms the

original YOLOv8n model in disease detection tasks for potatoes and tomatoes,

with improvements of 8.2% in accuracy, 4% in recall rate, 5.9% in mAP50, and

6.3% in mAP50-95.

Discussion: Through these network structure optimizations, the SIS-YOLOv8

model demonstrates enhanced adaptability to complex agricultural environments,
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offering an effective solution for automatic crop disease detection. By improving

model efficiency and robustness, our approach not only advances agricultural

disease monitoring but also contributes to the broader adoption of AI-driven

solutions for sustainable crop management in diverse climates.
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1 Introduction

Potatoes and tomatoes are key solanaceous crops in global

agricultural production. Their widespread cultivation, significant

economic value, and notable nutritional benefits make them crucial

to contemporary agricultural practices. In addition, these crops play

an integral role in global food security, providing essential calories

and nutrients to millions of people worldwide. With the global

population steadily increasing, ensuring a stable and sustainable

supply of these crops is vital for food security, especially in regions

that are highly dependent on potato and tomato cultivation.

However, crop diseases like early blight and late blight, which

affect potato and tomato foliage respectively, substantially hinder

the growth and productivity of these crops, resulting in considerable

economic losses (Yuen, 2021; Maurya et al., 2022; Wu et al., 2022;

Kang et al., 2023a). Beyond economic concerns, the spread of these

diseases also poses risks to food availability, threatening the

livelihoods of farmers and exacerbating food insecurity.

Both early and late blight in potatoes and tomatoes are fungal

diseases (Brouwer et al., 2023; Gonzalez-Jimenez et al., 2023; Park

et al., 2023; Sajeevan et al., 2023; Hyder et al., 2024; Zhang et al.,

2024). The pathogen responsible for early blight is Alternaria solani,

from the subphylum Pezizomycotina, while Phytophthora

infestans, belonging to the subphylum Oomycota, causes late

blight. Factors influencing the prevalence of these diseases include

climatic conditions, soil type, planting density, and varietal

resistance. These diseases are more severe in moist and rainy

climates. Moreover, continuous cropping and soil-borne

pathogens significantly contribute to the incidence of these

diseases (Ricky and Nazari, 2021; Aldakheel et al., 2024; Ames

et al., 2024; Saffer et al., 2024; Sarah et al., 2024; Wang and Liu,

2024). Therefore, developing a method for the accurate and timely

identification of common diseases in potatoes and tomatoes is

crucial for precision agricultural management and enhancing crop

yields. Timely detection allows for early intervention, reducing the

spread of diseases, minimizing the use of chemical treatments, and

ultimately ensuring better crop health and more sustainable

farming practices.

Traditional disease monitoring methods have predominantly

relied on manual visual recognition. This approach is not only time-

consuming and labor-intensive but also subject to variability and
02
subjective judgment. With the rapid advancement of artificial

intelligence technology, particularly the application of deep

learning in image recognition, a new, efficient, and accurate

method for disease monitoring has emerged. Deep learning

models, capable of processing extensive arrays of image data, can

automatically identify and detect crop diseases, thus significantly

enhancing the efficiency and accuracy of diagnosis.

Especially noteworthy among deep learning-based object

detection models are the YOLO (You Only Look Once) series

algorithms, which have demonstrated immense potential for real-

time image processing due to their speed and efficiency. Various

researchers have adopted these object detection models; for

instance, Eman Abdullah Aldakheel et al. (2024) utilized the

PlantVillage dataset—comprising photos of both healthy and

diseased plant leaves from 14 different species—to develop a

YOLOv4-based system for predicting agricultural diseases.

Meanwhile, Zhao et al. (2023) enhanced the YOLOv5s model and

introduced a structure known as Channel AttentionModule(CAM),

which extracts both global and local features from each network

layer, thereby improving the model’s ability to detect crop diseases.

Yang et al. (2024) employed the upgraded YOLOv7 model to detect

minor disease spots on grape leaves. This model incorporates a new

detection head for identifying small targets, uses asymmetric

convolution for extracting multi-scale features, and includes an

improved channel attention mechanism. Additionally, Jia et al.

(2023) developed a rice pest and disease identification model

using the enhanced YOLOv7 algorithm. This model leverages the

lightweight MobileNetV3 network for feature extraction, reduces

parameterization, and combines Coordinate Attention (CA) with

the Scaled Intersection over Union Loss Function(SIoU) to

enhance accuracy.

While the improved deep neural network models discussed

previously have demonstrated outstanding performance in target

detection tasks for crop diseases, they continue to face numerous

challenges when addressing diverse practical issues in agriculture.

In real-world agricultural environments, such as during rainy

seasons or in hazy conditions, crop leaves often appear against

highly disruptive backgrounds. Images captured under these

conditions typically contain significant noise (Kang et al., 2023b;

Rowe et al., 2024), which leads to a noticeable decline in the

robustness and generalization capabilities of deep learning models
frontiersin.org
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in practical applications. In terms of data acquisition and labeling,

the diversity of plant species means that not all plant data is readily

accessible; this is particularly true for data on crop diseases that are

difficult to obtain or that require substantial human and material

resources to collect. Moreover, data labeling itself demands

considerable resources. Therefore, the introduction of domain

generalization techniques is crucial for addressing these issues.

Domain generalization, a type of transfer learning, allows a model

to learn from a specific domain during the training phase and then

apply this knowledge to other domains during the testing phase.

The introduction of this technique is significant for resolving data

acquisition and labeling issues.

Through domain generalization (Wang et al., 2022a), models

can learn effective feature representations on limited training data,

which can then be applied to other domains during the testing

phase. This capability is essential for tasks like disease detection in

crops, where models need to generalize across different plant

species, growing conditions, and environmental variables. As a

result, domain generalization can improve the model’s ability to

recognize and diagnose diseases accurately and reliably, even in the

presence of domain shifts, thus enhancing the robustness and

scalability of disease prediction systems.

