The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Sustainable and Intelligent Phytoprotection
Volume 15 - 2024 |
doi: 10.3389/fpls.2024.1485216
This article is part of the Research Topic Cutting-Edge Technologies Applications in Intelligent Phytoprotection: From Precision Weed and Pest Detection to Variable Fertilization Technologies View all articles
A Novel Dataset and Deep Learning Object Detection Benchmark for Grapevine Pest Surveillance
Provisionally accepted- 1 Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
- 2 Technology Transfer Center, Edmund Mach Foundation, San Michele all'Adige, Trentino-Alto Adige, Italy
Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, Scaphoideus titanus, serving as the primary vector. FD is responsible for yield losses and high production costs due to mandatory insecticide treatments, infected plant uprooting, and replanting. Another potential FD vector is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems.The current monitoring approach, which involves periodic human identification of yellow sticky traps, is labor-intensive and time-consuming. Therefore, there is a compelling need to develop an automatic pest detection system leveraging recent advances in computer vision and deep learning techniques. However, progress in developing such a system has been hindered by the lack of effective datasets for training. To fill this gap, our study contributes a fully annotated dataset of S. titanus and O. ishidae from yellow sticky traps, which includes more than 600 images, with approximately 1500 identifications per class. Assisted by entomologists, we performed the annotation process, trained, and compared the performance of two state-of-the-art object detection algorithms: YOLOv8 and Faster R-CNN. Pre-processing, including automatic cropping to eliminate irrelevant background information and image enhancements to improve the overall quality of the dataset, was employed. Additionally, we tested the impact of altering image resolution and data augmentation, while also addressing potential issues related to class detection. The results, evaluated through 10-fold cross validation, revealed promising detection accuracy, with YOLOv8 achieving an mAP@0.5 of 92%, and an F1-score above 90%, with an mAP@[0.5:0.95] of 66%. Meanwhile, Faster R-CNN reached an mAP@0.5 and mAP@[0.5:0.95] of 86% and 55%, respectively. This outcome offers encouraging prospects for developing more effective management strategies in the fight against Flavescence dorée.
Keywords: Scaphoideus titanus, Insect detection, Yellow sticky traps, deep learning, Machine Vision, precision agriculture
Received: 23 Aug 2024; Accepted: 20 Nov 2024.
Copyright: © 2024 Checola, Sonego, Zorer, Mazzoni, Ghidoni, Gelmetti and Franceschi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Giorgio Checola, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.