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ShinyGS—a graphical toolkit with
a serial of genetic and machine
learning models for genomic
selection: application,
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Lirui Cheng1, Tao Zhao5* and Yanjun Zan1*
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Genomic prediction is a powerful approach for improving genetic gain and

shortening the breeding cycles in animal and crop breeding programs. A series

of statistical and machine learning models has been developed to increase the

prediction performance continuously. However, the application of these models

requires advanced R programming skills and command-line tools to perform

quality control, format input files, and install packages and dependencies, posing

challenges for breeders. Here, we present ShinyGS, a stand-alone R Shiny

application with a user-friendly interface that allows breeders to perform

genomic selection through simple point-and-click actions. This toolkit

incorporates 16 methods, including linear models from maximum likelihood and

Bayesian framework (BA, BB, BC, BL, and BRR), machine learning models, and a

data visualization function. In addition, we benchmarked the performance of all 16

models using multiple populations and traits with varying populations and genetic

architecture. Recommendations were given for specific breeding applications.

Overall, ShinyGS is a platform-independent software that can be run on all

operating systems with a Docker container for quick installation. It is freely

available to non-commercial users at Docker Hub (https://hub.docker.com/r/

yfd2/ags).
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1 Introduction

Polygenic traits are influenced by multiple genes, leading to

continuously distributed phenotypes, such as plant height, grain

yield, and resistance to diseases. Accurate predictions of these traits

can help crop and animal breeders develop varieties and breeds with

significantly improved agronomic performance to meet the growing

food demand (Bali and Singla, 2022). Over the past two decades,

genomic selection (GS) has become a popular strategy for animal

and plant breeding programs and considerably improved the

genetic gain for many crops and animals (Liu et al., 2018; Lozada

et al., 2019; Marulanda et al., 2016; Sallam and Smith, 2016; Schefers

and Weigel, 2012). Various methods have been developed to

improve prediction accuracy and computing efficacy (Habier

et al., 2011; Jia and Jannink, 2012; Meuwissen et al., 2001;

VanRaden, 2008). However, the application of these models

requires advanced R programming skills and command-line tools

for performing data quality control, formatting input files, and

installing dependencies and packages, posing challenges for

many breeders.

To make these advanced genomic prediction methods

accessible to breeders without programming skills, we developed

ShinyGS—a graphical toolkit with a series of genetic and machine

learning models for genomic selection. It includes 16 genomic

prediction methods implemented in four packages: ridge

regression best linear unbiased prediction (rrBLUP) (Meuwissen

et al., 2001), the most widely used method based on linear

regression models; deep neural network genomic prediction

(DNNGP) (Wang et al., 2023); gradient boosting machine (GBM)

(Li et al., 2018); and the BWGS (Breed Wheat Genomic Selection

pipeline including several genomic prediction methods) (Charmet

et al., 2020) method set. DNNGP is based on a deep multilayered

hidden neural network architecture that captures complex non-

additive effects (Wang et al., 2023). The GBM method utilizes

gradient boosting (Friedman, 2001) and stochastic gradient

boosting approaches (Friedman, 2002). The BWGS package

includes the genomic best linear unbiased prediction (G-BLUP)

(VanRaden, 2008), multiple kernel reproducing kernel Hilbert

space (MKRKHS) (De Los Campos et al., 2010), ridge regression

(RR) (Whittaker et al., 2000), Bayesian ridge regression (BRR) (De

Los Campos et al., 2013), least absolute shrinkage and selection

operator (LASSO) (Usai et al., 2009), elastic net (EN) (Zou and

Hastie, 2005), Bayesian LASSO (BL) (Park and Casella, 2008), Bayes

A (BA) (Meuwissen et al., 2001), Bayes B (BB) (Habier et al., 2011),

Bayes C (BC) (George and McCulloch, 1993), reproducing kernel

Hilbert space (RKHS) (Gianola and van Kaam, 2008), random

forest (RF) (Breiman, 2001), and support vector machine (SVM)

