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Wigandia ecuadoriensis, a member of the Namaceae family, is a source of

metabolites and has been traditionally used as an anti-inflammatory. This work

aimed to determine the total phenolic content (TPC), total flavonoid content

(TFC), antioxidant effect, inhibition of a-glucosidase and cholinesterase enzymes

(AChE, BChE), and antibacterial activity of the methanolic extract (ME) and

subfractions of Wigandia ecuadoriensis. The findings revealed that ME and its

subfractions exhibited significant antioxidant capacity, with the ethyl acetate

fraction being the most active, displaying an IC50 of 17.66 µg/mL against the 1,1-

diphenyl-2-picrylhydrazyl (DPPH) radical and 10.31 µg/mL against 2,2′-azinobis-
(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). This activity

was attributed to its high total phenolic content (357.47 mg GAE/g). Furthermore,

W. ecuadoriensis fractions showed marked antimicrobial properties against

human pathogen strains with Minimum Bactericidal Concentration (MBC)

values of 1.56–6.25 mg/mL for S. aureus, E. faecalis and E. coli. Furthermore,

aqueous fraction exhibited slight inhibition of acetylcholinesterase (IC50: 915.98

µg/mL) and butyrylcholinesterase (IC50: 380.42 µg/mL). Interestingly, EF showed

the greatest inhibitory effect of a-glucosidase (IC50: 38.44 µg/mL) which is more

potent than the control used, acarbose (IC50: 179.07 µg/mL). UHPLC-QTOF-MS

analysis identified forty compounds, including phenolic acids, flavonoids,

saponins, terpenes, and fatty acyls. As far as we know, this is the first study to

evaluate the chemical composition and biological potential of W. ecuadoriensis.

Our results provide the first evidence to the chemical knowledge of the species

W. ecuadoriensis and demonstrate its bioactive potential as an interesting source

of secondary metabolites with possible beneficial properties for health.
KEYWORDS

Wigandia ecuadoriensis, enzyme inhibition, antioxidant activity, antibacterial, phenols
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1 Introduction

In recent years, there has been significant interest in using plant

extracts. Indeed, it is recognized that plants harbor valuable

bioactive compounds that can be beneficial both for promoting

human well-being and for the formulation of supplements or

nutraceuticals containing these enriching substances.

Antioxidant activity is essential to neutralize free radicals

involved in aging and various chronic diseases, including cancer

and cardiovascular diseases (Farhat et al., 2013). The study of

inhibitors of enzymes such as a-glucosidase and cholinesterase is

crucial in the search for valuable treatments for various diseases

(Anand and Singh, 2013). Inhibition of a-glucosidase is an effective

strategy in the management of type 2 diabetes mellitus, as it reduces

blood glucose levels by slowing down carbohydrate digestion

(Mustikasari et al., 2024). On the other hand, cholinesterase

inhibitors play an important role in the treatment of Alzheimer’s

disease, improving the transmission of nerve signals by preventing

the breakdown of acetylcholine (Anand and Singh, 2013). Together,

these studies provide a solid foundation for the development of

therapies that combat metabolic and neurodegenerative diseases.

In this sense, the Ecuadorian flora is known for its amazing

diversity, hosting a unique wealth of plant species that arouse the

interest of the scientific community. In this context, we focus on
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Wigandia ecuadoriensis (Figure 1), a new plant species botanically

described in 2006 and which has captured the attention of botanists

and ecologists due to its colonizing capacity and remarkable

tolerance to reduced levels of precipitation, which could be used

in the restoration of native vegetation in regions characterized by

very dry tropical forests (Cornejo, 2006) and an interesting source

of bioactive molecules. Although this species has been recognized

locally, its detailed scientific study is still incipient.

Wigandia ecuadorensis is a shrub or small tree, up to 4 m tall,

with large, shovel-shaped leaves and a terminal, branched

inflorescence with pink flowers. It belongs to the Namaceae

family and is endemic to the subtropical and tropical regions of

the Ecuadorian coast (Cornejo, 2006; Vasile et al., 2020). In

Ecuador, the Kichwa people used the leaves of the Wigandia

Kunth genus as an anti-inflammatory (Torre et al., 2008). Other

traditional uses of the Wigandia urens species are abortifacient,

infections, epilepsy, psychological, skin, and immunological

problems (Hitziger, 2016). The anti-inflammatory activity of

different extracts of Wigandia urens has also been reported

(Zavala-Sánchez et al., 2009). Some flavonoids and phacelioids

have been isolated in the genus Wigandia (Gómez et al., 1980;

Reynolds et al., 1989; Cao et al., 2003).

So far, there are no scientific studies in the literature on the plant

species W. ecuadorensis, therefore, it represents an intriguing
FIGURE 1

Wigandia ecuadoriensis.
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opportunity to discover new medicinal properties, unique chemical

compounds, and possibly significant contributions to

chemotaxonomy and natural medicine. This work aims to measure

the content of phytochemicals (phenols and flavonoids) and evaluate

the antioxidant, antibacterial, and enzymatic inhibition properties on

cholinesterases and a-glucosidase of the methanolic extract and its

subfractions from the leaves of W. ecuadorensis; and to analyze the

metabolomic chemical profile by UHPLC-QTOF-MS of the fractions

that presented the highest activity.
2 Materials and methods

2.1 Plant collection

The plant species W. ecuadoriensis was collected in Guayaquil,

Guayas province, Ecuador (2°08’42.7”S 79°56’49.6”W) in October

2023. The species was identified by biologist Xavier Cornejo from

the Faculty of Natural Sciences of the University of Guayaquil. A

reference specimen (CIBE057) was deposited in the Herbarium of

the Centro de Investigaciones Biotecnológicas del Ecuador,

Guayaquil-Ecuador.
2.2 Extraction procedure and
liquid–liquid fractionation

10 g of dried and powdered leaves of W. ecuadoriensis were

macerated with methanol (three times with 100 mL each) under

constant shaking using an orbital shaker (150 rpm) at 25°C for 24 h.