Furthermore, current mainstream models for detecting crop

diseases often focus on improving the detection accuracy of diseases

in a single crop, neglecting the model’s capability to recognize the

same disease across different crops. This bias leads to models that

perform well in detecting diseases in single crops but often fail to

exhibit the necessary robustness and generalization capabilities in

cross-crop and complex agricultural scenarios. This makes it

extremely difficult for models to detect diseases in crops where

data is scarce. Therefore, this study proposes the necessity of

optimizing existing deep learning architectures to enhance their

robustness and generalization capabilities in complex agricultural

contexts and across different domains.

To address the challenges outlined previously, this study focuses

on the detection of the same diseases in potatoes and tomatoes,

introducing the SIS-YOLOv8 model for identifying early and late

blight in the leaves of these plants within complex backgrounds.

Initially, we selected samples of early and late blight, as well as healthy

leaf images from potatoes and tomatoes, using the open-source public

dataset PlantVillage. We also gathered a large number of related

images through web scraping. These images were annotated to create

a comprehensive dataset of early and late blight in potato and tomato

leaves. To mimic noise interference typical in agricultural settings, we

introduced two types of simulated noise processing, indicative of rain

and haze conditions, into the dataset images. Furthermore, we

applied image enhancements, including stretching, scaling, and

adjustments in the HSV (Hue, Saturation, Value) color space, to

bolster the model’s robustness and generalization capabilities.

In response to these challenges, we developed the SIS-YOLOv8

model by introducing key architectural enhancements aimed at

improving robustness and generalization across various agricultural

scenarios. These enhancements—Fusion-InceptionConv, C2f-SIS,

and SPPF-IS—were designed to strengthen the model’s ability to

adapt to diverse and complex agricultural environments, such as

disease detection in crops. The integration of Style Randomization
Frontiers in Plant Science 03
(Wang et al., 2022b) and Cross-Norm (Tang et al., 2021) further

helps the model generalize effectively to different agricultural settings,

making it more applicable to real-world farming challenges.

Following these improvements, the model achieved strong

performance metrics, with significant gains in precision and recall

for agricultural tasks such as disease detection in potatoes and

tomatoes. This demonstrates the model’s potential to enhance crop

management practices, offering reliable and accurate insights for

early detection of plant diseases, which can ultimately reduce losses

and improve productivity.

Moreover, through model pruning, we made the SIS-YOLOv8

more efficient and lightweight, making it suitable for deployment in

resource-constrained environments, such as on-farm devices or

low-power agricultural sensors. Despite the reduction in model

size, performance remained high, further underscoring the model’s

practicality in real-world agricultural applications.

When compared to other state-of-the-art models like YOLOv9

(Wang et al., 2024b) and YOLOv10 (Wang et al., 2024a), the SIS-

YOLOv8 outperforms them in domain generalization, making it a

particularly effective tool for diverse agricultural applications. This

demonstrates the model’s capacity to adapt to different crops and

environmental conditions, providing farmers with a versatile and

scalable solution for precision agriculture. Moreover, in a

comparative analysis with the two-stage detection model

FasterRCNN (Ren et al., 2016), the SIS-YOLOv8 not only shows

superior performance in terms of detection accuracy but also excels

in processing speed. The FasterRCNN, while effective for certain

tasks, tends to be slower due to its two-stage detection pipeline,

which involves region proposal generation followed by object

classification. In contrast, the SIS-YOLOv8 achieves significantly

faster inference times due to its single-stage architecture, which

directly predicts bounding boxes and class labels in one step. Our

experiments indicate that the SIS-YOLOv8 surpasses FasterRCNN

both in speed and efficiency, with a much higher Frames Per Second

(FPS) value, demonstrating its suitability for real-time applications

in agricultural settings where both accuracy and speed are critical.

This research contributes to the agricultural disease detection

field by providing a dataset of common diseases in potatoes and

tomatoes, totaling 4,800 images. Additionally, this study introduces

a new research approach for disease detection, namely using

domain generalization methods from transfer learning to improve

the model. We propose an improved SIS-YOLOv8 model, which,

through optimizing the network structure, enhances adaptability to

complex agricultural environments, resulting in higher accuracy

and recall rates in agricultural disease detection tasks. This study

employs the DepGraph pruning method (Fang et al., 2023), which

trims the model to compress unnecessary parameters, thus making

it more lightweight. The pruned model’s mAP50 is 87.5%, mAP50-

90 is 84.0%, the accuracy rate is 85.7%, and the recall rate is 82.2%.

The model’s parameter count is reduced to 2.41M, with a Frames

Per Second(FPS) of value of 295.5, representing a 330% increase in

processing speed. The accuracy has increased by 1.6% compared to

the pre-pruned model. While reducing the model’s parameter and

computational requirements, the mAP has improved by 0.1%

compared to the pre-pruned model and by 5.9% compared to the

original YOLOv8n model.
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2 Materials and methods

2.1 Materials

2.1.1 Images acquisition
Images of potato and tomato leaves exhibiting early blight, late

blight, and healthy states were obtained from the publicly available

PlantVillage dataset, which includes images captured under

controlled laboratory conditions. The PlantVillage dataset is

open-source and can be accessed at https://github.com/

spMohanty/PlantVillage-Dataset. Additionally, images depicting

similar conditions were collected from field environments

through web crawling techniques, which involved gathering

publicly accessible images from agricultural research websites,

plant disease repositories, and online plant health databases.

These images were then combined into a comprehensive dataset

designed specifically for the detection of early blight, late blight, and

healthy conditions in potato and tomato leaves. The dataset consists

of 3268 images in total, with 1628 images representing potato leaves

and 1640 images representing tomato leaves. A subset of these

images is illustrated in Figure 1.

The annotation process was conducted using LabelImg software

under the guidance of a plant pathology expert. A single annotator,

experienced in plant disease diagnosis, was responsible for labeling

the images based on the visible symptoms of early blight, late blight,

and healthy conditions. It is important to note that some images

included a mixture of conditions, such as both healthy and early

blight-affected leaves within the same image. During the annotation
Frontiers in Plant Science 04
phase, images were labeled according to the predominant condition

visible on the leaf, with each image receiving a label corresponding

to early blight, late blight, or healthy.

