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An increasing population, climate change, and diminishing natural resources

present severe threats to global food security, with traditional breeding and

genetic engineering methods often falling short in addressing these rapidly

evolving challenges. CRISPR/Cas systems have emerged as revolutionary tools

for precise genetic modifications in crops, offering significant advancements in

resilience, yield, and nutritional value, particularly in staple crops like rice and

maize. This review highlights the transformative potential of CRISPR/Cas

technology, emphasizing recent innovations such as prime and base editing,

and the development of novel CRISPR-associated proteins, which have

significantly improved the specificity, efficiency, and scope of genome editing

in agriculture. These advancements enable targeted genetic modifications that

enhance tolerance to abiotic stresses as well as biotic stresses. Additionally,

CRISPR/Cas plays a crucial role in improving crop yield and quality by enhancing

photosynthetic efficiency, nutrient uptake, and resistance to lodging, while also

improving taste, texture, shelf life, and nutritional content through

biofortification. Despite challenges such as off-target effects, the need for

more efficient delivery methods, and ethical and regulatory concerns, the

review underscores the importance of CRISPR/Cas in addressing global food

security and sustainability challenges. It calls for continued research and

integration of CRISPR with other emerging technologies like nanotechnology,

synthetic biology, and machine learning to fully realize its potential in developing

resilient, productive, and sustainable agricultural systems.
KEYWORDS
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Introduction

The ever-increasing global population and the consequent

demand for food have placed immense pressure on agricultural

systems worldwide. This challenge is compounded by the escalating

impacts of climate change, which include extreme weather events,

shifting pest and disease patterns, and declining arable land (Bibi

and Rahman, 2023). These changes threaten crop yields and disrupt

agricultural stability, making the task of ensuring global food

security increasingly daunting. Traditional breeding methods,

while having significantly contributed to past agricultural

advancements, are often too slow to respond to these rapid

environmental changes, while genetic engineering has faced issues

of precision and public acceptance (Afzal et al., 2023; Ambika

et al., 2024).

Staple crops such as rice, wheat, maize, and soybeans are the

backbone of global food security, providing the primary source of

calories for a large portion of the world’s population (Morrow et al.,

2023). These crops are crucial not only for direct human

consumption but also for animal feed and industrial uses.

However, the productivity and resilience of these staple crops are

increasingly threatened by climate change, pests, and diseases.

Improving the yield, nutritional content, and stress tolerance of

staple crops is therefore essential for ensuring food security,

particularly in the face of a growing global population and

diminishing arable land.

The evolution of agricultural technology from selective breeding

to sophisticated genetic tools underscores our ongoing efforts to

address these challenges. CRISPR/Cas technology as a revolutionary

genome-editing tool has emerged as a game-changer in agricultural

biotechnology (Muha-Ud-Din et al., 2024). CRISPR/Cas systems, a

groundbreaking tool for targeted genome editing, have

revolutionized both basic and applied research in agriculture.

Originally derived from the adaptive immune systems of bacteria

and archaea, the CRISPR (Clustered Regularly Interspaced Short

Palindromic Repeats) mechanism uses a guide RNA (gRNA) to

direct the Cas (CRISPR-associated) nuclease to a specific DNA

sequence, where it creates a precise double-strand break. This break

is subsequently repaired by the cell’s natural DNA repair

mechanisms, allowing for targeted modifications to the genome

(Ghosh and Chatterjee, 2024). Unlike earlier genome editing tools

like Zinc Finger Nucleases (ZFNs) and Transcription Activator-

Like Effector Nucleases (TALENs), CRISPR/Cas systems are easier

to design, more efficient, and less expensive, making them highly

accessible for a wide range of applications in crop improvement

(Ghoshal, 2024). The discovery of the CRISPR/Cas system as a

genome editing tool was not just about identifying it in bacteria, but

also about understanding how it could be harnessed and refined for

use in more complex organisms. Early research clarified the critical

roles of crRNA (CRISPR RNA) and tracrRNA (trans-activating

crRNA) in guiding the Cas9 protein for precise DNA cleavage,

which was pivotal in developing CRISPR/Cas into a versatile

genome editing tool (Jung et al., 2024). The mechanism of action

begins with the formation of an RNA-DNA hybrid, where the guide

RNA binds to the target DNA sequence, directing the Cas9 protein
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to the specific genomic site. Once there, Cas9 introduces a double-

strand break, which is then repaired by the cell’s natural DNA

repair pathways—either non-homologous end joining (NHEJ) or

homology-directed repair (HDR) (Yuan et al., 2024). This detailed

understanding of the CRISPR/Cas mechanism underscores its

effectiveness in enabling precise and efficient genome

modifications, making it a cornerstone technology for advancing

crop traits and addressing global challenges such as food insecurity

and climate change (Raza et al., 2024).

CRISPR technology has emerged as a transformative tool,

allowing for the rapid development of crop varieties with

enhanced traits such as improved resistance to biotic and abiotic

stresses, increased nutritional value, and greater yield potential

(Verma et al., 2023). Moreover, unlike traditional genetic

modification techniques, CRISPR/Cas systems enhance

agricultural productivity and sustainability through their

simplicity, adaptability, cost-effectiveness, and publicly acceptable

approach due to its ability to make precise alterations without

introducing foreign DNA (Ali et al., 2023). Recent advancements,

such as prime editing and base editing, have further refined the

precision and scope of genome editing, enabling more complex

genetic enhancements with fewer off-target effects (Naeem and

Alkhnbashi, 2023; Saber Sichani et al., 2023). These innovations

are paving the way for next-generation crops that can thrive in

changing environmental conditions and meet the nutritional needs

of a growing population.

