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Research on the construction
of a knowledge graph for tomato
leaf pests and diseases based
on the named entity
recognition model
Kun Wang1, Yuyuan Miao1, Xu Wang1, Yuze Li1, Fuzhong Li1

and Haiyan Song2*

1Software College, Shanxi Agricultural University, Jinzhong, Shanxi, China, 2Agricultural Engineering
College, Shanxi Agricultural University, Jinzhong, Shanxi, China
Introduction: Tomato leaf pests and diseases pose a significant threat to the yield

and quality of Q6 tomatoes, highlighting the necessity for comprehensive studies

on effective control methods.

Methods: Current control measures predominantly rely on experience and

manual observation, hindering the integration of multi-source data. To address

this, we integrated information resources related to tomato leaf pests and

diseases from agricultural standards documents, knowledge websites, and

relevant literature. Guided by domain experts, we preprocessed this data to

construct a sample set.

Results: We utilized the Named Entity Recognition (NER) model ALBERT-

BiLSTM-CRF to conduct end-to-end knowledge extraction experiments, which

outperformed traditional models such as 1DCNN-CRF and BiLSTM-CRF,

achieving a recall rate of 95.03%. The extracted knowledge was then stored in

the Neo4j graph database, effectively visualizing the internal structure of the

knowledge graph.

Discussion: We developed a digital diagnostic system for tomato leaf pests and

diseases based on the knowledge graph, enabling graphical management and

visualization of pest and disease knowledge. The constructed knowledge graph

offers insights for controlling tomato leaf pests and diseases and provides new

research directions for pest control in other crops.
KEYWORDS

tomato leaf pests and diseases, knowledge graph, ALBERT-BiLSTM-CRF, Neo4j graph
database, digital diagnosis
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1 Introduction

Agricultural production plays a crucial role in social

development. In practical agricultural activities, crops are easily

affected by various adverse factors. Among them, pests and diseases

are one of the most significant factors affecting crop yield and

income (Abdullah et al., 2023). Crop diseases and insect pests are

characterized by their wide spread and propensity to cause disasters,

which seriously affects the healthy growth of crops. Tomato, as a

widely cultivated high-value vegetable globally, inevitably faces

various factors such as improper cultivation practices, inadequate

control measures, and environmental pollution during its

cultivation process. This results in the occurrence of seventeen

common types of pests and diseases, such as damping-off, viral

diseases and leaf mold et al. These diseases not only severely impact

the quality of tomatoes, but also significantly reduce yields, leading

to substantial economic losses.

The traditional relational database knowledge management

methods are unable to effectively represent and store such

knowledge, facing challenges such as difficulties in integrating

heterogeneous data, inefficiencies in expressing data relationships,

and inadequacies in knowledge refinement. The term “knowledge

graph” was used by Edgar W. Schneider in 1972 to describe data

structures and control flows in educational modules (Schneider,

1973). In 2012, Google introduced the Google Knowledge Graph,

effectively expressing relationships between data, marking the

formal naming of knowledge graphs (Singhal, 2012). Research

and construction of Knowledge Graphs have penetrated various

domains of social life such as education (Xue et al., 2024), healthcare

systems (Shi et al., 2017; Wu et al., 2023), and smart cities (Liu et al.,

2021). They represent entities, attributes, and their relationships

from the natural world in a graphical form, allowing for a better

expression of domain-specific information closer to human

cognitive understanding (Wu et al., 2021a). Based on the scope of

knowledge coverage, Knowledge Graphs are mainly classified into

two types: vertical Knowledge Graphs and general Knowledge

Graphs (Ji et al., 2021). General Knowledge Graphs cover a wide

range of knowledge across multiple domains, primarily addressing

common-sense issues in the real world. Currently influential

general Knowledge Graphs include YAGO2 (Hoffart et al., 2011),

DBpedia (Lehmann et al., 2015), Freebase (Bollacker et al., 2008), as

well as Chinese Knowledge Graph websites such as CN-DBpedia

(Xu et al., 2017) and Baidu Zhixin (Niu et al., 2011). General

Knowledge Graphs can be likened to “structured encyclopedic

knowledge bases,” emphasizing breadth of knowledge and

commonly used in search engines, constructed mainly in a

bottom-up manner. Vertical Knowledge Graphs, also known as

domain-specific Knowledge Graphs, are typically tailored to specific

domains and require higher levels of depth and accuracy in

knowledge representation. They serve as specialized knowledge

repositories based on industry needs. For instance, Xindong Wu

and colleagues proposed the Huapu-KG model, integrating HAO

intelligence (human intelligence + artificial intelligence +

organizational intelligence) for constructing genealogy Knowledge

Graphs, addressing challenges of heterogeneity, autonomy,

complexity, and evolution in genealogy data (Wu et al., 2021b).
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Wang, Chengbin et al. utilized hybrid corpora, Chinese word