Inter-annotator reliability was not directly assessed, as only one

annotator was involved. However, the annotations were verified by

a plant pathology expert to ensure accuracy and consistency across

the dataset.

The dataset is split into a training set and a validation set. The

training set contains 524 images labeled with early blight, 537

images labeled with healthy, and 567 images labeled with late

blight. The validation set includes 554 images labeled with early

blight, 534 images labeled with healthy, and 552 images labeled with

late blight. This balanced distribution ensures that each class is well-

represented for model training and evaluation.

2.1.2 Data augmentation
In the data processing stage, various data augmentation

strategies were implemented to enhance the model ’s

generalization and robustness. A Python program utilizing the

OpenCV library was developed to artificially add complex rainy

and smoggy backgrounds to the images. This augmentation was

randomly applied to the dataset images, simulating agricultural

climate noise such as rain and smog. These adverse weather

conditions are commonly encountered in real-world agricultural

settings and can obscure disease symptoms, making it difficult for

traditional models to detect plant diseases under such conditions.

By introducing this type of noise, the model was trained to better

adapt to these challenging environments, improving its ability to
FIGURE 1

A subset of dataset images showcasing different plant leaf types. (A) Tomato healthy leaf, (B) Potato early blight leaf, (C) Potato late blight leaf,
(D) Potato healthy leaf, (E) Potato early blight leaf, and (F) Potato late blight leaf.
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identify diseases like early and late blight, even under complex

climatic conditions. Figure 2 illustrates the modifications

introduced by the agricultural climate noise, including rain

and smog.

Additionally, the dataset was processed using various image

enhancement techniques, such as stretching, scaling, and

transformations within the HSV color space. Stretching and scaling

were applied to simulate varying sizes and proportions of disease

symptoms that may occur due to different growth stages of the plants

in the field. These treatments help the model learn to recognize

disease features at different scales, which is particularly important

since plant diseases can manifest differently based on plant

size and maturity. Meanwhile, transformations in the HSV color

space were used to account for lighting variations, such as

shadows or overexposure, that are common in outdoor agricultural

environments. These adjustments improve the model’s robustness in

detecting diseases regardless of fluctuating field lighting conditions.

Furthermore, image transformation methods such as rotation,

flipping, and translation were incorporated to further enrich the

dataset’s diversity and complexity. These transformations mimic

the natural variability in the orientation and positioning of plants in

the field, ensuring the model can generalize across different

perspectives and viewing angles, which is crucial when diagnosing

diseases in a wide range of real-world settings.
Frontiers in Plant Science 05
After applying these augmentation techniques, the dataset was

significantly expanded. In the augmented training set, there were

785 images labeled with early blight, 805 images labeled with

healthy plants, and 850 images labeled with late blight. For the

augmented validation set, the counts were 831 images for early

blight, 800 images for healthy plants, and 827 images for late blight.
2.2 Methods

The YOLOv8n model consists of three primary components:

Backbone, Neck, and Head. The Backbone serves as the core network,

primarily comprising the Conv module, C2f, and SPPF modules,

responsible for feature extraction. The Neck component effectively

integrates features of various scales learned by the model. The Head

network is responsible for predictions. This model has shown

outstanding performance in detecting common diseases in potatoes

and tomatoes. This paper presents improvements to the original

model, renaming it SIS-YOLOv8 to reflect these enhancements.

Figure 3 illustrates the network architecture of this model.

In this study, the C2f-SIS module was introduced to replace the

C2f layer in the YOLOv8n model’s backbone. This modification

aims to enhance the model’s domain generalization capabilities and

robustness, facilitating multi-scale feature fusion and the
FIGURE 2

Example images demonstrating the impact of different types of noise added to the original image. (A) Original image. (B) Image with added rain
noise. (C) Image with added smog noise. (D) Image with added rain and smog noise.
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decoupling of more detailed features. Furthermore, the Fusion-

InceptionConv module was proposed to substitute the Conv layer

in the YOLOv8n model’s backbone. This change improves the

model’s ability to discern background noise in complex agricultural

settings, particularly under challenging weather conditions such as

rain and smog. Additionally, this module enables the extraction of

more precise textural details from images of diseased leaves. The

study also introduces the SPPF-IS module, which enhances feature

integration within the feature pyramid framework, allowing for the

extraction of even finer-grained features.

2.2.1 BasicConv
Convolution is a fundamental operation in Convolutional

Neural Networks (CNNs), a class of deep learning models

specifically designed to process grid-like data, such as images. In
Frontiers in Plant Science 06
CNNs, the convolution operation involves applying a small filter (or

kernel) to the input image in a sliding window fashion, extracting

local features such as edges, textures, and patterns. At each position,

the filter performs element-wise multiplication with the image and

then sums the results, producing a feature map that highlights the

presence of specific patterns. This enables CNNs to automatically

learn hierarchical features from raw pixel data, reducing the need

for manual feature engineering.

The convolutional layers in CNNs are structured to learn

increasingly abstract features at various levels of granularity. The

initial layers capture low-level features like edges, while deeper

layers combine these low-level features to recognize more complex

patterns or objects. This hierarchical approach to feature extraction

makes CNNs particularly effective for tasks such as image

classification, object detection, and segmentation.
FIGURE 3

The structure of SIS-YOLOv8.
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In this study, a novel convolutional architecture named

BasicConv2D is proposed, designed to replace the convolutional

segment of the enhanced InceptionV1 (Szegedy et al., 2015)

structure. This innovative design aims to boost the model’s

feature extraction capabilities and robustness, particularly for

disease detection tasks in complex agricultural environments.

Figure 3 depicts the structure.

The BasicConv2D architecture consists of a standard 2D

convolutional layer (Conv-2D), primarily responsible for initial

feature extraction. Following this, the Cross-Norm method is

introduced, which significantly improves the model’s generalization

capability, especially with cross-domain data. Cross-Norm implements

normalization across the channel dimensions of the feature maps,

facilitating improved feature distribution and enhancing the model’s

consistency throughout the training and testing phases.