Each extract was filtered through Whatman No. 1 filter paper and

the solutions were concentrated under reduced pressure at 40°C to

obtain the methanolic extract. Then, 2.9 g of the methanolic extract

was suspended in 50 mL of a methanol-water mixture (1:3) and

partitioned with n-hexane (HF), dichloromethane (DMF), ethyl

acetate (EF), and a residual aqueous fraction (AqF). The extracts

and subfractions were stored at -20°C until required for analysis.
2.3 Total phenolic content

Total phenolic content was determined according to the Folin-

Ciocalteu (FC) assay (Ghareeb et al., 2017). 20 µL of the sample was

mixed with 100 µL FC reagent (1:10 v/v) and 80 µL of a Na2CO3

solution (7.5%), incubated for 60 minutes at room temperature, and

the absorbance of the resulting blue solution was measured at 760

nm in a microplate reader (Biotek Synergy HTX, Vermont, USA).

The results of the total phenol content are expressed in mg of gallic

acid equivalent per gram of dry extract (mg GAE/g DE). All

measurements were carried out in triplicate.
2.4 Total flavonoid content

Total flavonoids were determined using the aluminum chloride

method (Woster, 2003). 100 µL of sample was mixed with 100 µL of
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2% AlCl3 solution in ethanol. After 60 minutes at room

temperature, absorbance at 420 nm was measured using a

microplate reader (Biotek Synergy HTX, Vermont, USA). The

results of the flavonoid content expressed in mg of quercetin

equivalent per gram of dry extract (mg QE/g DE).
2.5 Antioxidant assays

2.5.1 DPPH radical scavenging assay
The antioxidant activity of extracts and subfractions was

determined by the procedure described by (Thaipong et al.,

2006). 50 µL of the sample was mixed with 150 µL of a DPPH

solution (0.15 mM) dissolved in methanol in the dark for 30

minutes. Subsequently, the absorbance was measured at 517 nm

in a microplate reader (Biotek Synergy HTX, Vermont, USA). A

calibration curve with Trolox was used and the results were

expressed in mg equivalent to Trolox/g DE.

2.5.2 ABTS
The antioxidant capacity was measured through the iron

reduction method described by (van den Berg et al., 1999). The

radical ABTS stock solution is diluted to a final concentration of 156

µM to obtain a final absorbance of 0.70 ± 0.02 at 732 nm. The

radical discoloration was initiated by adding 50 µL of the sample

solution with 150 µL of the ABTS solution. After 30 minutes of

incubation in the dark, the absorbance was measured at 732 nm

using a microplate reader (Biotek Synergy HTX, Vermont, USA).

The calibration curve was constructed with Trolox, and the results

were expressed in mg equivalent to Trolox/g DE.

2.5.3 Ferric-reducing antioxidant potential assay
The ferric reducing antioxidant power assay (FRAP) was

determined according to the procedure described by (Ghareeb

et al., 2017). In a 96-well microplate, 20 µl of each extract was

mixed with 180 µl of FRAP reagent. The mixture remained for 30

minutes in the dark and the absorbance at 595 nm was measured in

a microplate reader (BioTek Instrument, Inc., Winooski, VT, EE.

UU.). The calibration curve was constructed with ferrous sulfate

heptahydrate (FeSO4.7H2O), and the results were expressed in

mmol Fe/g DE.
2.6 Cholinesterase inhibition

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)

inhibitions were performed in vitro according to the method of

(Barrientos et al., 2023). The enzymes were dissolved in Tris-HCl

buffer (50 mM, pH 8.0) and 5-dithiol-bis(2-nitrobenzoic) acid

(DTNB) was prepared in buffer. W. ecuadoriensis fractions were

prepared at a concentration of 20 mg per milliliter in buffer. 25 µL of

the sample was mixed with 125 µL of DTNB and 25 µL of the

enzyme (AChE 0.3 U/mL), incubated for 15 min at 37°C, then the

substrates acetyl thiocholine iodide (15 mM) and butyryl

thiocholine chloride (15 mM) were added, as appropriate, and the

absorbance was measured at 412 nm at 37°C in a microplate reader
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(BioTek Instrument, Inc., Winooski, VT, USA). The results were

expressed as IC50 values (mg/mL). Galantamine was used as a

positive control.
2.7 a-glucosidase inhibition assay

To determine the inhibitory activity of a-glucosidase, 600 mL of

phosphate buffer (100 mM pH 6.9) was added with 250 mL of p-

nitrophenyl-a-d-glucopyranoside (5 mM), 100 mL of sample (EF/

AqF fromW. ecuadoriensis) and incubated at 37°C for 5 min. After

that, 50 mL of 0.5 U/mL a-glucosidase enzyme solution was added

to start the reaction. After 15 min at 37°C, 1000 mL of Na2CO3 (200

mM) was added. The absorbance was measured at 400 nm (Biotek

Synergy HTX, Vermont, USA). The results were expressed as IC50

values (mg/mL). Acarbose was used as a positive control (Coral

Caycho et al., 2020).
2.8 Determination of the minimum
bactericidal concentration