segmentation rules, and statistical methods to build a Knowledge

Graph, demonstrating the potential and practicality of natural

language processing and Knowledge Graph technologies in Earth

science research (Wang et al., 2018). Yu, Tong et al. integrated

traditional Chinese medicine terms, documents, and databases into

a large-scale Knowledge Graph for visualization, retrieval, and

recommendation services, facilitating the sharing, interpretation,

and utilization of knowledge in traditional Chinese medicine and

health preservation. Furthermore, some researchers combine

Knowledge Graphs with specific technologies to address

particular issues (Yu et al., 2017). For example, Zhuotong Li et al.

proposed a method using Knowledge Graphs and graph neural

networks for fault localization, demonstrating excellent accuracy in

analyzing network anomalies on the SDON platform, thereby

supporting industrial-scale alarm analysis and fault localization

(Li et al., 2021). Qi Chen et al. introduced a novel zero-shot

learning method using Knowledge Graphs to classify a large

amount of social text data, achieving superior performance over

six state-of-the-art NLP deep learning models on COVID-19-

related tweet datasets (Chen et al., 2021). This method resolves

issues with deep learning models requiring extensive labeled data

and enhances the processing and analysis capabilities of CPSS data.

Yi Luo et al. proposed the DTKGIN model, combining Knowledge

Graphs and intent graphs to predict drug-target interactions,

effectively addressing issues of high sparsity and cold start,

demonstrating its effectiveness in predicting potential drug-target

interactions through case studies (Luo et al., 2024).

Traditional relational database knowledge management

methods cannot effectively represent and store such knowledge,

facing issues such as inability to integrate heterogeneous data,

inefficiency in expressing data relationships, and inability to refine

knowledge. Knowledge Graph is a method proposed by Google in

2012 to effectively express relationships between data through a

semantic network (Singhal, 2012). Research and construction of

Knowledge Graphs have penetrated various domains of social life

such as education (Xue et al., 2024), healthcare systems (Shi et al.,

2017; Wu et al., 2023), and smart cities (Liu et al., 2021). They

represent entities, attributes, and their relationships from the

natural world in a graphical form, allowing for a better expression

of domain-specific information closer to human cognitive

understanding (Wu et al., 2021a).Based on the scope of

knowledge coverage, Knowledge Graphs are mainly classified into

two types: vertical Knowledge Graphs and general Knowledge

Graphs (Ji et al., 2021). General Knowledge Graphs cover a wide

range of knowledge across multiple domains, primarily addressing

common-sense issues in the real world. Currently influential

general Knowledge Graphs include YAGO2 (Hoffart et al., 2011),

DBpedia (Lehmann et al., 2015), Freebase (Bollacker et al., 2008), as

well as Chinese Knowledge Graph websites such as CN-DBpedia

(Xu et al., 2017) and Baidu Zhixin (Niu et al., 2011). General

Knowledge Graphs can be likened to “structured encyclopedic

knowledge bases,” emphasizing breadth of knowledge and

commonly used in search engines, constructed mainly in a

bottom-up manner. Vertical Knowledge Graphs, also known as

domain-specific Knowledge Graphs, are typically tailored to specific
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domains and require higher levels of depth and accuracy in

knowledge representation. They serve as specialized knowledge

repositories based on industry needs. For instance, Xindong Wu

and colleagues proposed the Huapu-KG model, integrating HAO

intelligence (human intelligence + artificial intelligence +

organizational intelligence) for constructing genealogy Knowledge

Graphs, addressing challenges of heterogeneity, autonomy,

complexity, and evolution in genealogy data (Wu et al., 2021b).

Wang, Chengbin et al. utilized hybrid corpora, Chinese word

segmentation rules, and statistical methods to build a Knowledge

Graph, demonstrating the potential and practicality of natural

language processing and Knowledge Graph technologies in Earth

science research (Wang et al., 2018). Yu, Tong et al. integrated

traditional Chinese medicine terms, documents, and databases into

a large-scale Knowledge Graph for visualization, retrieval, and

recommendation services, facilitating the sharing, interpretation,

and utilization of knowledge in traditional Chinese medicine and

health preservation. Furthermore, some researchers combine

Knowledge Graphs with specific technologies to address

particular issues (Yu et al., 2017). For example, Zhuotong Li et al.

proposed a method using Knowledge Graphs and graph neural

networks for fault localization, demonstrating excellent accuracy in

analyzing network anomalies on the SDON platform, thereby

supporting industrial-scale alarm analysis and fault localization

(Li et al., 2021). Qi Chen et al. introduced a novel zero-shot

learning method using Knowledge Graphs to classify a large

amount of social text data, achieving superior performance over

six state-of-the-art NLP deep learning models on COVID-19-

related tweet datasets (Chen et al., 2021). This method resolves

issues with deep learning models requiring extensive labeled data

and enhances the processing and analysis capabilities of CPSS data.