This review aims to provide a comprehensive overview of

CRISPR/Cas technology in enhancing crop resilience and

productivity of staple grains amidst climate challenges. By

exploring the latest research and technological advancements, this

article highlights the transformative potential of CRISPR/Cas

systems in modern agriculture. It would provide comprehensive

insights for understanding current innovations and identifying

strategic directions for future research and development,

ultimately contributing to global food security and sustainable

agricultural practices.
CRISPR/Cas technological innovations
and advancements

Recent advancements in CRISPR technology have significantly

enhanced the specificity and efficiency of genome editing, crucial for

agricultural applications (Figure 1). Innovations like prime editing

and base editing represent groundbreaking developments in precise

genetic alterations. Prime editing combines CRISPR-Cas9 with a

reverse transcriptase which has the potential to correct up to 89% of

known genetic variants, enabling direct editing of target DNA

sequences (Chen and Liu, 2023). Studies have demonstrated its

effectiveness in enhancing disease resistance in rice by correcting

specific point mutations without causing double-strand breaks

(Gupta et al., 2023). Conversely, base editing facilitates the direct

and irreversible conversion of one DNA base into another,

increasing the precision of point mutations (Pfeiffer and Stafforst,

2023). Applications include altering flavor profiles in pea and
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tomatoes and improving cold tolerance in soybeans by modifying

genes responsible for fatty acid desaturation and cold response

pathways (Nizampatnam et al., 2024). Novel CRISPR-associated

proteins, such as Cas12 and Cas13, expand the toolkit available for

agricultural biotechnology. Cas12 offers advantages for multiplex

editing, allowing simultaneous manipulation of multiple traits, for

example, facilitate several disease resistance genes in soybeans (Sun

et al., 2024). Cas13d offers a particularly robust solution for

multiplex RNA virus interference in potato crops, making it a

valuable asset in the ongoing efforts to enhance agricultural

productivity and sustainability (Zhan et al., 2023).

Efficient delivery of CRISPR components is essential for

successful genome editing in plants (Figure 2). Recent

methodologies include nanoparticle-mediated delivery, which

protects CRISPR components from degradation and enhances

cellular uptake, significantly improving trait enhancement in

maize (Chakraborty et al., 2023; Yau et al., 2024). Viral vectors,

leveraging natural viral infection mechanisms, have shown

improved efficiency and safety in transient expression projects,

such as inducing virus resistance traits in tobacco and tomato

(Jogam et al., 2023; Wang et al., 2024e). The ribonucleoprotein

(RNP) complex delivery method delivers CRISPR components

directly as proteins and RNA, reducing off-target effects. This

method has been effective in crops like wheat for disease

resistance and yield enhancement (Poddar et al., 2023). Enhanced

computational tools for precise guide RNA design and the
Frontiers in Plant Science 03
development of high-fidelity Cas variants exhibit reduced off-

target activity (Zhang et al., 2023b). High-fidelity Cas9 variants

have been used in wheat to reduce unintended mutations while

enhancing drought tolerance (Poddar et al., 2023).These

advancements not only improve the safety of genetic edits but

also broaden CRISPR’s applicability in developing climate-resilient

crops. The continuous refinement of CRISPR technologies,

including the development of novel delivery methods and editing

techniques is paving the way for transformative advances in

agriculture in Table 1. By increasing the precision and efficiency

of these tools, researchers are expanding the potential applications

of CRISPR, facilitating the creation of more resilient, productive,

and sustainable agricultural systems.
Strategic applications of CRISPR/Cas
in enhancing staple crop resilience

The application of CRISPR/Cas technology in agriculture holds

immense potential for improving the resilience of grain crops

against various abiotic and biotic stresses (Yadav et al., 2023).

This section explores how recent advancements in CRISPR/Cas

technology have enhanced grain crop tolerance to these stresses,

thereby supporting sustainable agricultural productivity in the face

of climate change and other environmental challenges. CRISPR/Cas

genome editing has become a mature tool for improving crop
FIGURE 1

Diverse CRISPR/Cas systems mediated biotechnologies in crops. Cas9 in crops introduces double-strand breaks (DSBs) for targeted gene knockouts
or insertions; Cas12a creates staggered DNA cuts and allows for multiplexed editing; Cas13 targets RNA for post-transcriptional regulation without
altering the genome; Base Editing enables precise single-nucleotide changes without DSBs; and Prime Editing allows for small insertions, deletions,
and base conversions with high precision.
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FIGURE 2

Strategies for CRIPSR/Cas delivery. Agrobacterium-mediated transformation exploits the bacterium's ability to transfer genetic material into plant
genomes. Nanoparticles serve as carriers for CRISPR/Cas components, easily passing through plant cell walls. Biolistic bombardment which
physically shoots DNA, RNA, or RNP-coated particles into plant tissues, useful for targeting chloroplasts and difficult-to-transform species. Virus-
mediated delivery incorporates CRISPR/Cas into plant viruses, enabling systemic delivery across the plant. Partial figures are modified from previous
publications (Zhu et al., 2020).
TABLE 1 CRISPR/Cas technological innovations and advancements.