A widely accepted sensitive serial dilution microplate method

was used to determine the minimum inhibitory concentration

(MBC) (Elisha et al., 2017). Overnight bacterial cultures were

adjusted to McFarland standard 1, equivalent to 3.0 x 108 CFU/

mL (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli,

and Pseudomonas aeruginosa). The dried extract and subfractions

were dissolved in 12.5% DMSO at a concentration of 25 mg/mL and

100 µL was added to the first well of a 96-well microtiter plate and

serially diluted 1:1 with water. Bacterial cultures (100 µL) were

added to each well. Starting with an extract concentration of 25 mg/

mL, bacteria were therefore subjected to final concentrations of 6.25

to 0.05 mg/mL. Ampicillin was used as a positive control and

DMSO (12.5%) as a solvent control. The highest concentration to

which the bacteria were exposed was 12.5% DMSO in the first well

and decreased two-fold in each subsequent well. Microplates were

incubated overnight at 37°C. Finally, the solutions of the 96-well

plates were subcultured in Petri dishes with 25 mL of soy agar. The

MBC was defined as the lowest concentration of the extracts at

which there was no sign of bacterial growth. The results are

reported as mg/mL (Viteri et al., 2021). The antibiotic ampicillin

was used as a positive control. For each bacteria and extract

analyzed, a positive control (without plant extract) and a blank

(without bacteria) were prepared.
2.9 UHPLC-QTOF-MS analysis

The separation and identification of the compounds present in the

W. ecuadoriensis fractions was performed on a Compact QTOF MS +

Elute UHPLC system, with the software Data Analysis 4.0 (all Bruker

Daltonik GmbH, Bremen, Germany). Approximately 5 mg/mL of the

fraction was dissolved in methanol and filtered through a 0.2 mmPTFE

membrane and 3 µL was injected into the equipment. They were then

measured in the chromatographic system consisting of a column
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temperature of 40°C; flow rate of 0.4 mL/min, mobile phase H2O +

0.1% formic acid (A) and acetonitrile + 0.1% formic acid (B), and

elution gradient, 0–0.5min (12% B), 0.5–11min (1–99% B), 11–14min

(99% B), and 14–16 min (12% B). Mass spectrometry conditions:

electrospray ionization (ESI) source, scanning range 50–1300 m/z, the

fragmentation pattern was obtained using the spectral libraries of the

MassBank of North America (MoNA), obtained from https://

mona.fiehnlab.ucdavis.edu/downloads.
2.10 Statistical analysis

All the assays were performed in triplicate and represented as

median ± standard deviation (SD) using Microsoft Excel software

(Microsoft 365, Microsoft Corporation, Redmond, WA, USA).

Statistical significance between groups was set at p < 0.05 and

determined by one-way ANOVA with Tukey’s post hoc test using

the commercial software Minitab 19.
3 Results and discussion

3.1 Extraction procedure

The total yield of the subfractions was performed after

methanolic extraction and fractionation with n-hexane,

dichloromethane, and ethyl acetate, resulting in four subfractions

(hexane fraction, dichloromethane fraction, ethyl acetate fraction,

and aqueous fraction). The results indicated that the methanolic

extract (ME) yielded of 29.0%, followed by the aqueous fraction

(AqF) which reached 15.5%. The dichloromethane fraction (DMF)

had an intermediate yield of 8.5%, while the hexane fraction (HF)

showed a much lower yield of 3.8%. Finally, the ethyl acetate

fraction (EF) presented the lowest yield with only 1.0%.
3.2 Total phenolic and flavonoid content

The TPC and TFC of the extract and leaf fractions of

W. ecuadoriensis were examined, and the results are presented in

Table 1. The phenolic content was highest for the ethyl acetate

fraction with 357.47 ± 12.78 mg GAE/g of dry extract. The flavonoid

content was highest for the ethyl acetate fraction with 48.93 ± 6.32 mg

QE/g of dry extract. Although this is the first report on W.

ecuadoriensis, scientific information on the genus Wigandia and

family Namaceae is scarce. However, there are some previous

studies on other plants of the order Boraginales. The content of

phenols and flavonoids in the ethanolic extract of Eriodictyon

californicum leaves has been reported (Richards and Chaurasia,

2020). The authors report this species as a promising nutraceutical

due to its healing properties against oxidative stress. Our results were

superior to those reported for the species Symphytum officinale and

Anchusa ochroleuca, with phenolic and flavonoid contents between

5.39-125.50 mg GAE/g of extract and 0.11-36.58 mg QE/g of extract,

respectively (Trifan et al., 2021). In other species such as Symphytum

anatolicum and Cynoglottis barrelieri the phenolic content was 32.7
frontiersin.org
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and 52.8 mg GAE/g extract, respectively (Varvouni et al., 2020). In

another study, it was determined that the phenolic and flavonoid

content in the methanol extract of the Onosma ambigens species was

lower with values of 51.19 mg GAE/g of extract and 45.39 mg QEs/g

of extract, respectively (Sarikurkcu et al., 2020).
3.3 Antioxidant activity

The antioxidant activity of the extract and subfractions was

analyzed by DPPH, ABTS, and FRAP methods and are presented in

Table 2. These methods are widely used due to their simplicity,

sensitivity, and ability to provide comparative antioxidant capacities

of various extracts and compounds (Tabart et al., 2009).