Yi Luo et al. proposed the DTKGIN model, combining Knowledge

Graphs and intent graphs to predict drug-target interactions,

effectively addressing issues of high sparsity and cold start,

demonstrating its effectiveness in predicting potential drug-target

interactions through case studies (Luo et al., 2024).

Building a Knowledge Graph primarily involves four steps: data

acquisition, knowledge extraction, knowledge fusion, and

knowledge processing. Knowledge extraction, as a core step in the

construction of a knowledge graph, is responsible for accurately

obtaining useful knowledge from vast and complex data related to

crop pests and diseases. This includes extracting information on

symptoms, control measures, disease categories, distribution ranges,

causes of disease, and locations of occurrence. Traditional methods

of knowledge extraction typically rely on manually defined rules or

statistical models, which excel in adaptability to specific domain

languages and rules. However, they face limitations in performance

and generalization capability when dealing with the complex

contexts and diverse textual data of the current information

explosion era. Deep learning effectively addresses many complex

problems that traditional methods struggle with. Deep learning-

based knowledge extraction significantly enhances the efficiency

and accuracy of information processing. It automates the learning

and extraction of abstract features from data, eliminating the need

for manually designed feature engineering and greatly simplifying

the data processing workflow. Moreover, deep learning models
Frontiers in Plant Science 03
leverage robust language models and sequence modeling

capabilities to better understand the grammar structure, semantic

relationships, and contextual information within texts. Currently,

many scholars extensively explore and apply deep learning models

in the knowledge extraction process. For example, Bihui Yu et al.

proposed a new entity recognition model based on character

embedding, Iterated Dilated Convolutional Neural Networks

(IDCNN), and Conditional Random Fields(CRF), demonstrating

excellent performance in corpus experiments in the military

equipment domain (Yu and Wei, 2020). Lample et al. introduced

the Bi-LSTM-CRF model, which achieved high entity extraction

evaluation metrics by incorporating a CRF module on top of a

BiLSTM network in corpus datasets (Lample et al., 2016). In 2018,

Luo et al. enhanced the Bi-LSTM-CRF model with an Attention

mechanism, achieving an F1 score of over 90% on public document-

level datasets (Luo et al., 2018). In the same year, Devlin et al.

introduced the BERT pre-training model, generating deep

bidirectional semantic representations based on input corpus to

fully represent contextual information, thereby aiding multiple

natural language processing tasks (Devlin et al., 2019). BERT’s

advent brought significant breakthroughs to entity recognition

technology. In 2020, Google proposed the ALBERT model (Lan

et al., 2019), reducing computational complexity compared to

BERT and ensuring stable model training. Xiao Zhang et al.

tackled challenges in the terahertz domain’s QA system with long

and short entity issues, proposing an entity recognition method

based on ALBERT-BiLSTM-CRF (Zhang et al., 2020). They

leveraged pre- t ra ined deep b id i rec t iona l mode l s to

comprehensively understand sentence semantics, effectively

improving the accuracy of long entity recognition.

After comparing existing entity recognition methods, we

selected a fine-tuned ALBERT model with a BiLSTM-CRF layer

as the final entity recognition model. We developed an efficient and

accurate method for extracting knowledge about tomato leaf pests

and diseases. The extracted triplet data was stored in a graph

database, enabling the visualization and knowledge inference of

the tomato leaf pest and disease knowledge graph. This allows

complex agricultural knowledge to be clearly and intuitively

presented to agricultural professionals. The main contributions of

this study are as follows:
1. Addressing issues such as diverse data types, complex

attributes and relationships, challenging deep-level

association mining between data, and weak reasoning

interpretability in traditional expert systems in tomato

leaf disease and pest data. We utilized the ALBERT-

BiLSTM-CRF model to extract knowledge about tomato

diseases and pests, including symptoms, control measures,

disease categories, distribution ranges, causes, and

locations. By analyzing commonalities and characteristics

among different diseases and pests, we organically linked

information about various tomato diseases and pests,

reducing redundant work and enhancing the efficiency

and comprehensiveness of tomato disease and pest control.

