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Introduction: Effective monitoring of insect-pests is vital for safeguarding

agricultural yields and ensuring food security. Recent advances in computer

vision and machine learning have opened up significant possibilities of

automated persistent monitoring of insect-pests through reliable detection and

counting of insects in setups such as yellow sticky traps. However, this task is

fraught with complexities, encompassing challenges such as, laborious dataset

annotation, recognizing small insect-pests in low-resolution or distant images, and

the intricate variations across insect-pests life stages and species classes.

Methods: To tackle these obstacles, this work investigates combining two solutions,

Hierarchical Transfer Learning (HTL) and Slicing-Aided Hyper Inference (SAHI), along

with applying a detection model. HTL pioneers a multi-step knowledge transfer

paradigm, harnessing intermediary in-domain datasets to facilitate model

adaptation. Moreover, slicing-aided hyper inference subdivides images into

overlapping patches, conducting independent object detection on each patch

before merging outcomes for precise, comprehensive results.

Results: The outcomes underscore the substantial improvement achievable in

detection results by integrating a diverse and expansive in-domain dataset within

the HTL method, complemented by the utilization of SAHI.

Discussion:We also present a hardware and software infrastructure for deploying such

models for real-life applications. Our results can assist researchers and practitioners

looking for solutions for insect-pest detection and quantification on yellow sticky traps.
KEYWORDS

insect-pest monitoring, yellow sticky traps, deep learning, transfer learning, Edge-
IoT cyberinfrastructure
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1484587/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1484587/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1484587/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1484587/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1484587&domain=pdf&date_stamp=2024-11-22
mailto:arti@iastate.edu
mailto:soumiks@iastate.edu
https://doi.org/10.3389/fpls.2024.1484587
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1484587
https://www.frontiersin.org/journals/plant-science


Fotouhi et al. 10.3389/fpls.2024.1484587
1 Introduction

Insect-pests can affect plants by disrupting or interfering with

one or more physiological functions that lead to below-normal

performance, such as reduced biomass and grain yield. Insect- pests

can damage plants in several different ways, by killing plants, which

can leave a gap in the crop stand, and the inability of plants to

compensate for the open stand (e.g., some boring insects), general

stunting caused by metabolic disruption through the nutrient drain

or root damage (e.g., aphids, grubs). Moreover, they can kill

branches (some species of scale insect can result in branch die-

back) or eat inflorescence (e.g., beetles) or plant organs (e.g., boring

insects), at-harvest or post-harvest losses (e.g., borers, weevils, etc)

(Singh et al., 2021b; Higley, 1986; Pedigo et al., 2021). Insect-pests

also cause damage by spreading diseases (Singh et al., 2021a).

Early detection, counting, and constant monitoring of the

insects are vital to manage insect pressure in agriculture and

reduce the pests’ infestation (Singh and Singh, 2005; Higley, 1986;

Stern et al., 1959), as it helps farmers and agricultural professionals

monitor and assess the population dynamics of various insect

species within their fields. This information is important for

making informed decisions about pest control strategies (Sarkar

et al., 2023). By tracking the abundance of insects, farmers can

identify potential outbreaks early on and take measures to prevent

or mitigate crop damage. Moreover, establishing threshold levels

helps determine when the insect population reaches a point where

action (e.g., pest control) is necessary (Lima et al., 2020). For

instance, if insect populations are increasing rapidly or reaching

the action threshold, farmers can implement targeted pest control

measures, such as applying insecticides or deploying predators, to

prevent significant crop losses (Pedigo et al., 2021).

Furthermore, scouting for pests provides valuable data for

integrated pest management (IPM) programs. IPM is a

sustainable approach that aims to minimize the environmental

impact of pest control while maximizing crop yields. Accurate

insect counts help IPM practitioners determine the appropriate

timing and intensity of pest control interventions reducing the

reliance on broad-spectrum insecticides that can harm beneficial

insects and lead to insecticide resistance (Cardim Ferreira Lima

et al., 2020). Therefore, insect counting is essential in agriculture as

it enables farmers to make data-driven decisions, minimize crop

damage, and adopt environmentally friendly pest management

practices, ultimately contributing to more sustainable and

productive farming systems. Manual methods, such as analyzing

sticky traps in the field to observe and quantify insects, are time-

consuming and labor-intensive tasks and also requires human

expertise in accurate pest identification. Therefore, a more

automated insect detection and quantification method will be

useful for plant researchers and farmers.