The DPPH (2,2-diphenyl-1-picrylhydrazyl) assay measures the

ability of antioxidants to scavenge free radicals by monitoring the

color change from purple to yellow as the DPPH radical is reduced

(Baliyan et al., 2022). The results of this assay ranged from 157.54 ± 0.49

to 187.32 ± 0.56 µmol TE/g of dry extract.W. ecuadoriensis ethyl acetate

fraction scavenged DPPH in a concentration-dependent way with an

IC50 of 17.66 µg/mL (Figure 2A). The hexane fraction had the highest

value (IC50: 97.30 µg/mL). The antioxidant activity (IC50) decreased in

descending order: EF > ME > AqF > DMF > HF. According to (Setha

et al., 2013) IC50 values < 50 µg/mL are considered potent antioxidants.
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A study reported that the extract of the Eriodictyon californicum species

showed a 93.39% inhibition of DPPH radicals at a concentration of 1.0

mg/mL (Richards and Chaurasia, 2020), similar to those obtained in our

study evaluated at the same concentration (ME: 85.97%, EF: 76.12%,

DMF: 81.78%, EF: 88.63%, AqF: 89.30%). Likewise, a study reported that

the extract of the polar aerial part of S. officinale showed a DPPH radical

scavenging activity similar to our study (138.41 µmol TE/g) (Trifan et al.,

2021). In Cordia gilletii, an IC50 between 3.2 - 83.5 µg/mL is reported in

different extracts (Okusa et al., 2007).

The ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

assay involves the generation of a blue-green ABTS radical cation,

which is reduced by the antioxidants present in the sample, resulting in

a decrease in absorbance. Similarly, the antioxidant activity evaluated

against the ABTS radical, the extract, and all fractions had similar

values in the range of 183.80 ± 0.37 and 184.12 ± 0.00 µmol TE/g

extract. W. ecuadoriensis ethyl acetate fraction scavenged DPPH in a

concentration-dependent way with an IC50 of 10.31 µg/mL (Figure 2B).

The antioxidant activity (IC50) decreased in descending order: EF >ME

> DMF > AqF > HF. Likewise, the extract of the polar aerial part of S.

officinale showed ABTS radical scavenging activity similar to our study

(205.82 µmol TE/g extract) (Trifan et al., 2021). In another work it was

observed that the Trolox equivalent antioxidant capacity (TEAC= IC50

Trolox/IC50 of the sample) ratio was 0.013, while in our study it was

0.18, concluding the antioxidant power of the methanolic extract ofW.

ecuadoriensis (Sarikurkcu et al., 2020).

The FRAP (ferric reducing antioxidant power) assay quantifies the

antioxidant effect by evaluating the reduction of the ferric-tripyridyltriazine

complex to its ferrous form, which has an intense blue color. FRAP values

ranged from 0.65 ± 0.01 to 2.87 ± 0.01 mmol Fe/g of dry extract. The

species of the genus Eriodictyon presented antioxidant activity with a

concentration-dependent behavior comparable to the ascorbic acid

standard (Richards and Chaurasia, 2022).

All these results demonstrate that the species W. ecuadoriensis

and especially the ethyl acetate fraction present the highest

antioxidant activity evaluated by the DPPH, ABTS, and FRAP

methods, probably due to the higher total phenolic and flavonoid

content compared to the other fractions tested (Table 1). In fact, the

main compounds found in EF and AqF ofW. ecuadoriensis, namely
TABLE 2 Antioxidant activity of the different fractions of leaves of W. ecuadorensis.

Extract and fractions
DPPH

(µmol TE/g DE)
DPPH

(IC50 µg/mL)
ABTS

(µmol TE/g DE)
ABTS

(IC50 µg/mL)

FRAP
(mmolFeSO4·
7H2O/gDE)

ME 179.80 ± 1.22 b 35.70 ± 0.31 d 183.88 ± 0.24 a 30.19 ± 0.85 d 2.27 ± 0.07 b

HF 157.54 ± 0.49 d 97.30 ± 2.44 a 183.80 ± 0.37 a 65.69 ± 1.34 a 0.65 ± 0.01 e

DMF 170.33 ± 1.52 c 54.66 ± 1.28 b 183.88 ± 0.42 a 40.45 ± 0.57 c 0.99 ± 0.03 d

EF 185.82 ± 0.19 a 17.66 ± 0.58 e 183.96 ± 0.37 a 10.31 ± 0.08 e 2.87 ± 0.01 a

AqF 187.32 ± 0.56 a 41.14 ± 1.93 c 184.12 ± 0.00 a 62.36 ± 1.73 b 1.69 ± 0.11 c

Trolox * n.a. 6.07 ± 0.46 f n.a. 5.55 ± 0.50 f n.a.

Ascorbic acid * n.a. 3.06 ± 0.08 f n.a. 7.35 ± 0.18 e,f n.a.
*Used as standard antioxidant; DPPH, 2,2-diphenyl-1-picrylhydrazyl radical; ABTS, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; FRAP, Ferric ion-reducing antioxidant power assay;
Different letters in the same column indicate significant differences: p < 0.05, n= 3; n.a, Not applicable.
TABLE 1 Content of phenols, flavonoids of the different fractions of
leaves of W. ecuadorensis.

