The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Abiotic Stress
Volume 15 - 2024 |
doi: 10.3389/fpls.2024.1478507
Morpho-physiological and transcriptomic responses of field pennycress to waterlogging
Provisionally accepted- 1 The Ohio State University, Columbus, United States
- 2 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
- 3 Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, United States
- 4 Western Illinois University, Macomb, Illinois, United States
Field pennycress (Thlaspi arvense) is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest. Pennycress fields are susceptible to winter snow melt and spring rainfall, leading to waterlogged soils. The objective of this research was to determine the extent to which waterlogging during the reproductive stage affected gene expression, morphology, physiology, recovery, and yield between two pennycress lines (SP32-10 and MN106). In a controlled environment, total pod number, shoot/root dry weight, and total seed count/weight were significantly reduced in SP32-10 in response to waterlogging, whereas primary branch number, shoot dry weight, and single seed weight were significantly reduced in MN106. This indicated waterlogging had a greater negative impact on seed yield in SP32-10 than MN106. We compared the transcriptomic response of SP32-10 and MN106 to determine the gene expression patterns underlying these different responses to seven days of waterlogging. The number of differentially expressed genes (DEGs) between waterlogged and control roots were doubled in MN106 (3,424) compared to 767). Functional enrichment analysis of upregulated DEGs revealed Gene Ontology (GO) terms associated with hypoxia and decreased oxygen, with genes in these categories encoding proteins involved in alcoholic fermentation and glycolysis. Additionally, downregulated DEGs revealed GO terms associated with cell wall biogenesis and suberin biosynthesis, indicating suppressed growth and energy conservation. Interestingly, MN106 waterlogged roots exhibited significant stronger regulation of these genes than SP32-10, displaying a more robust transcriptomic response overall. Together, these results reveal the reconfiguration of cellular and metabolic processes in response to the severe energy crisis invoked by waterlogging in pennycress.
Keywords: Thlaspi arvense, Transcriptomics, waterlogging, hypoxia, RNA-Seq, Recovery, Root stress, ERF-VII
Received: 09 Aug 2024; Accepted: 22 Nov 2024.
Copyright: © 2024 Combs-Giroir, Shah, Chhetri, Morgan, Teixeira Prates, Townsend, Phippen, Phippen, Jacobson and Gschwend. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Andrea R Gschwend, The Ohio State University, Columbus, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.