Types Mechanism Advantages Stable Crops Traits References

In
n
ov
at
io
n

CRISPR/Cas9
Use guide RNA to
target and Cas9 to
cut DNA

High efficiency,
broad applicability

Barley
Coleoptile
length increasing

(Cheng et al., 2023)

Base Editing

Convert one DNA
base to another
without double-
strand breaks

High precision,
avoids double-
strand breaks

Rice Glyphosate resistance (Sony et al., 2023)

Prime Editing

Use CRISPR-Cas9
with a reverse
transcriptase to make
precise edits

Versatile, corrects
point mutations

Rice; Peanut;
Chickpea

Restoration of
GFP activity

(Biswas et al., 2022)

CRISPR/Cas12a
Use guide RNA to
target and Cas12a to
cut DNA

Multiplex editing,
higher specificity in
some contexts

Rice; Maize

Root-knot nematode
resistance; Chlorotic
mottle
virus resistance

(Lei et al., 2023; Zhou
et al., 2023b)

CRISPR/Cas13
Target RNA instead
of DNA

RNA targeting,
potential for
viral resistance

Potato
Multiplex
viruses resistance

(Zhan et al., 2023)

D
el
iv
er
y 
M
et
ho

ds

Nanoparticle-
Mediated Delivery

Use nanoparticles to
deliver
CRISPR components

High protection,
enhanced uptake

Maize; Trait enhancement; (Nagy et al., 2023)

Viral Vectors
Employ viruses to
deliver
CRISPR components

Utilizes natural
infection mechanisms

Cassava Precision breeding (Tuo et al., 2023)

Ribonucleoprotein
(RNP) Complexes

Direct delivery of
CRISPR-Cas9 protein
and guide RNA as
a complex

DNA-free method,
reduces potential off-
target effects

Potato; Wheat

Color change;
Diversity
production
accelerating

(Poddar et al., 2023;
Wulff-Vester
et al., 2024)

(Continued)
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growth, development, and stress responses, as illustrated in

Figure 3. In this context, we reviewed recent advances in

CRISPR-mediated crop enhancement under abiotic and biotic

stresses and improvements in various growth-related traits.
Enhancing abiotic stress tolerance

Abiotic stresses significantly reduce agricultural productivity

and crop yields, but CRISPR/Cas technology provides precise tools

to enhance grain crop tolerance by targeting specific stress response

genes (Table 2).
Drought stress

Staple grain crops such as rice, wheat, and maize are particularly

vulnerable to water scarcity, which poses a major challenge to food

security. CRISPR/Cas technology allows precise genetic

modifications to improve drought tolerance by targeting genes

that regulate water use efficiency and osmotic balance (Shelake

et al., 2022). A notable breakthrough in this area is the modification

of the ZmHDT103 gene, a key component of the abscisic acid

(ABA) signaling pathway, which has been shown to improve

drought tolerance in maize by enhancing the plant’s ability to

withstand water scarcity without compromising growth and yield

under non-stress conditions (Wang et al., 2024f). Another

promising application of CRISPR technology in combating
Frontiers in Plant Science 05
drought stress involves engineering the TaRPK1 gene in wheat to

enhance water absorption (Abdul Rahim et al., 2024). By targeting

genes that influence root growth patterns and depth, CRISPR/Cas

has been used to develop plants with deeper root systems capable of

accessing water from further soil layers. Another innovative

approach involves using CRISPR/Cas to manipulate Sal1 genes to

improve the production of osmoprotectants, such as proline, which

has been shown to enhance drought resistance in wheat by allowing

plants to withstand dry periods more effectively through precise

modulation of gene expression (Mohr et al., 2022).
Heat stress

Elevated temperatures can impair plant growth, reduce

photosynthetic efficiency, and ultimately decrease crop yields,

leading to a focus on using CRISPR/Cas technology to modify

heat shock factors (HSFs) and heat shock proteins (HSPs) to

enhance heat tolerance (Younas et al., 2024). These proteins

protect cells from heat damage by refolding denatured proteins

and preventing the aggregation of unfolded proteins. For instance,

enhancing HsfA1b expression in wheat improves heat tolerance,

maintaining growth and yields under high temperatures (Tian et al.,

2020). Researchers are also editing genes involved in the synthesis of

protective osmolytes and antioxidants to mitigate oxidative stress

caused by high temperatures (Yadav et al., 2023). Furthermore,

integrating CRISPR/Cas with other biotechnological tools enhances

the robustness of crops against heat stress. For instance, gene drives
TABLE 1 Continued

Types Mechanism Advantages Stable Crops Traits References

Agrobacterium-
Mediated
Transformation

Use Agrobacterium
to transfer CRISPR
components into
plant cells

Effective for
stable
transformations

Rice
Agronomic
trait improving

(Tang et al., 2023)

Biolistic
Particle Delivery

Use high-velocity
particles to deliver
CRISPR components
into cells

Versatile, can deliver
to a wide range
of species

Millet
Genetic
modifications; stress
tolerance improving

(Ghosh, 2024)