Extract
and fractions

Total Phenolic
content

(mg GAE/g DE)

Total Flavonoid
content

(mg QE/g DE)

ME 176.29 ± 8.87 b 19.77 ± 4.53 b,c

HF 43.13 ± 0.79 e 26.89 ± 1.12 b

DMF 88.93 ± 0.79 d 9.51 ± 0.04 c

EF 357.47 ± 12.78 a 48.93 ± 6.32 a

AqF 113.44 ± 7.94 c 8.05 ± 0.07 c
TPC, Total phenolic content; TFC, Total flavonoid content; Different letters in the same
column indicate significant differences: p < 0.05, n= 3.
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caffeic acids, rosmarinic acid, cirsimaritin, luteolin-7-glycoside and

apigenin-8-C-(6”acetyl)-b-D-glucopyranoside (Table 3), have

already been reported as DPPH and ABTS scavengers. In this

sense, these results indicate that the compounds present in the EF

and DMF fractions have a strong capacity to neutralize free radicals,

suggesting a high bioactive potential. This antioxidant activity

highlights the W. ecuadoriensis species as a promising source of

natural antioxidants, which may have therapeutic and preventive

applications in diseases related to oxidative stress.
3.4 Antibacterial activity of
W. ecuadoriensis

In the study of the antibacterial activity of the extract and

subfractions of leaves of W. ecuadoriensis against Staphylococcus
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aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas

aeruginosa, it was found that the crude extract and the different

fractions presented varied effectiveness (Table 4). The crude extract

showed remarkable activity against S. aureus (1.56 mg/mL) and E.

faecalis (3.13 mg/mL), being less effective against E. coli. Curiously,

the hexane fraction was the most effective against S. aureus and E.

faecalis (1.56 mg/ml), while the dichloromethane and ethyl acetate

fractions presented limited activity. No activity was detected in the

aqueous fraction. Ampicillin was used as a control, showing high

effectiveness against S. aureus and E. coli. The genus Wigandia has

been reported to have antimicrobial activities. The activity of three

extracts (n-hexane, ethanol, and acetone) of W. caracasana leaves

has been reported against the strains Streptococcus pneumoniae,

S. pyogenes, E. coli, Salmonella typhi and Shigella flexneri with zones

of inhibition between 6 and 12 mm (Cáceresa et al., 1993). Another

species, Wigandia urens, has reported the antimicrobial activity of
FIGURE 2

Antioxidant activity of W. ecuadoriensis extract and subfractions against DPPH (A) and ABTS (B). Each point represents the average of
three measurements.
TABLE 3 UHPLC-QTOF-MS identification of ethyl acetate (a) and aqueous fraction (b) from W. ecuadoriensis leaves.

No TR(min)
Molecular
formula

Major ion
[M-H]- (m/z)

Calculated
Molecular Weight Tentative Compound

Fraction

1 0.11 C4H2O4 112.9829 112.9856 Na formiate (internal standard) EF, AqF

2 0.79 C9H8O4 179,0363 180,0436 Caffeic acid AqF

3 1.08 C21H20O12 463,0859 464,0931 Hyperoside EF, AqF

4 3.85 C36H32O16 719,1564 720,1641 Sagerinic acid EF, AqF

5 4.59 C21H20O11 447,0928 448,1001 Luteolin-7-glucoside EF

6 5.78 C17H12O9 359.0408 360.0494 Acetyl miricetin EF, AqF

7 5,82 C18H16O8 359,0767 360,0832 Rosmarinic acid EF

8 5.56 C18H32O5 327,2173 328,2246 Corchorifatty acid F EF

9 5.78 C18H32O5 327,2173 328,2245
(10E,15Z)-9,12,13-
trihydroxyoctadeca-10,15-dienoic acid EF

10 6.19 C17H14O6 313,0695 314,0767 Cirsimaritin EF

11 6.33 C29H38O12 577.2290 577.2574 Hydrangenoside C EF, AqF

12 7.38 C15H22O4 265,1481 266,1554 Strobilactone A EF

13 7.59 C17H32O5 315.2304 316.2329 Glyceryl-monomyristate EF

(Continued)
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the ethanolic extract of leaves against strains S. aureus, E. coli, and P.

aeruginosa with diameters between 13-19 mm (Rojas et al., 2003).

Another study reported the antimicrobial activity of Cordia

oncocalyx (Boraginaceae) with MIC values <512 µg/mL

(Thyalisson da Costa Silva et al., 2024). Our results were like

those reported for the species Echium humile, who reported MCB

values between 1.56 and 12.5 mg/mL against S. aureus, 0.19 and

12.5 against E. faecalis, 1.56 and 3.12 against E. coli, using different

extraction solvents (Aouadi et al., 2022). Although the extract and

subfractions showed low antibacterial activity, these results are

interesting, considering that these come directly from a leaf extract.
Frontiers in Plant Science 07
3.5 Enzyme inhibitory activity

The inhibitory activity of the most polar fractions (EF and AqF)

of W. ecuadoriensis leaves was determined by spectrophotometric

assays against a-glucosidase and cholinesterases (AChE, BChE)

(Table 5). Inhibition of a-glucosidase is seen as an effective strategy

for the control of obesity and diabetes (Zengin et al., 2018). This

enzyme, located at the edge of the small intestine, breaks down

complex carbohydrates into glucose. By inhibiting a-glucosidase, the
metabolism of complex carbohydrates is slowed down, which lowers

blood glucose levels (Mustikasari et al., 2024). Figure 3 shows the
TABLE 3 Continued