After Cross-Norm, the ReLU activation function is

incorporated to introduce non-linear properties, thus amplifying

the model’s expressive potential. Lastly, the SimAM attention

mechanism (Yang et al., 2021) is integrated, an adaptive approach

that accentuates meaningful features within the feature maps across

both channel and spatial dimensions, while concurrently

suppressing irrelevant features. This mechanism adaptively

focuses on crucial areas within the image, markedly enhancing

the model’s contextual comprehension in agricultural scenarios

characterized by fog and rain, thus bolstering the model’s

robustness. Through the innovative design of the BasicConv2D

structure, not only efficient feature extraction is achieved but also

the model’s generalization capabilities and robustness are

significantly enhanced by integrating both Cross-Norm and the

SimAM attention mechanism.

2.2.2 SimAM attention mechanism
In deep learning, attentionmechanisms are inspired by the human

visual and cognitive systems. Just as we instinctively focus our

attention on important objects in daily life while ignoring irrelevant

details, attention mechanisms enable models to prioritize key aspects

when processing information, while disregarding unrelated or

insignificant parts. This mechanism has demonstrated significant

advantages in tasks such as image processing and natural language
Frontiers in Plant Science 07
processing, as it allows models to utilize limited computational

resources more efficiently, thereby enhancing performance.

By assigning different “weights” or “attentions” to various

features, the attention mechanism helps the model capture more

complex and nuanced patterns, thereby improving its learning

capacity and decision-making accuracy.

To enhance the model’s ability to distinguish between

significant and insignificant features, and to improve its feature

extraction capabilities in complex agricultural settings, the SimAM

attention mechanism has been incorporated. Drawing on principles

from neuroscience, the SimAMmechanism assesses the importance

of each neuron, thereby enhancing meaningful features within the

feature map while suppressing irrelevant ones. This method’s

essence is to emulate the variability of neuronal firing modes and

their mutually suppressive interactions in the spatial domain.

As depicted in Figure 4, the SimAM attention mechanism is a

3D attention mechanism, distinct from traditional channel and

spatial attention mechanisms. It integrates these two approaches.

Within 3D feature maps, adjacent pixels typically demonstrate

strong similarities, in contrast to the weaker similarities among

more distantly located pixels. SimAM capitalizes on this trait by

calculating the similarity between each pixel and its adjacent

counterparts to generate attention weights.

The SimAM attention mechanism quantifies the linear

separability between the target neuron and other neurons,

utilizing this metric to evaluate the significance of neurons. This

method seeks to pinpoint neurons that are rich in information and

demonstrate unique firing patterns, consequently attributing

greater importance to them. By doing so, the model adaptively

concentrates on crucial areas within the feature map, markedly

improving the model’s contextual comprehension during disease

detection tasks under agricultural conditions impacted by haze and

rain, thereby enhancing its robustness.

Moreover, the SimAM attention mechanism bolsters model

robustness by exerting spatial suppression effects via the inhibition

of surrounding neurons. This spatial suppression aids the model in

more effectively differentiating between essential and non-essential

features, thereby facilitating more precise disease detection in

intricate agricultural environments.
FIGURE 4

Full 3-D weights for SimAM attention.
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The formula for the SimAM neuronal energy function is as

follows.

e*t =
4(cs 2 + l)

(t − û )2 + 2ŝ 2 + 2l
(1)

In this context, µ denotes the mean of the input feature map across

dimensions H and W, whereas s represents the standard deviation of

the input feature map along these same dimensions. The parameter l
generally functions as a scaling factor, employed to modulate the

response intensity of the energy function to the features. The lower the

energy, the more pronounced the distinction between neuron t and its

adjacent neurons, thereby increasing its significance. As a result, the

importance of a neuron can be ascertained through 1
e* .

2.2.3 Design of C2f-SIS module
As shown in Figure 3, the C2f-SIS module enhances the model’s

generalization power and robustness. This module builds upon the

foundational YOLOv8 C2f module and incorporates significant

improvements through an effective enhancement module. The C2f-

SIS plays a crucial role in advancing the domain generalization

capabilities within the SIS-YOLOv8 framework.

To address the model’s low domain generalization ability,

especially in recognizing identical disease features across various

crops, the Style Randomization module was incorporated into the

C2f-SIS. This technique aims to boost the model’s robustness against

unseen domains by converting the features of original samples into

new, randomly styled features. Using an encoder-decoder network,

this method integrates noise information with original style data

within a hidden space. This approach offers more precision than

traditional image-based data augmentation methods and is more

suitable for tackling domain generalization issues.

For any given input training image x, the feature map of x is

defined as fx ∈ RC�H�W , where H and W represent the spatial

dimensions, and C indicates the number of channels. Consequently,

the formula for IN is presented as follows.

IN (fx) = g
fx − fm
fs

+ b (2)

In the formula, g , b ∈ RC are learnable affine transformation

parameters, and fm , fs ∈ RC represent the mean and standard

deviation of each feature map channel, respectively. Their

formulas are as follows.

fm =
1

HW o
H

h=1
o
W

w=1
fclw (3)

fs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

HW o
H

h=1
o
W

w=1
(fchw − fm)

2 + e

s
(4)

Herein, e is a constant used for numerical stability. It achieves

the randomization of feature map styles by randomly perturbing the

mean and standard deviation of each feature map channel.

Additionally, it uses the random style statistics generated by

AdaIN to replace the original feature maps. The formula is as

follows.
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AdaIN (fx , s) = ss
fx − fm
fs

+ sm (5)

Figure 5 illustrates the module used for domain generalization

within the C2f-SIS framework. The network architecture of Style

Randomization, depicted in Figure 5, facilitates random style

transformations by adding noise to the feature maps. Operating

within the feature space, this module enables diverse and abstract

transformations of input images. Thus, compared to traditional

image-based enhancements, this approach allows the enhanced

features to encompass a broader spectrum of possible styles

and distributions.

In the Style Randomization process, the variable (K) represents

the number of source domains, with each source domain allocated a

distinct Style Randomization module for generating various styles.