O
ff
�
ta
rg
et
 M

it
ig
at
io
n

Enhanced Guide
RNA Design

Optimize guide RNA
sequences
for specificity

Reduces off-target
effects,
increases accuracy

Wheat; maize
Precision editing;
stress
tolerance improving

(Abeuova et al., 2023;
Karmacharya
et al., 2023)

High-Fidelity
Cas9 Variants

Engineer Cas9
proteins with reduced
off-target activity

Increases efficient,
reduces
unintended
mutations

Barley; Wheat
Targeted
trait enhancements

(Lawrenson
et al., 2024)

Computational Tools
Use software to
predict and minimize
off-target effects

Improves design
accuracy, reduces
experimental time

Maize; Wheat Yield improving
(Gaillochet
et al., 2023)

Use of Shortened
Guide RNAs

Shorten versions of
guide RNAs to
improve
targeting precision

Decreases off-target
activity,
maintains efficiency

Sorghum
Precision
gene editing

(Lee et al., 2023)

Paired Nickases

Use two nicks instead
of a double-strand
break to reduce off-
target effects

Reduces off-target
activity,
increases precision

Potato Trait improvement
(Mali and
Zinta, 2024)
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FIGURE 3

CRISPR/Cas genome editing is a powerful tool with immense potential for crop improvement. It enables precise modifications of individual genes to
enhance plant tolerance to biotic and abiotic stresses, as well as yield and quality improvement. CRISPR/Cas has been used to develop resistance
against various biotic stresses, including bacteria, viruses, fungi, pests, nematodes, and parasitic plants, and to improve resilience to abiotic stresses
like drought, heat, salt, cold, heavy metals, UV exposure, and oxidative stress. Additionally, CRISPR/Cas enhances crop yield and quality by regulating
hormone production, increasing photosynthetic efficiency, supporting biofortification, and improving shelf life, texture, and taste.
TABLE 2 CRISPR/Cas technological innovations and advancements in stable crops.

Application
Hazardous
factors

Innovation Stable Crops Targeted genes
Applications
in
Stable Crops

References.

E
nh

an
ci
ng
 A
bi
ot
ic
 s
tr
es
s 
T
ol
er
an
ce

Drought CRISPR/Cas9

Maize ZmHDT103

Enhanced
drought resistance

(Wang
et al., 2024f)

Wheat TaRR12 (Li et al., 2024a)

Rice OsPUB7
(Kim
et al., 2023)

Potato StDRO2
(Zhao
et al., 2024)

Heat CRISPR/Cas12 Rice OsDEP1,OsROCs
Enhanced
heat resistance

(Malzahn
et al., 2019)

(Continued)
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TABLE 2 Continued

Application
Hazardous
factors

Innovation Stable Crops Targeted genes
Applications
in
Stable Crops

References.

CRISPR/Cas9

Rice OsGER4
(Nguyen
et al., 2023)

Wheat TaHSFA1
(Wang
et al., 2023)

Soybean GmHsp90A2
(Jianing
et al., 2022)

Maize ZmHSPs (Li et al., 2024b)

Salt CRISPR/Cas9

soybean GmNHL1
Enhanced
salinity tolerance

(Liu
et al., 2023b)

Barley HvGSK1.1
(Kloc
et al., 2024)

Rice OsTPP3
Improved
Salt resistance

(Ye et al., 2023)

Wheat TaHKT1;5
(Wang
et al., 2024b)

Cold CRISPR/Cas9

Rice bHLH57
Increased grain yield
under normal and
chilling conditions

(Zhang
et al., 2023c)

Maize ZmG6PDH1

Enhanced
cold resistance

(Li et al., 2023a)

Potato VInv
(Yasmeen
et al., 2022)

Wheat TaPGK
(Zhang
et al., 2023e)

Heavy Metal CRISPR/Cas9

Rice

K5.2
Increased
Ca accumulation

(Wang
et al., 2024c)

OsNIP3
Reduced
arsenic
accumulation

(Xu et al., 2024)

OsLCD
Generated low-
cadmium
germplasms

(Chen
et al., 2023)

OsMYB84
Modulated copper
uptake
and transport

(Ding
et al., 2024)

NRAMP1, FRO2
Improved Fe uptake
from the soil

(Krishna
et al., 2023)

OsPDR7, OsZIP9
Enhanced
zinc accumulation

(Lu et al., 2023)

Wheat TaIPK1
Improved iron and
zinc accumulation

(Ibrahim
et al., 2022)

UV Radiation CRISPR/Cas9 Rice OsCOP1,
Improved
UV protection

(Hu et al., 2024)

Oxidative CRISPR/Cas9 Rice OsCAT2
Alleviates the
oxidative stress by
scavenging ROS

(Shen
et al., 2024)

(Continued)
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TABLE 2 Continued

Application
Hazardous
factors

Innovation Stable Crops Targeted genes
Applications
in
Stable Crops

References.