No TR(min)
Molecular
formula

Major ion
[M-H]- (m/z)

Calculated
Molecular Weight Tentative Compound

Fraction

14 7.77 C28H44O7 491.2803 492.2873 Hirsutalin C EF, AqF

15 8.38 C16H24O6 311,1692 312,1765 Thymol-beta-D-glucoside EF, AqF

16 8.81 C18H32O3 295,2271 296,2344 Dimorphecolic acid EF, AqF

17 9.05 C19H22N2O 293,1784 294,185 Cinchonine EF

18 9.22 C23H22O12 489.2627 490.2628
Luteolin-8-C-(6”acetyl)-b-
D-glucopyranoside EF

19 9.33 C17H30O4 297.2208 298.2223 Acaranoic acid EF, AqF

20 9.47 C17H30O4 297.2198 298.2223 Acaranoic acid isomer EF, AqF

21 9.8 C17H28O4 295.2054 296.1914 Acarenoic acid EF, AqF

22 9.6 C17H32O4 299.2265 300.2227 Heptadecanedioic acid isomer EF, AqF

23 9.32 C23H22O12 489.2802 490.2628
Luteolin-6-C-(6”acetyl)-b-
D-glucopyranoside EF, AqF

24 10.12 C17H28O4 295.2056 296.1914 Acarenoic acid isomer EF, AqF

25 10.72 C21H20O11 447.0957 448.0933 Luteolin-6-C-b-D-glucopyranoside EF

26 10.89 C21H20O11 447.0921 448.0933 Luteolin-8-C-b-D-glucopyranoside EF, AqF

27 10.97 C23H22O11 473.2806 474.2797
Apigenin-6-C-(5”acetyl)-b-
D-glucopyranoside EF, AqF

28 11.14 C23H22O11 473.2798 474.2797
Apigenin-8-C-(6”acetyl)-b-
D-glucopyranoside EF, AqF

29 11.26 C39H51O6 615.3743 616.3691 Garcinol 13-O-methyl ether EF, AqF

30 11.49 C23H22O11 473.2603 474.2797
Apigenin-8-C-(5”acetyl)-b-
D-glucopyranoside EF, AqF

31 11.85 C32H54O10 597.3644 597.3645 Kurilensoside G EF

32 12.06 C27H42O7 477.2857 477.3078 Erinacine D EF, AqF

33 12.24 C19H27 255.2111 255.2138 Unknown EF

34 12.57 C21H29 281.2274 282.2285 Unknown EF, AqF

35 12.72 C25H39O4 403.2853 403.2777 Uranediol diacetate EF, AqF

36 13.45 C32H52O9 579.3538 579.3638 Tokoronin EF

37 13.63 C40H81N6O21 981.5527 981.5527 Unknown EF

38 14.23 C21H40O7 403.2701 403.2798 Aureosurfactin EF

39 14.62 C29H38O12 577.2290 577.2574 Hydrangenoside C EF

40 15.51 C21H40O7 403.2701 403.2798 Aureosurfactin EF
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effect of EF and acarbose on a-glucosidase enzyme activity. Figure 3

shows that increasing the concentration of EF (10–100 µg/mL) and

acarbose (10–200 µg/mL) increased the inhibition of a-glucosidase
activity. At the highest concentrations, EF and acarbose (100 and 200

µg/mL) achieved inhibitions of 73.58 ± 0.36% and 59.39 ± 0.45%,

respectively. The IC50 values for a-glucosidase inhibition were

38.44 ± 0.75 µg/mL for EF (Figure 3A), which is approximately five

times higher than the commercial standard, acarbose (179.07 ± 1.18

µg/mL, Figure 3B). These results indicate that the ethyl acetate (EF)

fraction is more effective than acarbose in inhibiting a-glucosidase.
According to (Benjamin et al., 2024) IC50 values lower than 50 mg/mL

are indicators of a strong potential as an inhibitor of a-glucosidase
activity. In this sense, it is important to highlight that our result was

obtained from a fraction and not from an isolated compound, which

highlights a promising bioactive potential for the species. The

presence of several unpurified compounds within the fraction

suggests that upon further purification, the inhibitory activity could

even be enhanced, revealing individual compounds with even

stronger properties. This observed enzyme inhibition could be

related to the presence of phenolic compounds described in

Table 1. On the other hand, the aqueous fraction showed low

inhibition, reaching only 4.75 ± 0.16% at a concentration of 2 mg/

mL, therefore, its IC50 value could not be determined. Several studies

have investigated the inhibitory potential of a-glucosidase in species

of the order Boraginales, showing promising results. Another

medicinal herb that has been used for centuries to treat diabetes is

Symphytum. The inhibitory effect of the whole plant extract of
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Symphytum anatolicum showed a potent inhibitory activity (IC50:

18.28 ± 0.31 mg/mL), comparable to that exerted by acarbose (IC50:

17.05 ± 0.25 mg/mL), used as a control (Kılınc et al., 2023). The

methanolic extract of Echium humile presented a value of 60 µg/mL,

indicating a strong effectiveness (Aouadi et al., 2022). An in vitro

antidiabetic study revealed that ethyl acetate extract exhibits 60%

inhibition, at a concentration of 500 mg/mL, with an IC50 value of 380

mg/mL and the IC50 value of standard acarbose was 250 mg/mL (Syed

Akbar et al., 2023). The aqueous extract of Glandora diffusa showed a

potent inhibitory effect on a-glucosidase with an IC50 value of 33.3

µg/mL, almost ten times lower than that described for acarbose 300

µg/mL. These authors attribute this activity to the compounds caffeic

acid and rosmarinic acid, which have been reported as inhibitors of

a-glucosidase, and which are also present in our study (Table 3)

(Ferreres et al., 2013). According to these IC50 values, the ethyl acetate

fraction studied in this work seems to show an enzyme inhibition

capacity comparable to that reported in previous studies.