Earlier, insect detection was based on their differences in shape,

color, pixel intensities, grayscale intensity, and texture analysis

(Bauch and Rath, 2005; Huddar et al., 2012; Ghods and

Shojaeddini, 2016). More efficient methods are needed to enable

accurate and timely monitoring of large crop production areas,

which currently demand significant time and labor. In this regard,

AI systems, enabled by machine learning (ML) hold great promise
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for varied phenotyping, for example in disease phenotyping

(Rairdin et al., 2022), yield estimation (Riera et al., 2021) and root

traits (Jubery et al., 2021; Falk et al., 2020). Similarly, AI/ML is a

necessary tool for automatic insect recognition from images and it

has led to the development of several automatic monitoring systems

(Barbedo, 2020; Li and Yang, 2020; Li et al., 2021; Rustia et al.,

2021a; Wang et al., 2020d; Singh et al., 2021a). For instance, a large

deep learning model was developed using citizen science data to

detect a wide variety of insects (Chiranjeevi et al., 2023) ‘in the wild’

with high robustness Saadati et al. (2023). Apart from such large-

scale models, researchers achieved a mean Average Precision

(mAP) score of 63.54% using YOLOv3 Redmon and Farhadi

(2018) to detect and classify pests in their “Pest24” dataset, which

contained 25,378 annotated images of 24 pest species collected

using an automatic imaging trap (Wang et al., 2020a, b, d). A multi-

stage deep learning method that included object detection, insect vs.

non-insect separation, and multi-class insect classification was

proposed, achieving an impressive average F1-scores of up to 0.92

(Rustia et al., 2021b). Moreover, an AI-based pest counting method

for monitoring the black pine bast scale (M. thungergianae) was

developed, which reached a counting accuracy of 95%.

However, there are still challenges to address including data

collection conditions (Hong et al., 2021) and hence, there is a lack of

robust and field-ready insect monitoring systems (SmartProtect,

2022). Many existing studies use datasets with close-up, high-

quality images that do not accurately represent the challenging

field environments (Cheng et al., 2017; Kasinathan et al., 2021;

Nanni et al., 2020; Pattnaik et al., 2020; Wang et al., 2017, 2020b).

Building imaging systems automatically capturing high-quality

snapshots of individual insects is difficult, especially for small or

flying insects (Barbedo, 2020). Therefore, in many instances, a more

practical approach is to capture a surface covered with multiple

trapped insects using a single image within a sticky trap in the field

(Ding and Taylor, 2016; Jiao et al., 2020; Rustia et al., 2021a; Xia

et al., 2015; Zhong et al., 2018). Smaller tiles of individual insect

images can then be extracted from the full image for

further analysis.

Insect monitoring systems often focus on detecting a single pest,

overlooking the potential presence of other species that could

provide valuable ecosystem information (Ding and Taylor, 2016;

Hong et al., 2021; Nazri et al., 2018; Roosjen et al., 2020). A recent

study has shown that vision-language foundation models can be

leveraged for zero-Shot (without requiring additional model fine-

tuning) insect detection (Feuer et al., 2023). Additionally, many AI

practitioners fail to apply strict validation procedures, leading to

known methodological pitfalls like “data leakage” (Kapoor and

Narayanan, 2022). Previous research has demonstrated that

model performance can be overestimated when weak validation

procedures, such as random data splitting, are used (Kalfas et al.,

2021, 2022). Researchers applied different object detectors to

localize and classify the insects simultaneously, such as YOLO, R-

CNN, and Faster R-CNN (Li et al., 2021; Nieuwenhuizen et al.,

2019). They also take advantage of transfer learning and initialize

their model using the COCO dataset (Lin et al., 2014). Leveraging

Transfer learning, it has been shown that YOLOv4 and YOLOv5

have relatively good performance in detecting five insect species
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(Verma et al., 2021). Self-supervised learning can also be effective

for developing insect detection models (Kar et al., 2023). However,

detecting insects on sticky traps using Deep learning (DL) still has

some challenges, such as the lack of training data, the small size of

insects, the similarity between different insect species, and

significant morphological differences among stages in the life

cycle of each species of insect, which makes the detection a

complex task (Akintayo et al., 2018). Furthermore, some studies

focus on datasets with broad insect classes, making classification

relatively easier but not representative of more challenging

scenarios (Rustia et al., 2021a; Wang et al., 2020d). To overcome

these limitations, future research should address the practicality of

capturing images in the field, consider the presence of diverse insect

species, and implement rigorous validation procedures to ensure

accurate and reliable insect monitoring systems.

In this paper, to address some of these challenges, especially the

lack of data, we propose a machine learning framework to identify

and localize pests on yellow sticky traps using a state-of-the-art

object detector in the YOLO series called YOLOv8. On top of using

YOLOV8, we leverage two techniques, namely Hierarchical

Transfer Learning (HTL) and Slicing-Aided Hyper Inference

(SAHI), to alleviate the issues due to smaller training data and

small size of the objects of interest. HTL is an advanced version of

traditional transfer learning, which leverages knowledge from a

larger dataset to improve accuracy when training on a smaller

dataset. It involves multiple steps of transfer learning, using

intermediate datasets closely related to the target domain, known

as in-domain datasets, to enhance the model’s learning process.