For instance, in the backbone network of SIS-YOLOv8, as shown in

Figure 3, each C2f-SIS layer incorporates a Style Randomization

module (SR module). This module enriches the original feature

maps through the addition of random noise, resulting in more

stylized feature representations.

To enhance the domain generalization capabilities of the model,

Cross-Norm has been implemented, replacing traditional

normalization techniques. Unlike conventional methods such as

Batch-Norm and Layer-Norm, which standardize feature maps but

do not address style variability, Cross-Norm introduces a style

transfer mechanism that increases the diversity of the training data.

This approach helps to mitigate differences in data distribution

between training and testing datasets, thereby improving the

model’s generalization ability. Traditional normalization methods,

which overlook style variations, can lead to suboptimal model

performance on datasets with diverse distributions. Typically,

normalization techniques assume homogeneity in data distribution

between training and testing phases; however, variations in data

distribution are common in practical scenarios. As illustrated in

Figure 3, this paper introduces Cross-Norm as the normalization

layer within BasicConv to enhance the model’s generalization power

and robustness in the face of significant distribution changes.

As depicted in Figure 5, Cross-Norm boosts the model’s

generalization capacity across various styles of feature maps by

exchanging the means and standard deviations between two distinct

channels of the feature maps. Specifically, if Channel A has a mean

of mA and a standard deviation of sA, and Channel B has a mean of

mB and a standard deviation of sB , then the Cross-Norm

normalization formula for these channels is defined as follows.

sB
A − mA
sA

+ mB , sA
B − mB
sB

+ mA (6)
2.2.4 Design of Fusion-InceptionConv module
To enhance feature extraction robustness in complex

environments such as rain and haze, this study introduces the

Fusion-InceptionConv module, depicted in Figure 3. This module

enhances the Conv module from the YOLOv8n model by

incorporating elements from the InceptionV1 architecture. The

Fusion-InceptionConv module consists of a 3x3 convolutional

layer followed by a modified branch structure, named
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InceptionV1+. The 3x3 convolutional layer is designed to capture

local features of the input image, while the InceptionV1+ branch

structure is aimed at exploring and integrating global features. The

InceptionV1+ structure includes multiple parallel paths, each

equipped with various convolutional layers, such as 1x1, 3x3, and

5x5, alongside pooling layers. These parallel paths enable the

module to capture and amalgamate features across different

spatial resolutions and extents, thereby offering a more

comprehensive representation of the input image.

Following the InceptionV1+ branch structure, the outputs of

each path are concatenated and then passed through a 1x1

convolutional layer. This final layer is responsible for fusing the

diverse features captured by the InceptionV1+ branches and

reducing the feature dimensions, effectively representing and

classifying the input image.

Moreover, the original concatenation operation in the InceptionV1

branch structure is replaced with an addition operation in the

InceptionV1+ to enhance feature fusion. This modification aims to

improve fusion capability through element-wise addition, rather than
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mere concatenation, thus better preserving the independence of

features from each branch and facilitating effective integration at the

element level. This improvement significantly enhances the model’s

robustness and generalization capability in detecting diseases under

complex agricultural climatic conditions.

2.2.5 Design of SPPF-IS module
This study introduces an enhanced version of the original SPPF

module from the YOLOv8n model, named SPPF-IS, which

incorporates the InceptionV1+ architecture and the SimAM

attention mechanism, as illustrated in Figure 3. The SPPF-IS

module leverages the principles of the Feature Pyramid Network,

integrating the InceptionV1+ module with the SimAM attention

mechanism to emphasize critical feature regions and enhance

feature discriminability. This architecture allows our model to

effectively amalgamate multi-scale features and employ the

attention mechanism to adaptively modulate the feature map

weights, thereby significantly boosting the model’s capability to

handle complex backgrounds and improve detection accuracy.
FIGURE 5

An overview of style randomization and cross-norm in SIS-YOLOv8, in this study, the second and third C2f layers of the original YOLOv8n are
replaced with C2f-SIS, and the generalization ability of the model is enhanced by incorporating C2f-SIS into the middle of the backbone network.
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2.2.6 DepGraph pruning
DepGraph is a general-purpose, automated structured pruning

method. The primary aim of this method is to streamline large neural

network architectures, such as CNNs, Transformers, RNNs, GNNs, etc.

In deep neural networks, the parameters of different layers are

inherently interdependent within the network architecture. By

reducing the model’s complexity, pruning significantly improves its

inference speed, allowing for faster processing and higher FPS metrics.

This enhancement is crucial for real-time agricultural applications,

such as rapid disease detection in the field, where timely responses are

essential for effective intervention and monitoring. DepGraph

facilitates pruning by automatically analyzing the complex structural

dependencies between network layers and comprehensively grouping

coupled parameters. The formula for layer dependency relationships in

deep neural networks is as follows:

(f −1 , f
+
1 ) ↔ (f −2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Inter−layer Dep

, f +2 )⋯ ↔ ( f −L , f
+
L )|fflfflffl{zfflfflffl}

Intra−layer Dep

(7)
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Where the symbol ↔ denotes the connection between two

adjacent layers and the interlayer dependency can be represented as

f −i ↔ f +j . The pruning dependency relationship is illustrated in

Figure 6, if pruning Conv f4, then all other dependent layers f5, f2,

f1 must be pruned simultaneously.

DepGraph Pruning algorithm recursively deduces the required

grouping matrix G using the local dependency relationships

between adjacent layers, pruning redundant parameters within

the same group. Different groups can be pruned independently.

This local dependency relationship between adjacent layers is

referred to as a Dependency Graph (DG). According to the

grouping matrix G, the Dependency Graph D is obtained, and

direct connectivity layers are modeled for dependency. Therefore,

the grouping problem can be simplified into a path search problem.