E
nh

an
ci
ng
 B
io
ti
c 
st
re
ss
 T
ol
er
an
ce

Virus

CRISPR/Cas13 Potato PVY, PVS, PVX or PLRV,
Reduced
viral infections;

(Zhan
et al., 2023)

CRISPR/Cas9

Maize Zmpdrp1
Reduced
robust virus

(Xie et al., 2024)

Rice OsCPR5.1
Yellow mottle
virus resistance

(Arra
et al., 2024)

Potato SlDCL2b
Spindle tuber
viroid resistance

(Tiwari
et al., 2022)

Cassave MeRPPL1
Resistance
to geminivirus

(Ramulifho and
Rey, 2024)

CRISPR/Cas12a Maize MCMV
Reduced
viral infections

(Lei et al., 2023)

Bacterial CRISPR/Cas9

Rice OsPUB9
Resistance to
bacterial leaf blight

(Kim
et al., 2024)

Potato StNRL1

resistance to late
blight and
susceptibility to
early blight

(Norouzi
et al., 2024)

Fungi CRISPR/Cas9

Soybean Glyma05g29080
Resistance to
white mold

(Zhang
et al., 2022a)

Wheat TaCIPK14
Resistance to
stripe rust

(He et al., 2023)

Maize ZmAGO18b
Resistance to
southern leaf blight

(Dai et al., 2023)

Rice Pi21, OsSULTR3;6
Resistance to
rice blast

(Yang
et al., 2023a)

Barley BnHva22c
Reduced fungal
pathogen,
susceptibility

(Ye et al., 2024)

Pest CRISPR/Cas9

Maize Cry1F
Improved
pest resistance

(Kumari
et al., 2024)

Rice OsWRKY71, Bph15
Resistance against
brown plant hopper

(Li et al., 2023b)

Soybean GmUGT
Resistance against
leaf-chewing Insects

(Zhang
et al., 2022b)

Nematode CRISPR/Cas9

Rice OsHPP04
Resistance to rice
root-knot nematode

(Huang
et al., 2023)

Soybean GmSNAP11, a-SNAP
Resistance to
soybean
cyst nematode

(Shaibu et al.,
2022; Usovsky
et al., 2023)

Parasitic Plants CRISPR/Cas9

Rice PR10/Bet v1-like protein gene
Resistance against
Meloidogyne
graminicola.

(Li et al., 2022b)

Sorghum CCD

Control the
germination of a
parasitic weed
(Striga spp.)

(Hao
et al., 2023)
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engineered through CRISPR technology can spread heat tolerance

traits rapidly through plant populations, potentially transforming

the resilience of an entire crop in a few generations (Mohan

et al., 2022).
Salt stress

Salt stress, an increasing agricultural concern particularly in

regions affected by soil salinization due to improper irrigation

practices and rising sea levels, is being addressed by CRISPR/Cas

technology through the enhancement of salt tolerance by targeting

genes that regulate ion homeostasis and osmotic balance (Hualpa-

Ramirez et al., 2024). One strategy involves modifying transporters

involved in sodium uptake and compartmentalization. For example,

editing genes like knocking out AKT1, WRKYs reduces sodium

accumulation, thereby improving salt tolerance and maintain better

growth and yield in soybean and barley (Price, 2022; Feng et al.,

2023). Additionally, by upregulating the DREB2A transcription

factor has successfully enhanced salt tolerance in various crops,

including soybeans and rice (Farhat et al., 2019; Feng et al., 2023).

By fine-tuning the expression of these transcription factors, crops

can activate comprehensive stress response pathways that confer

enhanced tolerance to saline conditions.
Cold stress

CRISPR/Cas technology facilitates targeted genomic edits to

confer cold tolerance by targeting the CBF (C-repeat Binding

Factor) pathway, a well-documented regulatory mechanism in

plants that enhances cold tolerance. CBF transcription factors

activate a suite of genes that confer cold tolerance by enhancing

the plant’s cellular machinery to cope with freezing stress (Perez-

Garcia et al., 2023). CRISPR/Cas has been used to increase the

expression of fatty acid desaturase genes, leading to changes in

membrane lipid composition that better support cellular processes

during cold exposure. For instance, studies have demonstrated that

OsKASI-2 is required for increasing unsaturated fatty acids in rice

membranes via CRISPR/Cas to improve cold tolerance (Zhang

et al., 2024b). Another innovative approach involves using

CRISPR/Cas for epigenetic modifications that influence gene

expression related to cold stress (Jogam et al., 2022). This method

offers a flexible approach to crop improvement that can be adjusted

as environmental conditions change.
Heavy metal stress

Heavy metals such as cadmium (Cd), arsenic (As), and lead

(Pb) are toxic to plants, causing stunted growth and reduced yields,

but CRISPR/Cas technology can be used to enhance plant tolerance

to heavy metals by modifying genes involved in metal transport and

detoxification. For instance, editing the OsLCD gene in rice reduces

cadmium uptake, thereby increasing cadmium tolerance and

reducing its accumulation in the edible parts of the plant (Chen
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et al., 2023). Similarly, targeting genes like Lsi1 and Lsi2 in rice can

decrease arsenic accumulation in plant tissues, thereby improving

tolerance to arsenic-contaminated soils (Xu et al., 2024).

Furthermore, targeting the ZmHMA3 gene in maize has shown to

increase zinc tolerance by enhancing the plant’s ability to

compartmentalize and detoxify these metals (Lv et al., 2023).