(González-Recio et al., 2014; Maenhout et al., 2007) models

(Table 1). In addition, we performed benchmarking analysis using

multiple populations and traits with variable population and genetic

architecture to provide recommendations for specific breeding

applications. ShinyGS is freely available to non-commercial users

at Docker Hub (https://hub.docker.com/r/yfd2/ags). This toolkit

can significantly simplify genomic prediction applications, making

advanced genomic selection methods more accessible and beneficial

to breeders.
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Type Methods Abbreviation Features of the methods Suitable genetic

linear
unbiased
prediction)

matrix. This allows it to capture relationships more
accurately than traditional BLUP, which relies only
on pedigree

Ridge regression best
linear

unbiased prediction
rrBLUP

Unlike GBLUP, which uses the genomic relationship matrix
to model genetic similarity without explicitly estimating
individual SNP effects. RR-BLUP explicitly estimates
individual SNP effects through ridge regression, and the total
genetic value for an individual is the sum of these
SNP effects

Additive architecture. Simi

Linear mixed
model

(Bayesian
methods)

Bayes A BA

Assumes that each marker effect follows a normal
distribution with a constant variance across markers.
Uniform shrinkage across all SNPs was applied, with no
selection of markers that may have no effect. Suitable for
traits controlled by many small-effect loci, as it treats all
markers as contributing similarly to the genetic variance

Additive architecture. Simi

Bayes B BB

Assumes that each marker effect has a normal distribution
with marker-specific variances. Provides stronger shrinkage
for markers with small or negligible effects, making it more
flexible than BA in handling traits with a mixture of large-
and small-effect loci

Additive architecture. Ofte
where only a subset of mar
have significant effects (tra
major QTLs)

Bayes C BC

Similar to BB but includes an additional mixture distribution
that assigns some marker effects directly to zero. Shrinks
small-effect markers strongly, while allowing larger-effect
markers to retain their impact

Additive architecture. Prefe
genetic architectures, wher
expected to have large effec

Bayesian LASSO BL

BL assumes a Laplace (double-exponential) distribution for
marker effects rather than a normal distribution. Strong
shrinkage on small-effect markers, which can lead to an
outcome similar to the LASSO (L1 regularization) in a
Bayesian framework

Additive architecture. Usef
underlying genetic architec
be sparse, as BL emphasize
effectively than BB or BC

Bayesian
ridge regression

BRR

BRR is a ridge regression model in the Bayesian framework.
It assumes that all marker effects follow a normal
distribution with constant variance (similar to BA), meaning
that all markers contribute to the prediction. Shrinks all
marker effects evenly, without excluding any

Additive architecture. Suita
traits, where many loci wit
expected to contribute to t

Non-
linear
models

Random forest RF

An ensemble learning method that builds multiple decision
trees and averages their predictions. It captures non-linear
relationships and interactions between variables. Handles
non-linear relationships and interactions well. Robust to
overfitting in moderately sized datasets. Computationally
intensive for large datasets

Non-additive architecture.
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Support vector machine SVM

A classification or regression technique that finds a
hyperplane in a high-dimensional space to separate or
predict data points, often using kernels to capture non-linear
relationships. Effective in high-dimensional spaces. Handles
non-linear relationships with appropriate kernel choice. Slow
training process for large datasets. Limited scalability and less
effective for polygenic traits with many small-effect loci

Non-add
simple ar
Effective
boundari
capture c
other me

Gradient
boosting machine

GBM

An ensemble method that builds sequential decision trees,
with each tree correcting errors from the previous one. It is
highly flexible for non-linear relationships. High predictive
accuracy for moderate- to complex-trait architectures.
Balances speed and predictive power, especially under limited
computational resources. Can be prone to overfitting if the
dataset is small. Computationally more expensive than
simpler models