Cholinesterase inhibitors play a crucial role in the functioning

of the nervous system and are related to the treatment of

Alzheimer’s disease. Over the past two decades, the search for

natural products related to AChE and BChE inhibition has

increased (Ortega de Oliveira et al., 2024). Figure 4 shows the

inhibition of AChE and BChE enzymes in the presence of AqF and

galantamine at increasing concentrations. The results revealed a

dose-dependent behavior for the AChE enzyme with an IC50 value

of 915.98 ± 7.25 µg/mL for AqF (Figure 4A). Regarding the effect on

BChE, Figure 4C shows that the fraction inhibits the
TABLE 5 Enzyme inhibitory activity of W. ecuadoriensis fractions.

Fractions

a-glucoside Cholinesterase inhibitory

% inhibition ± SD
(2 mg/mL)

IC50

(µg/mL)
IC50 de AChE

(µg/ml)
IC50 de BChE

(µg/ml)

EF 85.83 ± 0.31 a 38.44 ± 0.75 b – –

AqF 4.75 ± 0.16 b – 915.98 ± 7.25 a 380.42 ± 22.10 a

Acarbose * 59.39 ± 0.45 c 179.07 ± 1.18 a - -

Galantamine * n.a. n.a 0.53 ± 0.03 b 5.15 ± 0.44 b
AChE, acetylcholinesterase; BChE, butyrylcholinesterase. Different letters in the same column indicate significant differences: p < 0.05, n= 3. –, no inhibition; n.a, Not applicable. *Used as
standard drug; Acarbose (0.2 mg/mL).
TABLE 4 Minimum bactericidal concentration (mg/mL) of leaf extracts against 4 pathogenic bacteria by microdilution assay.

Extract and fractions S. aureus E. faecalis E. coli P. aeruginosa

ME 1.56 3.13 6.25 –

HF 1.56 1.56 6.25 –

DMF 3.13 – – –

EF 6.25 6.25 – –

AqF – – – –

Ampicillin * 2.06 – 0.26 –

Gentamicin * 0,19 1,56 0,39 6,25

Kanamycin * 0,78 6,25 1,56 –
*The antibiotic concentration is expressed as µg/mL (positive control). –, no inhibition.
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butyrylcholinesterase enzyme depending on the concentration with

an IC50 value of 380.42 ± 22.10 µg/mL for AqF (Figure 4C). The

ethyl acetate fraction did not show any inhibitory activity. These

results were higher compared to the positive control galantamine,

which presented an IC50 of 0.53 ± 0.03 µg/mL for AChE and 5.15 ±

0.44 µg/mL for BChE, indicating that the standard drug,

galantamine, is more effective in inhibiting these enzymes

compared to the aqueous fraction of W. ecuadoriensis. However,

this result is still encouraging, since we are evaluating a fraction and

not an isolated compound. It is likely that the bioactive compounds

responsible for the activity are found in low concentration within

the fraction, suggesting that further purification could significantly

increase the inhibitory activity. The results obtained for AChE are

comparable to that reported for the methanolic extract ofWigandia

urens, with an AChE inhibition of 43% evaluated at a concentration
Frontiers in Plant Science 09
of 1 mg/mL (Ortiz et al., 2013). There is information on the

traditional use of the Wigandia urens species in Guatemala for

epilepsy and psychological problems (Hitziger, 2016). On the other

hand, some extracts from the Boraginaceae family (S. anatolicum, S.

aintabicum, Cynoglossum creticum, C. barrelieri, and Alkanna

sfikasiana) have shown inhibitory effects on AChE, BChE, and a-
glucosidase (Varvouni et al., 2020). Our results presented lower IC50

compared to other species of Onosma trapezuntea and Onosma

rigidum with IC50 values of 1270 and 1180 µg/mL for AChE and

2550 and 2060 µg/mL for BChE, respectively (Kirkan et al., 2022).

Another study reported that hexane, chloroform, ethyl acetate and

methanol extracts of Calophyllum gracilentum, at a concentration of

1.0 mg/mL, inhibited AChE by 3.02 ± 0.998%, 12.30 ± 5.641%,

31.62 ± 2.057% and 4.61 ± 2.129%, respectively (Seruji et al., 2024).

In our study, we evaluated at the same concentration reported an
FIGURE 4

Inhibitory effects of AqF from W. ecuadoriensis and galantamine on cholinesterase enzymes. (A, B) Effect on AChE; (C, D) Effect on BChE. Each point
represents the average of three measurements.
FIGURE 3

Inhibitory effects of EF from W. ecuadoriensis (A) and galantamine (B) on the enzyme a-glucosidase. Each point represents the average of
three measurements.
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inhibition of 51.20 ± 0.60%. Based on these values, the fraction

investigated in this study seems to be more effective in inhibiting

this enzyme compared to previously reported results.