These advancements contribute to the development of crops

capable of growing in contaminated soils and producing safer

food products.
UV radiation stress

CRISPR/Cas technology offers a promising solution to the

significant threat of UV radiation to crop health by enabling

precise genetic modifications that enhance tolerance to DNA

damage, oxidative stress, and impaired photosynthesis. Targeting

the OsCOP1 gene has demonstrated potential in improving UV

tolerance in rice, enhancing their resistance to UV-B radiation (Hu

et al., 2024). By boosting the plant’s protective mechanisms against

UV damage, CRISPR/Cas technology can help develop crops that

maintain productivity and growth under high UV exposure.
Oxidative stress

Oxidative stress results from the accumulation of reactive

oxygen species (ROS) under various stress conditions. CRISPR/

Cas technology provides a means to enhance oxidative stress

tolerance in crops by targeting genes involved in ROS

detoxification and antioxidant defense mechanisms. For example,

Editing the CAT (catalase) gene family, particularly OsCAT3, which

is crucial for detoxifying superoxide radicals and hydrogen

peroxide, can enhance rice’s ability to mitigate oxidative damage

(Jiang et al., 2023). Additionally, targeting regulatory genes such as

zinc finger proteins, which modulate the expression of multiple

antioxidant genes, can offer a comprehensive approach to

improving oxidative stress resilience in crops (Qu et al., 2024).
Improving biotic stress resistance

Biotic stresses threaten crop health and productivity, and

CRISPR/Cas technology enables precise genetic modifications to

enhance crop resistance.
Viruses stress

CRISPR/Cas systems, particularly Cas13 have shown targeting

and degrading the RNA genomes of RNA viruses, preventing their

replication within the host plant (Sarkar et al., 2024). This approach

has been effectively demonstrated in crops such as potato, where

Cas13 was engineered to target and cleave the RNA of sweet potato

virus disease (Zhan et al., 2023). Researchers have expanded the

capabilities of CRISPR/Cas systems in viral defense by using them
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not only to target pathogens directly but also to modify the host

plant’s genome to enhance its natural virus defense mechanisms

(Uranga and Daròs, 2023). For instance, in crops like wheat and

rice, CRISPR/Cas9 has been employed to knock out susceptibility

genes such as TaPDIL5 or OsDjA2 and OsERF that facilitate viral

infection, thus providing broad-spectrum virus resistance (Kan

et al., 2022; Távora et al., 2022). Additionally, CRISPR/Cas

technology was also employed to knock out ZmPDRP1 in maize,

revealing that the loss of this gene significantly reduced the ability of

sugarcane mosaic virus (SCMV) to replicate and spread within the

plant (Xie et al., 2024). This highlights the utility of CRISPR/Cas not

only for plant trait improvement but also as a powerful tool for

dissecting gene functions in plant-pathogen interactions.
Bacteria stress

Enhancing bacterial resistance in crops using CRISPR/Cas

technology involves targeting bacterial virulence genes and enhancing

the plant’s immune response by disrupting key genes in bacterial

pathogens to significantly reduce their virulence. For instance,

knocking out the StNRL1 gene in potatoes using CRISPR/Cas9

increases resistance to late blight caused by Phytophthora infestans

while simultaneously increasing susceptibility to early blight caused by

Alternaria alternate (Norouzi et al., 2024). CRISPR/Cas technology has

also been employed to modify plant immune receptors to recognize

bacterial pathogens more effectively. Editing the FERONI and SlWak1

depend on FLS gene in rice and wheat, which encodes a receptor

involved in pathogen recognition, has improved the plants’ ability to

detect and respond to bacterial infections, thereby enhancing resistance

(Huang et al., 2020; Zhang et al., 2020). This genetic modification has

resulted in rice varieties with enhanced resistance to bacterial blight,

leading to healthier plants and higher yields.
Fungi stress

Fungal diseases are a major concern for crop health, and CRISPR/

Cas technology offers new ways for enhancing fungal resistance in

crops through precise genetic modifications. One strategy involves

using CRISPR/Cas to knock out susceptibility genes that fungi exploit,

such as MLO (Mildew Locus O) genes in soybean and wheat, which

has been shown to confer resistance to powdery mildew bymaking the

plants less susceptible to fungal infections (Li et al., 2022a; Bui et al.,

2023). Enhancing plant defense genes involved in recognizing and

responding to fungal attacks also improves resistance. For instance,

editing the CNL (Coiled-Coil, Nucleotide-Binding, Leucine-Rich

Repeat) gene family and MeRPPL1 in cassava has led to enhanced

fungal resistance (Ramulifho and Rey, 2024). Another innovative

application of CRISPR/Cas involves editing the genomes of fungal

pathogens themselves. This approach has been explored in various

fungal species, including Fusarium and Botrytis, which are responsible

for significant agricultural losses.
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Pests stress