2. To address the lack of open-source specialized corpora for

tomato leaf disease and pest issues, we extracted various
frontiersin.org
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Fron
data about tomato diseases and pests from national or local

standard documents. We employed web scraping

techniques to gather data from professional agricultural

knowledge websites and scanned texts from specialized

books and literature on tomato leaf disease and pest

control. With assistance from domain experts, we

completed data preprocessing to form the domain-

specific corpora required for constructing the tomato leaf

disease and pest Knowledge Graph. The ALBERT-

BiLSTM-CRF model was used to extract knowledge from

sample data stored in a Neo4j database, establishing a rich,

logically strong, and widely applicable Knowledge Base for

tomato leaf disease and pest.

3. Based on the above solutions, we designed a digital diagnostic

system for tomato leaf disease and pest integrated with

advanced software development frameworks. This system

combines deep learning algorithms and graph databases to

process, analyze, and store information about tomato leaf

disease and pest, providing users with precise prevention and

control recommendations.
2 Materials and methods

2.1 Knowledge graph construction process

2.1.1 Knowledge graph schema construction
A well-designed model layer facilitates the reuse of domain

knowledge, creating a shared understanding of domain information

and knowledge between humans and machines. A well-structured

hierarchical ontology ensures the quality of knowledge extraction

during the construction of the knowledge graph data layer, playing

an irreplaceable role throughout the entire knowledge graph

construction process (Guo et al., 2024). Referring to the ontology

construction method from Stanford, we mainly followed six steps to

construct the ontology for the knowledge graph in this study:

determining the domain and scope, listing the main elements,

defining the terms and the relationships between terms, defining

classes and the class hierarchy, defining properties and relationship

constraints, and instantiating the ontology.

The knowledge graph we constructed is focused on the

agricultural domain, specifically on the ontology construction

related to tomato leaf pests and diseases. We have tried to

summarize as many elements as possible that should appear in

the knowledge graph. Table 1 lists the main elements included in

the knowledge graph for the domain of tomato leaf pests

and diseases.

Next, we organize the domain-specific terms and the

relationships and attributes between them. Table 2 lists some

professional terms and their relationships for two sub-domain

knowledge graphs. Based on this, we define constraints and

regulations for class relationships, intrinsic properties, and

extrinsic properties. Finally, the defined properties, relationships,

and constraints are used to instantiate the ontology. The
tiers in Plant Science 04
hierarchical structure diagram of the tomato leaf pest and disease

model layer, constructed using the Protégé tool, is shown

in Figure 1.

2.1.2 Construction of the knowledge graph
data layer

We used natural language processing methods and techniques

to construct the data layer for tomato leaf pests and diseases. The

sequence labeling strategy we selected is based on the BIO method,

where B represents the beginning part of a tomato leaf pest or

disease entity, I represents a non-beginning part of the entity, and O

represents a non-entity, as shown in Table 3.

The quality of data sample annotation determines the

effectiveness of the model’s entity extraction. Considering that

manual annotation is time-consuming, labor-intensive, and often

lacks accuracy, we used the entity annotation software Colabeler to

assist in annotating preprocessed data samples. During the

annotation process, controversial areas were discussed with

domain experts to ensure the accuracy of the results.

The annotated sample data is saved with files in the “.ann”

format, as shown in Figure 2. In the “.ann” file, T1 represents the

unique identifier or label for the annotation. “DiseaseName”

indicates that the annotation marks a disease name in the text,

with the number “0” representing the starting position of the

annotation (i.e., starting from the 0th character), and the number

“2” representing the ending position of the annotation (i.e., ending
TABLE 1 Some elements included in the knowledge graph for the
domain of tomato leaf pests and diseases.

Subdomain
Knowledge
Graph

Main Elements

Tomato
Leaf Diseases

Disease name, alias, symptoms, physical control, chemical
control, biological control, disease category, distribution
range, causes, affected parts, pathogen, etc.

Tomato
Leaf Pests

Pest name, alias, phylum, class, order, family, genus,
morphological characteristics, habits, symptoms, physical
control, chemical control, biological control, occurrence
area, affected parts, foreign name, etc.
TABLE 2 Sub-domain knowledge graph terms and relationships
between terms.

Subdomain
knowledge
graph

Technical terms Relationships

Tomato
leaf diseases

Alias, Chinese name, Foreign
name, Stem, Fruit, Flower,
Ventilation and drainage,
Proper spacing

Aliases, Affected parts,
Harmful periods,
Control methods, etc.