The results obtained in this study reveal that certain fractions ofW.

ecuadoriensis possess a strong antioxidant potential and a remarkable

inhibitory activity of the enzyme a-glucosidase, suggesting that this

species could be a promising source of bioactive compounds. However,

extensive research should be carried out to isolate themain compounds

and determine their activity, in order to understand their mechanism

of action better. Furthermore, these observations provide a valuable

scientific contribution to the chemical knowledge and biological

properties of the plant species Wigandia ecuadoriensis.
3.6 UHPLC-QTOF-MS analysis

The compounds from the ethyl acetate and aqueous fractions of

the methanolic extract of W. ecuadoriensis leaves were analyzed by

UHPLC-QTOF-MS. The total ion current chromatogram in negative

ESI mode is shown in Figure 5, and the tentatively detected compounds

are summarized in Table 3. The UHPLC-QTOF-MS profile revealed

the presence of 39 metabolites, belonging to the classes of phenolic

acids, flavonoids, fatty acyls, naphthofuran, glycerolipids, terpene,

alkaloid, prenol lipids. The tentative identification was performed in

Metaboscape software, a proprietary Bruker software that allows the

identification of metabolites based on their mass, fragmentation

pattern, and isotopic pattern, subsequently compared with the

MassBank of North America (MoNA) database. These compounds

include two phenolic acids (peaks 2 and 7), eleven flavonoids (peaks 3,

5, 6, 10, 18, 23, 25, 26, 27, 28 and 30), one lignan (peak 4), four fatty

acyls (peaks 8, 9, 16, 22 and 38), four prenol lipids (peaks 11, 29, 32 and

39), one naphthofuran (peak 12), one glycerolipids (peak 13), two

terpenes (peaks 14 and 15), and one alkaloid (peak 17), four lactones
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(peaks 19, 20, 21 and 24), three steroidal (peaks 31, 35 and 36), three

unknown compounds (peaks 33, 34 and 37).

The compounds identified in the subfractions ofW. ecuadoriensis

exhibit a wide range of biological activities. Quinic acid shows

antioxidant, antidiabetic, anticancer, antimicrobial, antiviral,

antiaging, protective, antinociceptive, and analgesic properties

(Benali et al., 2022). 3,4-Dihydroxybenzeneacetic and caffeic acids

possess antioxidant activity in rat plasma (Raneva et al., 2001). Citric

acid, known for its antimicrobial and antioxidant properties (Søltoft-

Jensen and Hansen, 2005). Other compounds such as 3-

hydroxybenzaldehyde, p-hydroxybenzoic acid, and hyperoside

exhibit multiple properties, from antioxidant and anti-

inflammatory to anticancer and organ protective (Rohini et al.,

2013; Chen et al., 2021; Wang et al., 2022). Luteolin-7-glucoside,

rosmarinic acid, and cirsimaritin have antioxidant, antitumor, anti-

inflammatory, and protective activities against various diseases (Cai

et al., 2020; Silva et al., 2020; De Stefano et al., 2021). Strobilactone A

is known for its antifungal activity (Cohen et al., 2011), while thymol-

beta-D-glucoside and dimorpholicacid have antibacterial activity

(Mundt et al., 2003; Anderson et al., 2021). Cinchonina, in addition

to being an antimalarial agent, has anticancer, antiobesity, anti-

inflammatory, antiparasitic, antimicrobial, and antiplatelet effects

(Parveen et al., 2024). Derivatives of acaranoic acid exhibit potent

antifungal action against Botrytis cinerea, Septoria tritici and

Pyricularia oryzae (Hussain et al., 2012). Luteolin-8-C-b-D-

glucopyranoside and apigenin-8-C-(6”acetyl)-b-D-glucopyranoside
stand out for their antioxidant capacity to scavenge free radicals

(Simirgiotis et al., 2013). Kurilensoside G shows moderate inhibition

in sea urchin sperm tests (Stonik et al., 2008). Erinacine D promotes

nerve growth factor synthesis (Kawagishi et al., 1996). Tokoronin

inhibits a-MSH-induced melanogenesis with low cytotoxicity (Ukiya

et al., 2020). Aureosurfactin, a biosurfactant with comparable activity

to rhamnolipid, surfactin and sophorolipid (Kim et al., 2016).
FIGURE 5

UHPLC-QTOF-MS Chromatogram of (A) EF and (B) AqF leaves W. ecuadoriensis in a negative ion mode.
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Hydrogenoside C enhances cell viability and procollagen type I

production in UVB-irradiated Hs68 cells (Shin et al., 2019).
4 Conclusion

This study is the first report of the in vitro activity of W.

ecuadoriensis leaves. The ethyl acetate fraction was shown to have

the highest content of phenols and flavonoids compared to the

other fractions. This result elicited potent antioxidant activity.

Furthermore, the ethyl acetate fraction was found to have strong

potential as an inhibitor of a-glucosidase activity. On the other

hand, the methanolic extract and its hexane fraction revealed

antimicrobial activity. According to the UHPLC-MS results, the

dominant compounds present in the fractions are caffeic acid, and

hyperoside. These findings represent a valuable contribution to the

knowledge of the species and suggest that Wigandia could be a

promising source of bioactive compounds, creating new

opportunities for the development of phytopharmaceuticals.

Nevertheless, these initial results underline the need for further

research to isolate the main compounds of the ethyl acetate fraction

of W. ecuadoriensis to validate its antidiabetic effects.
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