This iterative approach allows the model to gain insights from

datasets that share similarities with the target dataset, leading to

significant improvements in performance. To further enhance the

accuracy of detecting smaller-sized pests (e.g., an adult Western

Corn Rootworm (WCR) Beetle is typically 1
4 inch long) in images,

we implemented the Slicing Aided Hyper Inference (SAHI) (Akyon

et al., 2022) method. It enhances the detection of tiny pests in

images by dividing the original image into overlapping patches and

independently subjecting each patch to object detection, improving

overall performance. It also performs a full-inference step to detect

larger objects, and then combines the results from both patch-wise

and full inference using Non-Maximum Suppression (NMS) to

ensure comprehensive and accurate object detection outputs. We

report that using HTL instead of vanilla transfer learning, as in

previous works, can improve detection accuracy significantly. The

further addition of SAHI into our inference framework proves to be

a useful strategy for detection of small insects-pests on yellow sticky

traps. In addition, our choice of YOLOV8 lets us scale the YOLOv8

up and down to small and large networks and, at the same time,

maintain the inference time and accuracy. Additionally, we report

that using HTL instead of vanilla transfer learning, as in previous

works, can improve detection accuracy significantly. HTL is an

advanced version of traditional transfer learning, which leverages

knowledge from a larger dataset to improve accuracy when training

on a smaller dataset. It involves multiple steps of transfer learning,

using intermediate datasets closely related to the target domain,

known as in-domain datasets, to enhance the model’s learning
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process. This iterative approach allows the model to gain insights

from datasets that share similarities with the target dataset, leading

to significant improvements in performance. To further enhance

the accuracy of detecting tiny pests in images, we implemented the

Slicing Aided Hyper Inference (SAHI) Akyon et al. (2022) method

to enhance the detection of tiny pests in images by dividing the

original image into overlapping patches and independently

subjecting each patch to object detection, improving overall

performance. It also performs a full-inference step to detect larger

objects, and then combines the results from both patch-wise and

full inference using Non-Maximum Suppression (NMS) to ensure

comprehensive and accurate object detection outputs. SAHI proves

to be a valuable technique for object detection during inference.
2 Materials and methods

2.1 Dataset collection, labeling,
and preprocessing

We used Unbaited AM yellow sticky traps (hereon referred as

YST; Manufacturer: Pherocon) to examine the utility and success of

success of our proposed ML approaches to identify and quantify

multiple insects. Throughout the growing seasons of 2021 and 2022,

we systematically acquired visual data, primarily focusing on

beetles, particularly the Western Corn Rootworm (WCR) Beetle

(Diabrotica virgifera virgifera LeConte), during their adult (winged)

life cycle phase. Additionally, we extended our scope to encompass

the identification of flies. This comprehensive data compilation was

achieved through the strategic deployment of numerous YSTs

across agricultural fields used in our research. Yellow sticky traps

are routinely used by entomologists and scouts to monitor the

presence of insects in greenhouse and field, deployed as a means of

attraction and surveillance of pests. The placement of YST in our

experiments was conducted approximately 10-12 days before the

anticipated emergence of the insects.

The positioning of these YSTs was tailored to the specific target

insect. These traps were evenly spaced at intervals of 50 feet,

extending from the field’s outer edge to its central region. To

ensure their preservation during farming activities such as

cultivation and spraying, the traps positioned at the field’s

midpoint were distinctly marked. Regular monitoring and

inspection of each trap were performed, followed by the capture

of trap images using an 8-megapixel camera. These images were

subsequently uploaded to a cloud-based server for storage and

analysis. Multiple preprocessing and augmentation methods were

applied to the data before training the deep learning (DL) model.

One notable technique used was mosaic augmentation, which

involves creating a single mosaic image by combining slices from

four random images in the dataset. This mosaic image is then

utilized as a training sample for the model. Figure 1 illustrates the

mosaic augmentation method and showcases the resulting batch of

training data after applying all augmentation techniques. We will

further explain other preprocessing methods applied in this work in

the result section.
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2.2 In-domain datasets

In addition to our data set described above, we also leverage a

few more publicly available insect-pest data sets for training and

fine-tuning our model. We refer to them as in-domain datasets and

are briefly described below.

2.2.1 Kaggle-Yellow Sticky Traps
The first dataset we consider is The “Yellow Sticky Traps” dataset

(Nieuwenhuizen et al., 2019) hosted in Kaggle (hence, referred to as

the Kaggle dataset in the Results section). This dataset is centered

around addressing the challenges posed by two prominent pests,

greenhouse whitefly (Trialeurodes vaporariorum) and silverleaf

whitefly (Bemisia tabaci), which significantly impact greenhouse

tomato cultivation in Europe. These insects are among the top 10

most problematic pests in greenhouse vegetable crops. Manually

counting and categorizing these insects is time-intensive and prone

to errors. Although some automation is introduced through classical

thresholding and blob counting algorithms, much of the counting

and classification relies on manual effort, sometimes even involving

hand counting. This inefficiency hampers effective pest management

practices. The dataset’s primary objective is to address this challenge

by providing a collection of images captured using yellow sticky traps.