Tomato
Leaf Pests

Alias, Leaves, Lepidoptera,
Phylum Mollusca, Class
Gastropoda, Order
Stylommatophora, Family
Limacidae, Genus Liriomyza
Coleoptera, Natural enemies,
Traps, Manual trapping

Aliases, Affected parts,
Classification, Control
methods, etc.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1482275
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1482275
at the 2nd character). In the “10001.ann” file, T2 to T12 are similar

to T1.

Algorithm 1 outlines the process for generating BIO format data

required for the NER task. The “Generate_BIO” algorithm traverses

all annotated “.ann” files and corresponding “.txt” files in the

specified directory, converting the data in each annotation file

into BIO format (training data files).
Fron
Input:”.ann” files and “.txt” files

Output:BIO Format Data

1 DEFINE root_dir、stream_path

2 file_list = glob.glob(root_dir + ‘/*.ann’)

3 FOR

4 ann_path = normalize_path(ann_path)

5 txt_path = convert_to_txt_path(ann_path)

6 .strip() Remove whitespace characters from the ends

of text or label strings.

7 IF ann!= ‘ ‘

8 Assign the label “O” to all text.

9 FOR

10 TRY:
tiers in Plant Science 05
11 T, typ, word = split_tabs_and_strip(line)

12 t, s, e = typ.split()

13 s, e = convert_positions_to_int(s, e)

14 label[s] = concatenate(‘B-’, t)

15 while s< subtract(e, 1):

16 s = add(s, 1)

17 label[s] = concatenate(‘I-’, t)

18 EXCEPT:

19 continue

20 Connecting Text and BIO Labeling Using Spaces

21 END

22 print (ann_path, e)

23 END
Algorithm 1. Generate_BIO.
2.2 ALBERT-BiLSTM-CRF Model

We use the ALBERT-BiLSTM-CRF model to perform entity

extraction tasks on tomato leaf pest and disease data samples. The

model consists of three parts: ALBERT(A Lite Bidirectional

Encoder Representations from Transformers), BiLSTM(Bi-

directional Long Short-Term Memory), and CRF(Conditional

Random Field), with the model structure illustrated in Figure 3.

ALBERT is a pre-trained language model capable of understanding

and processing natural language text; BiLSTM is a type of recurrent

neural network designed for handling sequential data; and CRF is a

conditional random field used to identify structural patterns in

sequences. For example, in the sample “Leaf mold mainly affects

leaves”, we use ALBERT as the pre-trained model to capture the

semantic information of each word in the given context. First, the

model tokenizes the sentence and converts it into word
FIGURE 1

Ontology hierarchy diagram for the tomato leaf pests and diseases knowledge graph.
TABLE 3 BIO data annotation example.

Character BIO annotation

powdery B-DiseaseName

mildew I-DiseaseName

mainly O

affects O

leaves B-DiseaseLocation
frontiersin.org

https://doi.org/10.3389/fpls.2024.1482275
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1482275
embeddings, including [‘leaf mold’, ‘mainly’, ‘ affects’, ‘leaves’].

ALBERT processes these word embeddings through its self-

attention mechanism, considering the contextual information of

each word in the sentence, and generates contextually relevant

representations, such as [‘leaf mold_emb ’, ‘mainly_emb’,

‘affects_emb’, ‘leaves_emb’]. These representations are then used

as input to the BiLSTM model. BiLSTM models the sequence of

each word’s contextual representation to capture the semantic

information of words in the sentence. The output of the ALBERT

layer, [‘leaf mold_emb’, ‘mainly_emb’, ‘affects_emb’, ‘leaves_emb’], is

fed directly into the BiLSTM. The BiLSTM outputs a sequence of

hidden states for each word, such as [‘leaf mold_hidden’,

‘mainly_hidden’, ‘affects_hidden’, ‘leaves_hidden’], which reflect

each word’s semantic representation in its context. The BiLSTM
Frontiers in Plant Science 06
output sequence is typically used as input to the CRF layer. The CRF

layer combines the tag probability sequences output by the BiLSTM

with a predefined transition matrix and uses the Viterbi algorithm

to find the optimal tag sequence. For the entity recognition task of

leaf mold, the optimal tag sequence might be [‘B-DiseaseName’, ‘O’,

‘O’, ‘B-DiseaseLocation’].