CRISPR/Cas technology is also being utilized to enhance pest

resistance in crops by knocking out susceptibility genes and

enhancing plant defense mechanisms. For example, editing the

ABC transporter gene in soybean has been shown to confer

resistance to bollworms by disrupting the insect’s ability to digest

plant tissues (Amezian et al., 2024).Another strategy is to enhance

the expression of plant defense genes involved in producing

secondary metabolites that deter insect feeding. For instance,

increasing the expression of genes involved in the biosynthesis of

phenolic compounds has been shown to reduce insect herbivory in

crops like maize and soybean (Razzaq et al., 2023; Kumari et al.,

2024). CRISPR/Cas technology has also been used to modify genes

encoding insecticidal proteins, such as Cry proteins, VIP proteins

improving pest resistance in crops (Dubovskiy et al., 2024). These

genetic modifications result in plants that produce higher levels of

natural insecticidal compounds, providing an effective defense

against pests.
Nematode resistance

Nematodes, such as root-knot nematodes (Meloidogyne spp.),

cause root damage and reduce nutrient and water uptake. CRISPR/

Cas technology can enhance nematode resistance by targeting genes

that facilitate nematode infection and reproduction. For instance,

editing a susceptibility gene OsHPP04 in rice has conferred

resistance to root-knot nematodes (Huang et al., 2023). Similarly,

modifying the GmSNAP02 and an a-SNAP gene in soybean has

enhanced resistance to cyst nematodes (Usovsky et al., 2023,

Usovsky et al., 2023). Through disrupting the molecular pathways

that nematodes exploit, CRISPR/Cas can develop crops with robust

nematode resistance, reducing yield losses and the need for

chemical nematicides.
Parasitic plants

Parasitic plants, such as Striga and Orobanche, attach to the

roots of host plants and extract water and nutrients, significantly

reducing crop yields. CRISPR/Cas technology can enhance

resistance to parasitic plants by targeting genes involved in host-

parasite interactions. For instance, editing the LGS1 gene in

sorghum has conferred resistance to Striga by disrupting the

production of strigolactones, which are essential for Striga seed

germination and attachment (Makaza et al., 2023). By modifying

specific signaling pathways and defense mechanisms, CRISPR/Cas

can develop crops less susceptible to parasitic plants, thereby

improving yield and sustainability, while highlighting the

technology’s versatility in managing various biotic stresses to

ensure better crop health and productivity.
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Yield and quality improvement

Improving crop yield and quality is essential to meet growing

global food demand, and CRISPR/Cas technology provides precise

tools for enhancing these traits by targeting specific genes and

pathways, as explored in this section (Table 3).
Increasing crop yield

CRISPR/Cas technology offers new opportunities to enhance

crop yield by directly targeting genes that regulate plant growth and
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development. For example, editing the OsAPL involved in nutrient

transport has been shown to increase yield in rice (Zhang et al.,

2024a). Enhancing photosynthetic efficiency by targeting genes

involved in chlorophyll synthesis and light capture, such as the

OsSXK1 gene in rice, has improved photosynthetic rates and

increased grain yield (Zheng et al., 2021). Additionally, editing

genes involved in nutrient uptake and utilization, such as the ARE

genes in barley or wheat, enhances nitrogen use efficiency and leads

to higher yields under low nitrogen conditions (Karunarathne et al.,

2022). Recent studies have demonstrated the potential of CRISPR/

Cas technology in enhancing yield-related traits in various crops.

Editing the DEP1 gene in rice has led to the development of semi-
TABLE 3 Comprehensive overview of CRISPR/Cas applications in enhancing yield, quality, and nutritional value of stable crops.

Application Type Innovation
Stable
Crops

Targeted genes
Applications in
Stable Crops

References

Y
ie
ld
 Im

pr
ov
em

en
t

Hormone
Regulation

CRISPR/Cas9

Rice OsCKX,
Enhance growth and
stress tolerance.

(Zheng
et al., 2023)

Maize RZ2MS9
(Figueredo
et al., 2023)

Photosynthetic
Efficiency

Rice RDD
Suppress miR166 recognition
influences photosynthesis

(Iwamoto,
2022)

Nutrient
Uptake
and
Utilization:

Rice OsHHO3

Modify genes involved in nutrient
uptake and assimilation.

(Liu
et al., 2023a)

Maize ZeSWEET1b
(Wu
et al., 2023)

Wheat ARE1
(Zhang
et al., 2021)

Yield-
Related Traits

Wheat TaRPK1 Influence yield components
(Abdul Rahim
et al., 2024)

Rice OsGS2/GRF4 Increase size and yield
(Wang
et al., 2022)

Barley GW2.1 Reduce seed setting and yield
(Kis
et al., 2024)

Q
ua
lit
y 
im

pr
ov
em

en
t

Biofortification

Cassava

PSY
Increase the nutritional content of
crops by enhancing vitamin and
mineral levels.

(Narayanan
et al., 2022)

Wheat

Rice

Taste

Maize Zmbadh2a, Zmbadh2b Improve sugar and acid metabolism
(Wang
et al., 2021)

Rice OsBADH2 Produce a better fragrance
(Imran et al.,
2023; Tian
et al., 2023)

Cassava CYP79D1 Lower levels of cyanide
(Juma
et al., 2022)

Potato GBSSI Obtain amylose-free starch in tubers
(Toinga-
Villafuerte
et al., 2022)

Shelf Life Wheat TaPDI Accumulate storage protein.
(Hu
et al., 2022)

Texture Rice SD1, Wx Enhance semi-dwarf glutinous traits
(Wang
et al., 2024d)

(Continued)
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dwarf varieties with improved lodging resistance and higher grain

yield (Zhang et al., 2023a).
Improving crop quality

CRISPR/Cas9 technology has dramatically advanced

agricultural biotechnology by enabling precise genome editing to

improve various crop quality attributes, including safety, taste,

texture, shelf life, and industrial applicability. In cassava, CRISPR/

Cas9 has been used to edit the CYP79D1 gene, significantly reducing

cyanogenic glycosides, which lowers the risk of cyanide toxicity,

enhancing the safety of this staple crop without affecting its

agronomic performance (Juma et al., 2022). In rice, the

technology has been employed to enhance aromatic qualities by

editing the OsBADH2 gene, leading to increased production of 2-

acetyl-1-pyrroline (2-AP), a compound that imparts a desirable

fragrance, thereby catering to consumer preferences (Tian et al.,

2023). In potatoes, CRISPR/Cas9 has modified the gbss gene

responsible for granule-bound starch synthase, resulting in

amylose-free starch that provides a smoother texture, which is

highly valued in both culinary applications and industrial

processes (Toinga-Villafuerte et al., 2022). The technology has

also been pivotal in extending the shelf life of various crops by

targeting genes involved in the ripening process, such as those

regulating ethylene production, allowing for slower ripening,

reduced post-harvest losses, and improved economic viability.