This dataset contains 284 images of size 3456 x 5184 and 5184 x 3456.

For our use case, we further sliced each image into three pieces to

increase the number of images for the fine-tuning task. These images

are annotated using the Labelimg tool (LabelImg, 2015), facilitating

the identification of distinct classes of insects. Within the dataset,

there are three significant classes:

Macrolophus MR: There are 1312 annotations related to

Macrolophus pygmaeus (MR), a predatory bug commonly

employed in biological pest control.

NesidiocorisNC: This class contains 510 annotations associated
with Nesidiocoris tenuis (NC), a predatory bug used in integrated

pest management strategies.
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Whiteflies WF: The largest class, with 5591 annotations,

corresponds to whiteflies (WF), a significant pest requiring

meticulous management. While there is a fourth class (TR)

corresponding to Thysanoptera, it has limited annotations and

was disregarded.

2.2.2 IP102
The IP102 dataset (Wu et al., 2019) is a meticulously curated

collection designed to facilitate insect-pests classification. It

undergoes a comprehensive four-stage process, including

taxonomic system establishment, image collection, preliminary

data filtering, and professional data annotation.

The dataset’s foundation is creating a hierarchical taxonomic

system formulated collaboratively with agricultural experts. This

system organizes 102 distinct insect-pests classes into a hierarchical

structure, wherein each pest is associated with a “super-class” based

on the affected crop. The dataset draws from internet resources and

employs common search engines and professional websites to

gather images and video clips containing insect pests. Extracted

snapshots from videos contribute to the comprehensive candidate

image collection.

Volunteers trained in insect-pests identification and dataset

taxonomy manually review images and eliminate those with

irrelevant or multiple pest categories. The selected images are

processed, and duplicates or damaged files are removed. Experts

are assigned specific crops corresponding to their expertise to

accurately categorize the images within the dataset.

In addition to its meticulous creation process, the IP102

dataset boasts significant features. It encompasses over 75,000

images distributed across 102 categories, capturing a diverse and

natural long-tailed distribution of insect-pests. This unique

characteristic ensures that the dataset accurately reflects real-

world occurrences and challenges, making it a valuable resource

for advancing research in insect-pests classification and

agricultural pest management.
FIGURE 1

Data augmentation: (A) Mosaic augmentation, (B) A batch of augmented training data.
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2.2.3 Pest24
The Pest24 dataset (Wang et al., 2020c) is a meticulously

curated collection of images capturing various agricultural crop

pests to facilitate pest monitoring and detection. For this dataset,

28,958 raw images were taken in 2017 and 2018. These images

encompass a diverse array of 38 distinct categories of crop pests

from five insect orders: Coleoptera, Homoptera, Hemiptera,

Orthoptera, and Lepidoptera. Additionally, they belong to 13

insect families. It is noteworthy that among the mentioned insect

orders, the Lepidoptera category stands out, constituting a majority

of the 38 field crop pests. Half of these Lepidoptera insects originate

from the Noctuidae subfamily. To focus on more prevalent

instances, the dataset considers 24 out of the 38 categories as

targets for detection, excluding 14 categories with limited

instances (ranging from 1 to 11) present in the images.

The dataset refinement process involves the removal of low-

quality images. Images exhibiting excessive non-target

backgrounds, shadows, occlusions, or inflection spots are filtered

out. After this curation, the resulting Pest24 dataset comprises

25,378 annotated images featuring 24 distinct pest categories.

A statistical analysis of the dataset reveals a wide variation in

image and object distributions. The most frequently encountered

pest in the Pest24 dataset is Anomala corpulenta, represented by a

substantial 53,347 instances. In contrast, the least frequently present

pest is Holotrichia oblita, with only 108 instances captured in

the images.
2.3 Deep learning model

YOLOv8, developed by Ultralytics, represents a recent real-time

object detection and image segmentation model that was built upon

state-of-the-art advancements in DL and computer vision, delivering

excellent speed and accuracy.With its streamlined design, YOLOv8 is

incredibly versatile, suitable for various applications, and effortlessly

adaptable across various hardware platforms, from edge devices to

cloud APIs. One notable aspect of YOLOv8 is its parameter count,

which lies between its predecessors YOLOv5 and YOLOv6. It boasts

more parameters than YOLOv5 but fewer than YOLOv6. Despite

this, YOLOv8 offers approximately 33% higher mAP (mean Average

Precision) for various model sizes, consistently outperforming

previous versions. The model excels, improving accuracy for

different object sizes and types. Furthermore, the inference time

with YOLOv8 is significantly faster than any other YOLO model.

This efficiency makes it an elegant choice for real-time applications,

ensuring that detections can be made swiftly and effectively.