Non-add
traits wit
for archi
linear eff
extremel

Reproducing kernel
Hilbert space

RKHS

A non-linear, kernel-based method that models complex trait
architectures by mapping the genetic markers into a high-
dimensional feature space. Captures complex, non-linear
relationships and interactions effectively. Flexible with
different kernel choices to adapt to various genetic
architectures. Computationally demanding, especially for
large datasets. Sensitive to kernel and hyperparameter choices

Non-add
complex
(many sm
linear int

Multiple kernel
reproducing kernel

Hilbert space
MKRKHS

An extension of RKHS that uses multiple kernels to capture
a range of genetic architectures, allowing for different levels
of genetic interactions and polygenicity. Flexibility to model
diverse genetic architectures with varying effect sizes.
Captures more complex patterns than single-kernel RKHS.
Very computationally intensive. Requires careful tuning of
multiple kernels and parameters

Non-add
complex
genetic e
polygenic
various d

Deep neural network
genomic prediction

DNNGP

Combines deep learning with Gaussian processes to capture
complex, non-linear relationships and model uncertainty in
predictions. It uses deep learning layers to learn
representations and a Gaussian process layer for prediction.
Highly flexible and capable of capturing very complex
patterns and interactions. Can model both non-linearity and
uncertainty in predictions. Computationally very demanding;
requires significant resources. Prone to overfitting if not
properly regularized, especially on small datasets
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2 Materials and methods

2.1 Example data

Genetic relationship is one of the most important factors that may

affect prediction accuracy of genomic selection. As population structure

varies between advanced intercross line or germplasm, we choose two

types of population to demonstrate the performance of these models.

The first is the Goodman maize diversity panel. This panel was built

from whole-genome sequencing data from approximately 300 maize

lines, covering major maize varieties across the world (Bukowski et al.,

2 018 ) . Geno t ype s we r e down loaded f rom ht tp s : / /

datacommons.cyverse .org/browse/ iplant/home/shared/

commons_repo/curated/Qi_Sun_Zea_mays_haplotype_map_2018/

hmp321_unimputed. We downloaded phenotype records for days to

anthesis (DTA), plant height (PH), and ear weight (EW) from

Panzea (traitMatrix_maize282NAM_v15-130212.txt) with

282 observations.

For the maize CUBIC population, all 1,404 lines were

resequenced. Genotype data were available for download from Liu

et al. (2020) (The raw fastq files were uploaded to NCBI SRA with

ID as PRJNA597703 and called SNP data in PLINK format available

at https://pan.baidu.com/s/1AsPJLTe–gU5EN8aFTMYPA). We

downloaded phenotype records for DTA, PH, and EW from Liu

et al. (2020) with 1,404 observations.
2.2 Genotype filtering

A comprehensive genotype filtration was performed to ensure

data quality and reliability. Initially, genotype data were extracted

from the VCF file and converted into PLINK binary format. A

minor allele frequency (MAF) filter was applied, retaining SNPs

with an MAF greater than 0.05 to exclude rare variants. Next,

linkage disequilibrium (LD) pruning was conducted to remove

SNPs in high LD, using an r2 threshold of 0.9 within a sliding

window of 1,000 base pairs. The resulting dataset was recoded to a

raw genotype file. Prediction accuracy was calculated as the

correlation of phenotype and predicted breeding value.
2.3 Model implementation

ShinyGS integrates multiple GS algorithms from various packages:

rrBLUP, BWGS, GBM, and DNNGP. The rrBLUP, BWGS, and GBM

packages are implemented in R libraries, whereas DNNGP is called

from a Python module. The rrBLUP method is from the “rrBLUP”

package. It is a fast maximum-likelihood algorithm for mixed models,

assuming that all markers have equal variance with small but non-zero

effects (Endelman, 2011). This model estimates the marker effects from

training datasets and ultimately estimates the genomic estimated
Frontiers in Plant Science 05
breeding values (GEBVs) for the selection of candidates. BWGS is an

integrated package compiling various R libraries for easy computation

of (GEBV) (Charmet et al., 2020). The GBLUP, MKRKHS, RR, BRR,

LASSO, EN, BL, BA, BB, BC, RF, and SVMmodels are included in this

package. The GBM method is from the “gbm” package (Ridgeway,

2007). It mainly takes the gradient boosting (Friedman, 2001) and

stochastic gradient boosting approaches (Friedman, 2002). This

method is especially appropriate for mining less than clean data.