2.2.1 ALBERT
ALBERT, which stands for A Lite BERT, is a lightweight version

of the BERT model. In the field of deep learning, the ALBERT

model has gained significant attention for its outstanding

performance (Lan et al., 2020). The ALBERT model consists of

two parts: MASK preprocessing and a bidirectional Transformer,

with the model structure illustrated in Figure 4.
FIGURE 2

‘10001.ann’ file.
FIGURE 3

ALBERT BiLSTM CRF model structure.
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The input representation for ALBERT consists of three

embeddings: token embeddings (word embeddings), sentence

embeddings, and position embeddings, which are concatenated to

clearly represent a text sentence within a token sequence, as shown

in Figure 5. ALBERT captures both word-level and sentence-level

representations through two tasks: Masked Language Model

(MLM) and Next Sentence Prediction (NSP), and it is jointly

trained on these tasks. In the MLM task, during preprocessing,

the target text is first segmented at the character level, and then

random MASK operations are applied to the segmented characters.

By randomly masking characters in the training text, the

Transformer model is forced to build associations within the

context of each input character unit, enhancing the ability to

capture text features. Additionally, special tokens [CLS] and

[SEP] are added at the beginning of the text and between

sentences, respectively, to form the final sequence vector for

further processing by the Transformer model. For example, in the

sentence “Leaf mold mainly affects leaves”, if ‘leaves’ is randomly

masked, the resulting sequence vector might be “[CLS] Leaf mold

mainly affects leaves [MASK][SEP]”. In the NSP task, the model

receives two sentences as input and predicts whether the second

sentence is the subsequent sentence of the first one. This task helps
Frontiers in Plant Science 07
the model understand the logical relationship and coherence

between sentences.

The Transformer part is the key structure of the ALBERT

model, mainly consisting of input, output, and the Encoder

section. The Encoder section includes one Self-Attention layer,

one Feed Forward layer, and two Add & Norm layers. The Self-

Attention layer is the core of the Encoder, receiving the word vector

sequence transformed by the embedding layer as input. It generates

contextually relevant representations for each word, with the

computation method described in Formula 1. In the sentence

“Leaf mold mainly affects leaves”, the Self-Attention layer balances

and integrates the semantic information of each word, producing

updated word vector representations such as “‘leaf mold’, ‘mainly’,

‘affects’, ‘leaves’”.

Attention(Q,K ,V) = softmax(
QKT

ffiffiffiffiffiffi
dK

p )V (1)

In Formula 1, Q,  K , and  V are the input word vector

matrices, and   dK is the dimension of the K matrix. The Feed

Forward layer performs nonlinear transformations and mappings

on the context-aware vectors of each word, such as “leaf mold”,

“mainly”, “affects”, and “leaves”, to enhance their feature
FIGURE 4

ALBERT model structure.
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representation. The Add & Norm layer combines the original input

with the processed vectors through residual connections and

performs layer normalization to ensure model training stability

and accelerate convergence.

2.2.2 BiLSTM module
LSTM, which stands for Long Short-Term Memory, is

essentially a type of recurrent neural network (RNN). It is

primarily composed of four parts: the input gate, output gate,

forget gate, and memory cell (Ma et al., 2021).

The forget gate determines how much of the previous cell state

ct−1 should be retained in the current cell state ct at time t. The

calculation method is given by Formula 2:

f t = s (Wf •½ht−1, xt � + bf ) (2)

In Formula 2, ft represents the operation of the forget gate at

time t, s is the sigmoid function,Wf is the parameter matrix, ht−1 is

the previous state vector, xt is the input vector at time t, and ½ht−1,xt �
denotes the concatenation of the two vectors. bf is the bias term.

The calculation methods for the input gate are given by Formulas 3–

5:

it = s (Wi •½ht−1, xt � + bi) (3)

ect = tanh(Wc •½ht−1, xt � + bc) (4)

ct = f t ⊗ ct−1 + it ⊗ ect (5)

In Formula 3, it represents the operation of the input gate at

time t, which calculates how much of the current input xt should be

retained in the cell state ct . Here, s is the sigmoid function,Wi is the

parameter matrix, and bi is the bias term. The cell state ct is

computed using Formulas 4, 5, where the previous cell state ct−1
is element-wise multiplied by the forget gate ft , and the current

input cell state ect is element-wise multiplied by the input gate it ,

with the two products then summed. The output gate controls the

cell state ct, and its computation is given by Formulas 6, 7:
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ot = s (Wo •½ht−1, xt � + bo) (6)

ht = ot ⊗ tanhct (7)

In the formulas, ot represents the operation of the output gate at

time t, and ht denotes the final cell output value.

Given that unidirectional LSTM networks can only process

information in one direction and cannot account for context from

both directions, researchers later introduced BiLSTM, or

Bidirectional Long Short-Term Memory networks. BiLSTM

employs one forward LSTM and one backward LSTM, and

merges the outputs from the same time step. This allows the

model to capture dependencies between words in the text

sequence and the contextual information, providing a more

accurate and comprehensive feature representation for tasks such

as entity extraction and classification (Lu et al., 2023). The specific

structure is shown in Figure 6.