Moreover, to cater to different use cases and hardware capabilities,

YOLOv8 is available in various model sizes.
2.4 Hierarchical transfer learning

Transfer Learning (TL) is a widely recognized approach in ML/

DL for harnessing acquired knowledge from one task to improve

the performance of a distinct yet related task.
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This practice expedites convergence with reduced training data

requirement, potentially leading to enhanced generalization

capabilities. Recently, the emergence of deep neural networks and

the accessibility of extensive pre-trained models have elevated

transfer learning to a fundamental instrument across

diverse domains.

HTL extends the foundational concept of transfer learning by

incorporating hierarchical frameworks into the process. Instead of

directly transplanting knowledge from a pre-trained model to the

target task, HTL embraces a multi-step approach where knowledge

is gradually transmitted from a source domain to an intermediary

domain and subsequently to the target domain. This methodology

capitalizes on the notion that certain intermediary domains may

share more prevalent features with the target domain, thus

facilitating more effective knowledge transfer. Figure 2 represents

the differences between traditional learning, TL, and HTL.

A pivotal advantage of HTL is its capacity to alleviate the

negative ramifications of limited data and low resolution. In cases

where the available dataset is small, conventional transfer learning

methods can still lead to overfitting, as the model heavily relies on

the scant available data. HTL mitigates this concern by permitting

the model to glean representations from a source domain enriched

with more extensive data. Subsequently, the model adapts and fine-

tunes these representations to the target domain, which possesses

smaller data.

Furthermore, in scenarios featuring diminutive or low-

resolution objects of interest, HTL offers notable benefits. Such

objects or low-resolution images often lack the intricate details

necessary for a direct feature transfer using traditional means. The

incremental feature extraction strategy of HTL empowers the model

to acquire meaningful higher-level concepts that can be customized

to encapsulate crucial attributes of small objects or low-resolution

images in the target domain. Due to these reasons, we were

motivated to examine the usefulness and applicability of HTL for

small object, i.e. insect pests, detection.
2.5 Slicing aided hyper inference

To address the challenge of detecting small objects, we employ a

versatile framework centered around the concept of slicing during

the inference stage. Slicing Aided Hyper Inference (SAHI) is a

technique employed during the inference step, and involves the

utilization of a “slicing” method to enhance the efficiency of object

detection in computer vision tasks. In this method, at first, the

original query image, denoted as “I” is divided into a number of

overlapping patches, represented as “P1”, “P2”, and so on up to “Pl”.

These patches are formed by segmenting the original image into a

grid of smaller sections, each of size “M × N”. Then each individual

patch is then resized while maintaining its original aspect ratio.

This resizing step ensures that the patches are suitable for further

processing and analysis. Subsequently, object detection is

performed independently on each of these overlapping patches.

The object detection forward pass involves applying a trained

detection model to identify objects of interest within each patch.
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Additionally, there is an optional step called “full-inference”

(FI). If opted for, the original, unsliced image can undergo a

complete inference process to detect larger objects that may span

multiple patches. After the individual patch-based predictions are

generated, the results from these overlapping patches, as well as any

outcomes from the optional FI step, are combined. This merging

process aims to consolidate the detected objects into a coherent

output. To avoid redundant and overlapping detections, non-

maximum suppression (NMS) is employed. During NMS,

detection boxes with higher Intersection over Union (IoU) ratios
Frontiers in Plant Science 06
than a specified matching threshold (Tm) are matched and

compared. For each matched pair, detections with a detection

probability lower than a specified threshold (Td) are filtered out

and discarded. Figure 3 shows the schematic of how SAHI was

applied for the inference.

2.5.1 Evaluation metrics
Two well-known metrics were used, Intersection over Union

(IOU) and Mean Average Precision (mAP) to evaluate our results.

IOU can be determined by Equation 1 by considering the ground
FIGURE 3

Utilizing slicing-aided hyper inference, the image is divided into overlapping patches (P1,P2,…) for individual analysis, alongside Full Inference (FI) for
the entire image. The outcomes of patch-wise and FI approaches are merged to produce the ultimate result.
FIGURE 2

Comparison of traditional learning, transfer learning, and hierarchical transfer learning approaches. Traditional learning involves isolated and
independent learning, while transfer learning utilizes knowledge from a previous task for a new task. Hierarchical transfer learning builds upon
knowledge acquired from multiple previous learning steps.
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truth and model-predicted bounding boxes. This metric is used for

computing True Positive (TP), False Positive (FP), and False

Negative (FN) bounding boxes by considering a special threshold

(in this work 0.5).

IoU =
Area of Overlap of Predicted and Labeled Bounding Boxes
Area of Union of Predicted and Labeled Bounding Boxes

(1)

For calculating mAP, we use the recall and precision metrics as

defined in Equation 2.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(2)

Considering the definitions of Precision and Recall, Equation 3

defines Average Precision (AP) which is the area under the

precision-recall plot for each class.