When there is a path between node i and node j in Dependency

Graph D, it indicates that the current node belongs to the same

group. As shown in Figure 6, layers in the same group adopt the

same grouping scheme, i.e., sch (f −i ) = sch (f +i ).
FIGURE 6

DepGraph pruning.
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3 Results

3.1 Performance metrics for
network models

This study employs Precision (P), Recall (R), Mean Average

Precision (mAP) as evaluation metrics for the experiments. The

formulas used to calculate these metrics are as follows:

 Precision  =
TP

TP + FP
� 100% (8)

 Recall  =
TP

TP + FN
� 100% (9)

AP =
Z 1

0
P(R)dR� 100% (10)

mAP =
oN

1

Z 1

0
P(R)dR

N
� 100% (11)
3.2 Experiment environments

This experiment was conducted using the PyTorch deep

learning framework and a Windows 10 Professional system. The

CPU is 12th Gen Intel(R) Core(TM) i9-12900HX 2.30 GHz, the

GPU is NVIDIA GeForce RTX 3080Ti Laptop, and the memory is

64GB. The program was written using CUDA 11.8 and Python 3.9.
3.3 Hyperparameter tuning experiment

3.3.1 The impact of K value in Style
Randomization on the model

This experiment investigated the influence of the K value in the

Style Randomizationmodule on the accuracy of amodel equipped with

a C2f-SIS module in its backbone network, but lacking Fusion-
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InceptionConv and SPPF-IS modules. The K value was varied from

1 to 10, and the results are presented in Table 1. The study highlights

the role of the Style Randomization module in boosting the

generalization capabilities of the C2f layer within the YOLOv8n

model by adjusting the K parameter, which controls the intensity of

style randomization. The experimental findings indicate that the model

performs optimally across various evaluationmetrics when K is set to 1.

This outcome suggests that even minimal style randomization, by

introducing random noise and creating new features with varied styles,

can significantly enhance model generalization. Thus, Style

Randomization proves to be a potent method for improving

generalization in object detection tasks, enabling the model to better

handle the diversity and complexity of real-world scenarios.
3.4 Ablation experiment

3.4.1 Module ablation experiment
The ablation study results are summarized in Table 2. In

Experiment 2, incorporating only the Fusion-InceptionConv
TABLE 1 Experimental results of style randomization’s K value.

K Precision
(%)

Recall
(%)

mAP50
(%)

mAP50-
95(%)

1 83.9 79.8 85.9 82.2

2 81.0 79.3 84.6 81.4

3 83.7 80.8 85.5 82.2

4 79.8 75.9 82.2 78.6

5 81.1 79.5 84.6 81.4

6 79.7 77.0 82.1 79.2

7 82.1 76.8 84.1 80.3

8 84.1 75.3 84.5 80.2

9 84.5 79.1 85.7 82.1

10 80.3 78.2 84.0 81.0
The bold values represent the optimal parameters for each experiment.
TABLE 2 Modules ablation study: Here, ‘a’ corresponds to the Fusion-InceptionConv module, ‘b’ to the C2f-SIS module, and ‘c’ to the SPPF-
IS module.

No. a b c Precision(%) Recall(%) mAP50(%) mAP50-95(%) Params(M)

1 × × × 77.5 78.2 81.6 77.7 3.01

2 ✓ × × 81.3 75.4 84 80.8 6.24

3 × ✓ × 83.9 79.8 85.9 82.2 3.19

4 × × ✓ 75.4 74.2 79.9 76.4 3.6

5 ✓ ✓ × 83.2 79.6 85.7 82 6.42

6 ✓ × ✓ 80.3 74.7 82.2 79 6.83

7 × ✓ ✓ 80.6 79 83.1 79.3 3.64

8 ✓ ✓ ✓ 84.1 82.8 87.4 83.4 7.01
The symbol "✓" indicates that the corresponding module is included in the ablation study, while the symbol "×" indicates that the corresponding module is excluded, with bold values representing
the best performance achieved in each case.
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module led to a 3.8% increase in accuracy, a 2.8% decrease in recall,

a 2.5% increase in mAP50, a 3.1% rise in mAP50-95, and a 3.23M

increase in parameter size. These results demonstrate that the

Fusion-InceptionConv module enhances the model’s feature

fusion capabilities across various scales, improving feature

extraction even in complex agricultural climatic conditions like

rain and smog. In Experiment 3, setting the K value of Style

Randomization in the C2f-SIS layer to 1 after introducing only

the C2f-SIS module resulted in a 5.5% improvement in accuracy, a

2% increase in recall, a 3.4% rise in both mAP50 and mAP50-95,

and a 0.18M increase in parameters. These findings underscore the

C2f-SIS module’s efficacy in boosting domain generalization,

allowing for better differentiation of disease features across

multiple scales and enhancing detection capabilities across

different species afflicted with the same disease. Experiment 4

explored the impact of incorporating only the SPPF-IS module,

which led to a 2.1% decrease in accuracy, a 4% reduction in recall, a

1.7% drop in mAP50, a 1.3% decrease in mAP50-95, and a 0.59M

increase in parameter size. This experiment shows that the SPPF-IS

module can further enhance feature fusion based on the pyramid

structure, improving the model’s representation of complex, fine-

grained features. Experiment 8, which integrated all three modules,

not only improved the foundational performance of the model but

also its domain generalization and feature decoupling capabilities

under complex agricultural weather conditions. This integration led

to a 6.4% improvement in accuracy, a 4.5% increase in recall, a 5.8%

rise in mAP50, and a 5.7% enhancement in mAP50-95, with a

parameter increase of 4 million. Despite the significant increase in

parameters, all performance metrics reached their peak values,

indicating a strong overall enhancement. Given the substantial

rise in parameter count, future studies will focus on conducting

pruning experiments on the model.
3.5 Pruning experiments

The DepGraph pruning method is used to prune the SIS-

YOLOv8 model. The pruning experiment consists of three main

stages:sparse training, model pruning and model fine-tuning.
3.5.1 Sparse training experiment
Sparse training achieves sparsity by adding L1 regularization to

the g parameter of Batch Normalization (BN) in the loss function,
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causing the g values corresponding to the majority of channels to

approach 0, thus enabling the model to achieve a sparse effect. The

equation of L1 regularization is shown as follows:

LL1(g) = L(w) + l gj j (12)