2.2.3 CRF module
In the entity extraction process, the CRF module is responsible

for optimizing the annotation sequences output by the BiLSTM. It

can label disease-related terms in the text data and perform joint

modeling of these labels. By constructing a probabilistic model

based on a designed score function, the CRF computes probabilities

to select the optimal path among possible paths, resulting in

accurate entity extraction.
3 Results and discussion

3.1 Data collection and preprocessing

Regarding tomato leaf pests and diseases, there is currently no

complete and reliable dataset available for knowledge graph

construction. This lack of data can impact the accuracy and

reliability of analysis models, as the size and diversity of data

samples are crucial factors determining model performance. To
FIGURE 5

ALBERT input vector representation.
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build a reliable dataset for tomato leaf diseases, we used web

scraping techniques to gather a large amount of semi-structured

and unstructured text data on tomato pests and diseases from

various websites, including: China Agricultural Information

Technology Network (https://cast.caas.cn/index.html), National

Agricultural Science Data Center (https://www.agridata.cn/

#/home), China Pesticide Information Network (http://

www.chinapesticide.org.cn/), Baidu Encyclopedia and National

Standard Information Public Service Platform (https://

std.samr.gov.cn/gb/). Additionally, we scanned electronic books

such as Illustrated Guide to Tomato Pest and Disease Diagnosis

and Control, Tomato Cultivation and Pest Control Technology

Research and New Technologies for Tomato Pest and Disease

Control to obtain text data on tomato pests and diseases. The

data samples obtained, as shown in Figure 7, indicate clear

relationships between different entities. Taking speckle blight

disease as an example, speckle blight serves as the disease name

entity, disease location the entities representing infection sites such

as leaves, stems, and fruits. The disease symptoms, such as nearly

circular grayish-white spots with slightly darkened edges, grayish-

white centers, and brown edges. These symptom entities describe

the external characteristics of speckle blight disease. Additionally,

the disease cause entity indicates that the disease overwinters

through mycelium and conidia on crop residues and perennial

solanaceous weeds. In terms of control, there are multiple methods

and related entities. Agricultural control entities include the use of

disease-resistant varieties, practicing crop rotation with non-

Solanaceae for 3-4 years, and applying phosphorus and potassium

fertilizers. Physical control entities involve sun-drying seeds and

soaking them in warm water. Chemical control entities consist of

various pesticides, such as 75% chlorothalonil wettable powder at

1200 times dilution and 64% oxadixyl wettable powder at 500 times

dilution, which are used for chemical control of the disease.

Before extracting entities related to tomato leaf pests and

diseases, it is necessary to preprocess the dataset. A good

preprocessing process ensures the high quality and accuracy of

the dataset, facilitating subsequent tokenization and annotation
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work. With the assistance of domain experts, the preprocessing of

the raw sample data includes normalization, elimination of

irrelevant information and noise data, and correction of possible

language errors to ensure the consistency and reliability of the data.

Through systematic preprocessing, we constructed a NER dataset

for tomato leaf diseases and pests—the Tomato Leaf Pest and

Disease Dataset—providing reliable data support for the

construction of a knowledge graph. The dataset includes a

training set (1160) and a test set (290), split in an 8:2 ratio.
3.2 Evaluation metrics

We set up a training environment suitable for six models:

BiLSTM-CRF, 1DCNN-CRF, 1DCNN-CRF-2, BiLSTM-Attention-

CRF, BERT-BiLSTM-CRF, and ALBERT-BiLSTM-CRF. To

evaluate the performance of the models, we used the same three

evaluation metrics commonly found in existing NER papers:

Precision (P), Recall (R), and the F1-score as the evaluation

standards. The formulas are defined as Equations 8–10, where

TEN represents the number of correctly identified entities, FEN is

the number of falsely identified non-entities, and NC is the number

of correctly identified entities that were not recognized.

P =
TEN

TEN + FEN
� 100% (8)

R =
TEN

TEN + NC
� 100% (9)

F1 =
2�P�R
P+R

� 100% (10)
3.3 Parameter settings

To ensure the reliability of the experimental results, each

model was initialized with the same parameters before the
FIGURE 6

BiLSTM model structure.
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study, as shown in Table 4. In this table, “Optimizer”refers to the

optimization algorithm, “Loss_Function” refers to the loss function,

“Learning_Rate”refers to the learning rate, “Lstm_Units” refers to

the dimensionality of the output space of the LSTM network,

“Batch_Size” refers to the amount of data processed by the model

at one time, “Drop_Rate” refers to the dropout rate, “Max_Len”

refers to the maximum length of the data processed, and “Epoch”

refers to the training cycles of the model.
3.4 Experimental results analysis

The performance of the six models—BiLSTM-CRF, 1DCNN-

CRF, 1DCNN-CRF-2, BiLSTM-Attention-CRF, BERT-BiLSTM-

CRF, and ALBERT-BiLSTM-CRF—in entity recognition on the

Tomato Leaf Disease Dataset is shown in Table 5.
FIGURE 7

Raw text data on tomato leaf pests and diseases.
TABLE 4 Model parameter settings.