AP =
Z 1

0
p(r)dr (3)

The mean average precision (Equation 4) is the mean of APs

over a set of queries (M is the total number of queries).

mAP =
1
M o

M

m=1
AP(q) (4)

2.5.2 Hyperparameters and evaluation setup
When training an object detectionmodel, a carefully selected set of

hyperparameters is crucial for achieving accurate and efficient

detection performance. Since our model is used on edge devices the

“small” version of the YOLOv8 model architecture was used for this

task of insect detection. For training, the initial learning rate is set to

0.01, which will guide the optimization process, while the final learning

rate is adjusted to 0.01 times the initial learning rate to determine the

rate at which the learning rate will decrease during training. The batch

size was set to 16 and “SGD” optimizer were used for training. The

choice of momentum at 0.937 and weight decay at 0.0005 helps in

stabilizing the training process and preventing overfitting. A warmup

period of three epochs is employed at the start of training, with an

initial momentum of 0.8 and an initial bias learning rate of 0.1 to

gradually transition the model into optimization. Data augmentation

is employed to improve the model’s generalization, including HSV-

Hue, HSV-Saturation, and HSV-Value adjustments, image rotation,

translation, scaling, flipping probabilities (both vertical and

horizontal), and mosaic augmentation with a probability of 1.0. To

further prevent overfitting, the dropout value was considered as 0.5.

The image size for training where considered as 640, and each

experiment was trained for 500 epochs. Moreover, The model was

trained using a NVIDIA Tesla T4 GPU. These hyperparameters

collectively contribute to the training of a YOLOv8 model optimized

for accurate and robust object detection.

To evaluate the efficacy of employing HTL, distinct scenarios

involving various in-domain datasets were systematically examined.

The initial experiment served as a baseline, employing solely pre-

trained weights from the COCO dataset. Subsequently, the

evaluation extended to encompass the incorporation of specific

in-domain datasets - Kaggle (Yellow Sticky Traps), IP102, and

Pest24 - in the role of intermediary datasets within the HTL
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paradigm. This design entailed the successive training of each

model on the intermediary dataset, utilizing the trained weights

based on COCO dataset. The trained model was subsequently fine-

tuned on the distinct Sticky Trap dataset, contributing to a multi-

stage/hierarchical training process.
3 Results

Before using DL, data preprocessing and augmentation

techniques were applied to increase the number of data samples

and improve the model’s robustness. In our experimental setup, we

employed a rigorous data splitting strategy to ensure the validity

and robustness of our results. The dataset was divided into three

distinct sets: training, validation, and test. Specifically, we allocated

80% of the data for training, 10% for validation, and 10% for the test

set. This test set was kept completely separate and unseen by the

model throughout the entire training and fine-tuning process. For

training set, each image was tiled to 4 images; therefore, we could

increase the data to 628 images. Moreover, before training,

techniques such as rotating, zooming, flipping, changing

illumination, and mosaic augmentation were applied to the images.

In our experimental framework, we orchestrated HTL trials,

which comprised a two-step fine-tuning process. Initially, the

COCO pre-trained model underwent fine-tuning on in-domain

datasets, followed by a subsequent fine-tuning phase on our specific

dataset. This design yielded three distinct experiment categories: (1)

HTL: COCO-Kaggle, (2) HTL: COCO-IP102, and (3) COCO-

Pest24, with the Kaggle (Yellow Sticky Traps), IP102, and Pest24

datasets respectively. The results, graphically illustrated in Figure 4,

unveil compelling insights through mAP and mAP50-95 plots.

Notably, the COCO-IP102 experiment emerged as the most

successful, excelling in both mAP50 and mAP50-95. This

accomplishment can be attributed to the expansive diversity of

insect species encapsulated within the IP102 dataset (contains

>75,000 images belongs to 102 different insects), encompassing

pivotal categories including beetles that align with our focus. While

the Kaggle dataset’s limited size hindered it from surpassing Pest24

and IP102, its performance, as depicted in Figure 4B, showcased

improvements over the baseline in terms of mAP50-95. We posit

that a larger Kaggle dataset, given its close resemblance to our data,

could potentially yield enhanced results. Despite Pest24’s abundant

data, its divergent background and data characteristics pose

challenges, thereby compromising insect details, particularly in

comparison to the more distinct IP102 dataset. Furthermore,

Figure 5 underscores precision and recall values. These results

corroborate the important role played by IP102 as an in-domain

dataset, wielding a marked influence in elevating precision and

recall metrics. The discernible impact of in-domain datasets on

precision is evidenced, reaffirming their role in augmenting

overall performance.

The practical implications of our model’s performance are

shown in Figure 6, where the insect detection results are visually

presented for two sample images. The result shows the model’s

capability to detect small insects through the comprehensive

synergy of HTL and the SAHI framework as shown in Table 1.
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These outcomes were obtained from the HTL: COCO-IP102

experiment, which showcases the performance of the approach in

the realm of HTL. Figure 7 illustrates the procedural enhancements

facilitated by our method, which incorporates HTL and SAHI,

aiming to enhance the detection of small insects.