DNNGP is a Python pipeline, developed based on deep neural

network-based method. It can be used to predict phenotypes of

plants based on multi-omics data (Wang et al., 2023).
3 Results and discussion

3.1 ShinyGS application overview

ShinyGS is an R shiny application integrating a series of genetic

and machine learning models for genomic selection. The application

interface comprises four main sections: Model Selection, Data Upload,

Parameter Adjustment, and Data Visualization. This application

includes 16 genomic prediction algorithms, including rrBLUP,

DNNGP, GBM, GBLUP, MKRKHS, RR, LASSO, EN, BRR, BL, BA,

BB, BC, RKHS, RF, and SVM, for users to select in the “Model

Selection” panel (Figure 1). Users can upload genotype data files in

VCF format and phenotype data files in TXT format via the “Data

Upload” panel. Upon uploading the correct files, a “Run Analysis”

button appears. Users can adjust model parameters based on the

selected genomic prediction models. After the analysis is completed, a

scatterplot with predicted breeding values and raw phenotype is

generated, and a table with predicted breeding values can be

downloaded in the “Data Visualization” panel (Figure 1).
3.2 Demonstration of
ShinyGS functionalities

In this section, we will demonstrate the functionalities using a

maize diversity panel with 282 resequenced genotypes and

measured days to flowering (DTF).
i. Model Selection: A total of 16 models are available for

selection from the drop-down tab in the “Select Model”

panel (Figure 2).

ii. Parameter Adjustment: For models without any additional

parameters, such as the rrBLUP model, the “Parameter

Adjustment” panel does not appear when these models are

selected. Otherwise, a parameter adjustment panel will

show up. For example, when using the BWGS method

set, users can set the imputation method, max NA, MAF,
frontiersin.org
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FIGURE 2

Demonstration of ShinyGS by predicting DTF in a maize diversity panel with 282 recombination intercross populations (RILs).
FIGURE 1

Work panel of the ShinyGS application.
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Fron
size reduction, R2, P-value, and MAP. When using the

DNNGP model, users can set batch size, learning rate,

number of epochs, first dropout, second dropout, patience

for learning rate reduction, random seed, number of folders

for cross-validation, part for validation set, early stopping

threshold, and number of PCA.

iii. Data Upload: Users can upload genotype and phenotype

files in the Data Upload section. Both “.vcf” and “.vcf.gz” file

formats are acceptable for genotype files. A vcf file contains

genetic markers for genomic selection. For phenotype files,

ShinyGS accepts both “.txt” and “.csv” formats, with IDs in

the first column. Raw phenotype needs to be preprocessed

accordingly before it can be pushed into our software. The

phenotype file could include a header with ID and trait

names. However, this is not mandatory. Input phenotypes
tiers in Plant Science 07
without a header will be assigned with a header starting with

a V-column number. ShinyGS links input genotype and

phenotype files with IDs, so it is important to make sure that

IDs in the two files are consistent. If not, users can create an

ID-matched phenotype file using the “Generate match IDs

phenotype file” function. Alternatively, ShinyGS also accepts

genotype and phenotype in PLINK format. This can be done

by checking the “Use PLINK format input” box and input

the folder name with PLINK files into the genotype box.

iv. Run Analysis: Once the above steps are completed, a “Run

Analysis” button appears.

v. Results and Visualization: After the analysis is completed, a

scatterplot with predicted breeding values and raw

phenotype is generated, and a table with predicted

breeding values can be downloaded.
FIGURE 3

Prediction accuracy of 16 models for the maize CUBIC population. (A) PH, (B) DTA, and (C) EW.
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3.3 Benchmarking model performances for
a number of traits using a recombination
intercross population

In this section, we benchmarked the performance of the 16

models using a maize multiple parental advanced intercross

population (CUBIC) (Liu et al., 2020). This population was

derived from 24 elite Chinese maize inbred lines from four

divergent heterotic groups, and a total of 24 founders were

crossed under a complete diallel cross-mating design (Liu et al.,

2020). After selfing for more than 10 generations, a total of 1,404

inbred maize lines were obtained, genotyped, and phenotyped.