Where w are the model’s parameters. In this study, sparse

training was conducted for 500 epochs to ensure the convergence of

the sparse training process. The pruning rate was set at 0.5, as

determined from the experiments shown in Table 3, which indicate

that a pruning rate of 0.5 yields the best performance. As shown in

Table 3, the model’s training loss varied as the pruning rate was

adjusted, and the optimal pruning rate was identified to balance

sparsity and model accuracy. The value of g was set to the default

parameter of the DepGraph model.
3.5.2 Model pruning experiment
Model pruning is a technique that reduces the size and

computational load of a model by eliminating redundant

parameters. This process typically involves identifying and

removing parameters that contribute less to the task using

pruning algorithms. The primary objective of model pruning is to

decrease the number of parameters and computational complexity

while maintaining the model’s performance. In this study, a

pruning ratio of 0.5 was selected, resulting in the removal of half

of the model’s parameters. Finetuning was subsequently performed

on this pruned model. Table 4 presents the metrics of the SIS-

YOLOv8 model after sparse training and model pruning on the

datasets used in this study.
3.5.3 Model finetune experiment
Following the model pruning, a fine-tuning process was

conducted. Fine-tuning involves further adjustments and

optimizations to the pruned model to restore or enhance its

performance. This step is crucial to ensure that pruning does not

lead to performance degradation.

The fine-tuning training parameters were set as follows:

The image input size was 640x640 pixels. The training was

conducted for 70 epochs to allow the model sufficient iterations for

convergence. The learning rate was set at 0.01, using the Stochastic

Gradient Descent (SGD) optimizer. The Intersection over Union

(IoU) threshold was 0.7, momentum was set to 0.937, and weight

decay was 0.0005. Except for the number of epochs, these
TABLE 3 Pruning rate experiments.

Pruning Rate Precision(%) Recall(%) mAP50(%) mAP50-95(%) Params/(M)

0.25 59.3 59.3 58.3 24.6 1.05

0.5 85.7 82.2 87.5 84 2.41

0.75 79.5 79.6 84.6 81.6 5.36
The bold values correspond to the optimal pruning rates achieved for each model configuration.
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parameters are the default values specified in the YOLOv8

framework, which simplifies the process of parameter tuning for

consistent and reproducible results.

Table 5 presents the results of the pruned SIS-YOLOv8 model.

Compared to the pre-pruned model, the pruned version showed a

reduction of 4.6 million parameters and an increase in accuracy by

1.6%. However, there was a slight decrease in the recall rate by 0.6%.

The mAP50 improved by 0.1%, and mAP50-95 increased by 0.6%,

indicating an enhancement in precision alongside a reduction in

parameter count.
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3.6 Comparison experiments

Among the various object detection models, SSD (Liu et al.,

2016) and FasterRCNN stand out as classic algorithms frequently

employed in agricultural disease detection tasks (Fuentes et al.,

2017). Similarly, the YOLO series is renowned for its high-speed

processing capabilities and treats object detection as a regression

issue, predicting bounding boxes and class probabilities in a single

network pass. These models are particularly favored in agricultural

settings. In this research, the newly developed SIS-YOLOv8 model

was compared with SSD-VGG, FasterRCNN-ResNet50, YOLOv5n,

YOLOv7-tiny (Wang et al., 2023), YOLOv8n, YOLOv9, YOLOv9-

tiny, and YOLOv10-n, as detailed in Table 6. The findings reveal

that the SIS-YOLOv8 model outperformed the others in all metrics,

achieving a mAP50 of 87.4%, mAP50-95 of 83.4%, pruned model

mAP50 of 86.5%, and mAP50-95 of 83.5%.

The SIS-YOLOv8 model demonstrated superior performance

across all metrics. Although the recall rate of the pruned model

decreased by 0.6% compared to its unpruned state, enhancements

were observed in all other metrics. Notably, the pruned SIS-YOLOv8
TABLE 5 Pruning results of the model.

Model Precision(%) Recall(%) mAP50(%) mAP50-95(%) Params/M)

YOLOv8n 77.5 78.2 81.6 77.7 3.01

SIS-YOLOv8 84.1 82.8 87.4 83.4 7.01

(pruned)SIS-YOLOv8 85.7 82.2 87.5 84 2.41
The bold values correspond to the optimal pruning results achieved for the model.
TABLE 6 Comparison experiment results.

Model Precision(%) Recall(%) mAP50(%) mAP50-95(%) Params/(M) FPS

SSD-VGG 75.9 48.9 59.9 38.2 26.3 45.5

FasterRCNN-ResNet50 57.5 46.9 56.4 36.5 137.1 7.5

YOLOv5n 76.0 75.4 78.8 68.9 1.76 301.3

YOLOv7-tiny 72.3 74.0 73.6 63.6 6.02 153.1

YOLOv8n 77.5 78.2 81.6 77.7 3.01 260.1

YOLOv9-tiny 80.3 75.1 81.9 77.9 2.61 277.9

YOLOv9 80.3 77.2 83 79.7 60.5 32.5

YOLOv10-n 78 73.4 78.3 72.8 2.7 283.0

SIS-YOLOv8 84.1 82.8 87.4 83.4 7.01 89.6

(pruned)SIS-YOLOv8 85.7 82.2 87.5 84 2.41 295.5
The bold values specifically indicate the optimal results of the comparison experiments.
TABLE 4 Precision after model pruning.

Evaluation Indicators Value

Precision(%) 78.0%

Recall(%) 79.0%

mAP50(%) 84.4%

mAP50-95(%) 80.8%
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model, with a parameter count similar to YOLOv5n, is only 27%

heavier (an increase of 0.65M parameters), and although its FPS is 2%

lower than YOLOv5n (a decrease of 5.8 fps), it significantly

outperforms YOLOv5n in detection accuracy and robustness. In

addition, compared to the unpruned SIS-YOLOv8 model, the

pruned version saw an impressive 330% increase in FPS (a boost of

205.9 fps), demonstrating substantial efficiency gains without

sacrificing detection performance. To further demonstrate the

effectiveness of this improved model in detecting common diseases

on potato and tomato leaves, several disease detection images were

analyzed, as illustrated in Figures 7, 8. The SIS-YOLOv8 model showed

commendable results, effectively completing the task of target detection

across various domains under complex climatic conditions, while other

models faced challenges with erroneous anchor box detections to

varying degrees. Additionally, to better understand the distribution of

misclassifications, the confusion matrix of the model’s predictions is

shown in Figure 9, which highlights the types of errors and the model’s

ability to distinguish between different diseases.
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4 Discussion

In summary, the SIS-YOLOv8 model presented in this research

exhibits high accuracy and effectively addresses the challenge of

detecting common diseases in potatoes and tomatoes against

complex backgrounds, fulfilling the intended design objectives.