Additionally, in Table 1, the inference time for the model on the

system with an Intel Core i7 processor and an NVIDIA T4 GPU

averages around 0.06 seconds per image (640x640 resolution), with

fluctuations ranging from 0.04 to 0.1 seconds. When incorporating

the SAHI post-processing method, the inference time increases to

an average of 0.7 seconds per image, ranging from 0.3 to 1.2 seconds

depending on object density. On a Raspberry Pi 4B, equipped with a

1.8 GHz quad-core Cortex-A72 CPU and up to 8GB of RAM, the

inference time, including post-processing, ranges from 8 to 15

seconds per image.

Recognizing the critical importance of insect pressure, we have

conducted a comprehensive analysis to determine the insect

populations in both predicted and ground truth scenarios. Our

findings indicate that, when evaluated against the defined threshold

for insect pressure, the predicted results closely align with the

ground truth data. This alignment suggests that our predictive

model can effectively identify the severity of insect presence,

mirroring the accuracy of the ground truth measurements. This

threshold serves as a valuable indicator for farmers, enabling them
Frontiers in Plant Science 08
to make informed decisions about the application of insecticides

when insect pressure surpasses the established threshold limit. It is

worth noting sticky traps were put in the fields with the growing

plants; we noted that other than insect-pests, plant parts were also

stuck in the sticky traps (see Figure 7). Irrespective of this problem,

the model could detect the majority of insects compared to the

ground truth, thereby demonstrating its usefulness to plant

scientists and farmer communities.
3.1 Deployment

Our methods provide opportunities for small insect detection;

however, this work used digital images from proximity. With

advances in ground robots for scouting (Gao et al., 2018) and

drone for phenotyping (Guo et al., 2021; Herr et al., 2023), there are

significant possibilities for future applications. For example, drones

equipped with high-resolution cameras can capture aerial imagery,

allowing for early detection of pest hotspots. Meanwhile, ground-

based robots can traverse fields using GPS guidance, collecting data

on insect presence, activity, and crop health. In addition to advances

in phenotyping platforms, there is substantial progress in sensing

tools (Sarkar et al., 2023). By deploying these automated scouts,

farmers can make data-driven decisions, implement targeted
A

B

FIGURE 4

(A) mAP50 and (B) mAP50-95 plots for Transfer Learning with COCO weights (TL: COCO), and Hierarchical Transfer Learning (HTL) scenarios having
Kaggle, IP102 and Pest24 datasets as in-domain datasets.
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interventions, and minimize the use of insecticides, thereby

promoting sustainable and environmentally friendly farming

practices in the quest for increased crop yields and food security.

We show the combination of ML (HTL) and Vision library (SAHI)

can solve small insect detection problems. These innovative

technologies provide farmers with a swift and efficient means of

surveying vast fields and identifying potential infestations. We

provide a description of our hardware and cyberinfrastructure

setup below for efficient deployment of the proposed system.

3.1.1 Hardware setup
Following the completion of our training phase and in readiness to

implement our insect detection model in real-world scenarios, we

created eight distinct prototypes of the sticky trap setup. Each

prototype has been meticulously equipped with various necessary

components, ensuring seamless functionality and performance. These

components include a Raspberry Pi 4B with a robust 8GB RAM

capacity, an advanced 8MP camera (Arducam IMX219), ample storage

capability of 64GB, a carefully crafted wooden sticky trap holder, an

integrated GPS module, and a cutting-edge LoRa communication

module. The hardware setup is shown in Figure 8. In our initial

implementation phase, these prototypes are effectively interconnected

with a personal computer, which functions as a computing unit within

the Smart Connected Farm (Singh et al., 2023). This connection is

established via a local area network, enabling seamless communication
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and data exchange. For real-time inference validation, we have

integrated a pre-trained model. Furthermore, we have established a

dedicated web portal designed to facilitate convenient access to the

prototypes and to facilitate on-demand image capture from any remote

location via the Internet. Presently, access to this portal is facilitated

through a virtual private network (VPN). However, we plan to

transition the portal to the public domain, ensuring wider

accessibility in the near future. This user-friendly interface is an

integral part of our proof-of-concept, enhancing the overall

functionality and usability of the sticky trap system.

3.1.2 Cyberinfrastructure
In order to deploy a sustainable persistent sticky trap

monitoring system, we have developed EDDIE (Event-Driven

Detector for IOT and Edge, see Figure 9), an integrated edge

management platform that connects the MLOps tasks along with

data management components. EDDIE aims to address the research

challenges of securely deploying models to the edge or IoT devices

and managing the ingest of IoT data where there may be limited or

intermittent connectivity. It also provides system alerts and triggers

for downstream events based on user-defined conditions.