Here, 42,267 single nucleotide polymorphisms (SNPs) and three

traits—PH (cm), DTA (days), and EW (g)—were used. Prediction

accuracy was calculated as the Pearson correlation between

measured phenotype and predicted breeding values.

For PH, the prediction accuracy varied from 0.52 to 0.60, with

an average of 0.57 (Figure 3). The MKRKHS model displays the

highest accuracy (0.60), while the LASSO model displays the lowest
Frontiers in Plant Science 08
accuracy (0.52). For DTA, the average prediction accuracy is 0.52,

and the SVM, DNNGP, and GBM models show accuracies lower

than 0.5 (Figure 3). Due to relatively low heritability, the average

accuracy for the EW dataset is 0.31 with MKRKHS yielding the

highest prediction performance (Figure 3).

Although the prediction accuracies varied between traits and

models, MKRKHS showed the highest accuracies for all three traits.

We, therefore, recommend using the MKRKHS model as a first

choice in intercross population in future applications.
3.4 Benchmarking model performances for
a number of traits using a maize
diversity panel

In this section, we benchmarked the performance of the 16

models using the maize Goodman diversity panel, which included

26 stiff stalk lines, 103 non-stiff stalk lines, 77 tropical/subtropical

lines, 6 sweet corn lines, 9 popcorn lines, and 61 mixed lines
FIGURE 4

Prediction accuracy of 16 models for the maize Goodman diversity panel. (A) DTA, (B) PH, and (C) EW.
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(Kremling et al., 2018). Compared with the CUBIC population, this

population is highly stratified, covering major Zea mays varieties

across the world. There were 16,238 SNPs, and three phenotypes—

DTA (days), PH (cm), and EW (g)—were used.

The average accuracies for the three phenotypes across the 16

models were 0.84, 0.55, and 0.64, respectively (Figures 4A–C).

Compared with the other models, EN and LASSO had lower

accuracy in all three tests. Although the prediction accuracies

varied between traits and models, the GBM model showed the

highest accuracies for all three traits. We, therefore, recommend

using the GBM model as the first choice in a diversified population

in future applications.
3.5 Comparison of computing time and
memory usage

In this section, we benchmarked computing time and memory

usage in relation to population size and prediction methods. To

estimate how computational resource scales with population size for

each method, we calculated computing time and memory

consumption by downsampling the CUBIC population to 500,

800, and 1,404 individuals.
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Overall, most models displayed increased computing time with

a larger population size. There are two models, RF and MKRKHS,

that took more than 500 min, regardless of population size. The RF

model took a longer computing time than the other models, and its

time consumption increases linearly as the population

grows (Figure 5).

For memory usage, most models used less than 3 GBmemory at

population sizes of 500 and 800 but increased sharply at a

population size of 1,404. The GBLUP and SVM models used the

largest amount of memory at a population size of 800. In contrast,

the DNNGP and GBM models showed stable memory

usage (Figure 5).

Overall, Bayesian methods scale poorly with sample size and

cannot outperform other methods in nearly all the benchmarked

traits and populations. We suggest users to leave them as the last

option. Taking the prediction performance, computational time, and

resources together, GBM could be the first choice as it gives satisfying

performance under reasonable time especially when computational

resources are limited. Under limited computational resources and time,

RF and MKRKHS should be the last option as they are associated with

much higher costs in time and resources with no or marginal gain in

accuracy. Overall, we suggest users balance the prediction accuracy and

available computational resources in their breeding applications.
FIGURE 5

Computing time and memory usage of different models with different population sizes. (A) Computing time of 16 models. (B) Memory usage of
16 models.
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