Demonstrated in Figure 10, the SIS-YOLOv8 model is robust in

complex environments, capable of detecting relevant diseases under

challenging conditions such as rain and smog. These environmental

challenges were simulated by adding noise to the images, mimicking

the effects of adverse weather conditions on the quality of visual

data. Additionally, the model performs well across domains,

transitioning effectively from tomato leaf disease data to potato

leaf disease data. The inclusion of the C2f-SIS module yields

effective results in cross-domain experiments, using the tomato

disease dataset for training and the potato disease dataset for

validation, thereby enhancing the model’s robustness and

generalization capabilities. The Fusion-InceptionConv module
FIGURE 7

Detection results of potato early blight using different models. (A) Original image of potato early blight disease. (B) Detection result using the
SSD model. (C) Detection result using the FasterRCNN model. (D) Detection result using the YOLOv5n model. (E) Detection result using the
YOLOv7-tiny model. (F) Detection result using the YOLOv8n model. (G) Detection result using the YOLOv9 model. (H) Detection result using
the YOLOv9-tiny model. (I) Detection result using the YOLOv10 model. (J) Detection result using the SIS-YOLOv8 model.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1485903
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qin et al. 10.3389/fpls.2024.1485903
isolates finergrained disease features, enhancing feature extraction

capabilities and accuracy under complex agricultural conditions

such as afternoon light and haze. Furthermore, the SPPF-IS module

enables additional feature fusion beyond the existing feature

pyramid structure. The integration of these three modules

significantly improves the model’s performance in detecting

common diseases in potatoes and tomatoes.

It is believed that the methodologies and technologies developed

in this study can be extended beyond potatoes and tomatoes to

include the detection of leaf diseases in various crops, such as

strawberries, apples, and wheat. For example, in strawberries, early

detection of fungal diseases like Botrytis cinerea could help mitigate

crop loss and improve yield quality. Similarly, in apple orchards,

detecting early signs of apple scab or powdery mildew using this

approach could reduce the need for chemical treatments, promoting

more sustainable farming practices. Additionally, in wheat, where

diseases like rust can lead to significant yield reductions, the

application of these technologies could assist in real-time

monitoring and targeted disease management.

These examples suggest a broader applicability for the

development of smart agriculture technologies, enabling

precision farming across a variety of crops. By incorporating
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such methods, farmers can optimize crop health monitoring,

reduce pesticide use, and ultimately improve food security. This

approach holds practical significance for advancing agricultural

technologies and foster ing more sustainable farming

practices worldwide.
5 Conclusion

This paper introduces SIS-YOLOv8, a robust and efficient

domain generalization model designed to detect common

homologous diseases in potatoes and tomatoes within complex

agricultural climatic contexts. The development of this model began

with the collection of images through web scraping techniques,

targeting early blight, late blight, and healthy leaves. These images

were supplemented with those from the PlantVillage dataset and

were manually annotated to enhance the dataset’s diversity and

complexity by introducing simulated noise effects such as rain and

smog, and performing image transformations like rotation, flipping,

and translation.

The enhanced model, based on the YOLOv8 backbone and named

SIS-YOLOv8, incorporates a novel convolutional architecture, Fusion-
FIGURE 8

Detection results of potato late blight using different models. (A) Original image of potato late blight disease. (B) Detection result using the SSD
model. (C) Detection result using the FasterRCNN model. (D) Detection result using the YOLOv5n model. (E) Detection result using the YOLOv7-
tiny model. (F) Detection result using the YOLOv8n model. (G) Detection result using the YOLOv9 model. (H) Detection result using the
YOLOv9-tiny model. (I) Detection result using the YOLOv10 model. (J) Detection result using the SIS-YOLOv8 model.
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InceptionConv, which draws from the InceptionV1 architecture and

the original YOLOv8n Conv module. This design significantly

improves the model’s capability to extract detailed features under

complex agricultural conditions, capturing finer-grained features and

textures of diseased leaves, especially in environments with climatic

interferences such as rain and smog.

Additionally, the study enhanced the YOLOv8n C2f layer with a

Style Randomization feature, termed C2f-SIS, to aid in domain

generalization. This enhancement, together with the upgraded

InceptionV1+ module and the incorporation of the SimAM

attention mechanism, allows the C2f layer to achieve multiscale

feature fusion, enhance meaningful features, and suppress irrelevant

ones, boosting the model’s contextual understanding and

robustness under challenging climates.

Further advancements include the SPPF-IS layer, which enables

additional multi-scale feature fusion within the existing feature
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pyramid structure and enhances feature decoupling at the final

integration stage, augmenting the model’s robustness and

generalization capabilities. To optimize performance, a Dependency

Graph pruningmethod was employed to reduce the model’s parameter

count and computational load without compromising accuracy.

Despite its successes, the study recognizes limitations and

suggests future directions. The research currently focuses on early

and late blights affecting potatoes and tomatoes, with potential

expansions to include more crops and diseases. The relatively small

dataset used could be expanded to enhance the model’s

generalization capabilities. Furthermore, integrating this model

with drone or robotic technologies could allow real-time

monitoring of crop growth conditions, providing rapid

diagnostics and precise localization of disease conditions, thereby

reducing reliance on chemical treatments and enhancing

agricultural productivity.
FIGURE 9

Confusion matrix.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1485903
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qin et al. 10.3389/fpls.2024.1485903
Overall, this study contributes significantly to the advancement

of precision agriculture by providing an effective solution for the

automatic detection of crop diseases, paving the way for future

enhancements and broader applications in agricultural production.
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