Configurable workflows, which may include ETL operations and

one or more models, are executed using Argo Workflows (argo,

2024) on a Kubernetes service designed for resource-

constrained environments.
A

B

FIGURE 5

(A) Precision and (B) Recall plots for Transfer Learning with COCO weights (TL: COCO), and Hierarchical Transfer Learning (HTL) scenarios having
Kaggle, IP102 and Pest24 datasets as in-domain datasets.
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EDDIE is designed with security in mind, encrypting

communication from the edge to one or more clouds. In its initial

deployment, we used the CyVerse Data Store for its ability to upload

data in a high throughput fashion, strong metadata features, and
Frontiers in Plant Science 10
encryption capabilities. When an edge gateway or IoT device is

initially configured, models are initially pushed to the edge or can be

deployed manually on devices. As researchers update the models on

the central cloud, EDDIE components on the edge will discover
A

B

FIGURE 6

Comparison of detection model outcomes within our framework against ground truth for sticky trap data. (A) Example result indicating the need for
beetle control products. (B) Example result indicating the need for fly control products.
TABLE 1 The performance of the best-trained model after applying the SAHI method.

Experiments mAP50 mAP50-95 Precision Recall Inference Time

HTL: COCO-IP102 0.82 0.48 0.80 0.78 0.06s

HTL: COCO-IP102 + SAHI 0.86 0.51 0.84 0.83 0.7s
FIGURE 7

Enhancing small insect detection through HTL and SAHI integration (missed insects are circled).
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these changes and pull the updated models and configuration

utilizing the DVC framework (Kuprieiev, 2024). EDDIE provides

the ability to send selected images and metadata from edge devices

to storage end points for further examination.

In our current application, the captured image data (of yellow

sticky traps) was uploaded to the CyVerse Data Store on successful

detection, and the counts and insect types, along with the processor

system’s load and performance of ML methods, were recorded in

the IoT metrics component of EDDIE. If the threshold of harmful

insect count exceeded the allowable level, alerts were posted to
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multiple external systems (Slack and webhooks of the IoT metrics

server). The full platform was deployed and managed through

CyVerse CACAO (Cloud Automation and Continuous Analysis

Orchestration) (Skidmore et al., 2023).
4 Conclusion

In this study, we extensively explored the efficacy of

Hierarchical Transfer Learning (HTL) for the detection of insects
FIGURE 9

Communication workflow for EDDIE: 1. CyVerse CACAO retrieves configuration information, including models. 2. Models and configurations are
deployed to the edge. 3. Images and metadata are streamed to the edge. 4. Images are processed at the edge. 5. Raw and processed data are sent
to the central cloud (CyVerse Data Store). 6. User-defined alerts trigger notifications. 7. Metrics are transmitted to metrics servers.
FIGURE 8

We have developed a prototype that captures images and utilizes a trained model on a Raspberry Pi for insect detection, and obtaining the results in
real-time. These results are then transferred to another farm or edge device using a LoRa module (REF).
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on sticky traps under the constraint of limited training data. We

demonstrate efficacy of HTL using three publicly available in-

domain datasets. The HTL experiments underscore the

importance of selecting effective in-domain datasets to optimize

model performance. The two-step fine-tuning process revealed that

the COCO-IP102 dataset, with its extensive diversity and volume

significantly outperformed other datasets. This highlights the

necessity of choosing datasets that not only align closely with the

target application but also encompass a wide variety of classes and

scenarios. Although the Kaggle-Yellow Sticky Traps dataset showed

promise, its limited size restricted its performance relative to IP102.

Conversely, while larger datasets like Pest24 offered abundant data,

their less relevant characteristics hindered effective feature

extraction. In conclusion, Prioritizing in-domain datasets that

reflect the specific conditions and target species of the application,

while also ensuring sufficient diversity and volume, is essential for

enhancing performance in hierarchical transfer learning. This

strategic approach can lead to more robust models capable of

achieving superior performance in real-world applications.

To further improve the performance of detecting small sized

insects, we consider the Slicing Aided Hyper Inference (SAHI)

method; a strategic approach that capitalizes on image resolution

that improved the insect detection capabilities. Finally, We present

the design of a hardware setup and an efficient cyberinfrastructure

for deploying the persistent insect monitoring framework in real

life. While our study demonstrates the effectiveness of YOLOv8

combined with HTL and SAHI for insect detection on sticky traps,

we acknowledge certain limitations in our approach. Due to the

constraints of edge device deployment, which requires careful

consideration of memory and computational resources, we were

unable to explore more resource-intensive state-of-the-art methods

such as transformer-based models. These advanced techniques,

while potentially more powerful, are often impractical for

deployment on resource-constrained devices. Future research

could focus on adapting these models to enhance detection

accuracy, should improve performance be a priority.

Sticky trap-based accurate early detection and counting allow

for early mitigation of insect pests. This will allow stakeholders to

precise control once they know which insect is trapped in a sticky

trap and the level of insects based on the counting, allowing better

management. The decision to spray insect pests before the pest

population reaches economic injury level (EIL) will allow farmers to

apply pesticides when the insect population has reached the action

threshold. This will prevent using broad-spectrum insecticides

indiscriminately, which helps to avoid pest resistance problems as

well as leads to sustainable agriculture.
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