Parameter Name Model Name Parameter Value

Optimizer All Adam

Loss_Function All crf.sparse_loss

Learning_Rate All 1e-5

Lstm_Units All 128

Batch_Size
ALBERT-BiLSTM-CRF 16

Others 64

Drop_Rate
ALBERT-BiLSTM-CRF 0.1

Others 0.5

Max_Len All 200

Epoch All 30
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As shown in Figure 8, the traditional BiLSTM-CRF and 1DCNN-

CRF models have relatively slow convergence speeds, approaching

convergence only around the 12th epoch, with a recall rate of

approximately 0.85. The BiLSTM-Attention-CRF model converges

the fastest but has a lower final recall rate of about 0.80. The

ALBERT-BiLSTM-CRF model achieves both fast convergence and

the highest recall rate, approximately 0.95. The BERT-BiLSTM-CRF

model follows, with a recall rate of around 0.90, while the improved

1DCNN-CRF-2 also has a high recall rate of about 0.89. This

indicates that pre-trained models (BERT or ALBERT) significantly

enhance model performance and convergence speed compared to the

base BiLSTM-CRF model. Additionally, incorporating attention

mechanisms or improving CNN structures also contributes to

performance improvements. Considering model performance,

convergence speed, and complexity, we use the ALBERT-BiLSTM-

CRF model for the knowledge extraction task in the subsequent

system implementation.
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3.5 System design and implementation

The tomato leaf disease and pest knowledge graph system we

designed is developed based on the Windows 10 64-bit operating

system, using VSCode as the integrated development tool, Vue3 as

the frontend development framework, Neo4j as the graph database,

and ECharts for knowledge graph visualization. The system

supports cross-platform usage (both PC and mobile), ensuring a

good user experience across various devices. Users can select a

specific pest or disease name from the list and then view the related

symptoms visually. As shown in Figures 9A, B, when the system

receives the query for “yellow leaf curl disease”, it first executes the

corresponding Cypher query to retrieve information about nodes

related to the “yellow leaf curl disease” entity.

ECharts is then used to render the entity and node information,

and the results are finally displayed to the user in Figures 10A, B.
4 Dicussion

For the tomato leaf pest and disease domain, we collected and

organized relevant data to construct a dataset, TLP2D, containing

approximately 10,400 entities and 1,450 samples. Compared to

other corpora in the same field, our dataset not only includes a

broader range of categories, but also offers more detailed

descriptions, providing timely decision analysis for tomato leaf

pest and disease control. By comparing different entity extraction

models, we found that the ALBERT-BiLSTM-CRF model performs

well on TLP2D. This model leverages the strengths of ALBERT,

BiLSTM, and CRF models to effectively extract entities from
TABLE 5 Comparison of entity recognition performance for tomato leaf
pests and diseases.

Model Name Precision/% Recall/% F1-score/%

BiLSTM-CRF 87.73 86.31 87.02

1DCNN-CRF 85.39 87.14 86.05

1DCNN-CRF-2 84.92 89.74 87.26

BiLSTM-Attention-CRF 85.15 84.83 85.01

BERT-BiLSTM-CRF 93.10 90.84 91.96

ALBERT-BiLSTM-CRF 95.10 95.03 95.48
FIGURE 8

Comparison of model recall rates.
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TLP2D, supporting the construction of a tomato leaf pest and

disease knowledge graph and providing a reference for knowledge

graph construction in other fields. The development of the tomato

leaf pest and disease digital diagnostic system offers precise pest and

disease control recommendations for farmers, lowers the barrier to

professional knowledge sharing, and introduces new ideas for pest

and disease management. However, we also recognize that there is

room for improvement in this work. Future efforts will focus on

expanding the domain scope, optimizing data annotation methods,
Frontiers in Plant Science 12
and continuously fine-tuning the NER model to better

serve agriculture.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
FIGURE 10

Pest and disease entity query display: (A) PC, (B) Mobile.
FIGURE 9

Selecting a specific pest or disease: (A) PC, (B) Mobile.
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