Furthermore, in barley, CRISPR/Cas9 has been used to enhance

grain hardness by editing the Hina gene, producing grains with a

higher hardness index that are better suited for industrial

applications, though this has also resulted in reduced grain width

and thousand-grain weight (Jiang et al., 2022). Additionally, in

potatoes, targeting the FtsZ1 gene has led to the development of
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lines with larger starch granules, significantly increasing the final

viscosity of starch paste, making these potatoes more suitable for

specific industrial processes, all achieved without compromising the

plant’s overall phenotype or nutritional quality (Pfotenhauer et al.,

2023). These diverse applications of CRISPR/Cas9 underscore its

transformative potential in crop improvement, enabling tailored

modifications that meet consumer demands, enhance safety, and

address specific industrial needs while ensuring the sustainability

and economic viability of agricultural practices.
Nutritional enhancements

Address ing nutr i t iona l defic ienc ies through crop

biofortification is a key goal in agricultural biotechnology, and

CRISPR/Cas technology plays a pivotal role in achieving this. For

instance, CRISPR/Cas has been employed to increase pro-vitamin A

content in rice, a vital intervention in combating vitamin A

deficiency in populations that rely heavily on rice as a staple food

(Maiti and Banik, 2023). Biofortification aims to increase the

content of essential nutrients in crops, thereby improving their

nutritional value. The development of “Golden Rice,” which

contains higher levels of beta-carotene, was accomplished by

modifying genes involved in pro-vitamin A biosynthesis (Dong

et al., 2020; Datta et al., 2021). RISPR/Cas technology has also been

applied to enhance the mineral content of crops. In rice and wheat,

genes such as OsNAS have been edited to increase iron and zinc

levels, addressing micronutrient deficiencies that often lead to

anemia and impaired immune function (Dueñas et al., 2021).

Similarly, in maize, targeting the PSY1, Crtl, and LCYB genes has

boosted the biosynthesis of pro-vitamin A, resulting in the creation

of “Golden Maize” (Sobrino-Mengual et al., 2024).The technology is

also instrumental in improving the amino acid content of crops. In
TABLE 3 Continued

Application Type Innovation
Stable
Crops

Targeted genes
Applications in
Stable Crops

References

Barley Hina
Increase grain hardness and reduce
grain width

(Jiang
et al., 2022)

Potato FtsZ1 Alterate starch granule size in tubers
(Pfotenhauer
et al., 2023)

N
ut
ri
ti
on

al
 E
nh

an
ce
m
en
ts

Vitamin

Rice
CRTL, PSY

Enhance vitamin A content to
combat deficiencies.

(Dong
et al., 2020)Maize

Barley HGGT, HPT Increase vitamin E biosynthesis
(Zeng
et al., 2020)

Amino Acids

Soybean GmFAD2, Increase fatty acid
(Zhou
et al., 2023a)

Rice OsAUX5, OsWRKY78
Control grain essential amino
acid accumulation

(Shi
et al., 2023)

Mineral
Content

Rice OsNAS2 Increases Zn uptake/translocation
(Ludwig
et al., 2024)

Wheat TalPK1
Biofortification to increase iron and
zinc content.

(Ibrahim
et al., 2022)
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cassava, CRISPR/Cas has been used to enhance the levels of

essential amino acids and vitamins, significantly improving the

nutritional quality of this staple crop (Otun et al., 2023). In maize,

editing genes involved in lysine biosynthesis has increased lysine

content, addressing a common deficiency in cereal grains (Hasan,

2024). Improving the protein quality of crops is another significant

area of focus for CRISPR/Cas technology. For example, targeted

mutagenesis of the OsAAP6 and OsAAP10 genes in rice can reduce

grain protein content, thereby improving the eating and cooking

quality of the crop (Wang et al., 2020). CRISPR/Cas technology has

been used to reduce antinutritional factors such as phytic acid in

soybean by targeting the GmIPK1 gene, enhancing the

bioavailability of iron and zinc and thereby improving the overall

nutritional quality of the soybean (Song et al., 2022).
Cases study of applications in
staple crops

As the application of CRISPR/Cas technology is broad and

impactful across various staple crops, focusing on specific case

studies such as rice and maize allows us to delve deeper into its

transformative role in enhancing resilience (Figure 4).
Case study: CRISPR/Cas in rice

CRISPR/Cas technology has significantly advanced rice

improvement by enabling precise genome modifications,

enhancing traits such as yield, stress resistance, and nutritional

value. This technology has been instrumental in improving

resistance to both biotic and abiotic stresses in rice. For example,

the clade III subfamily of OsSWEETs, including OsSWEET11a and

OsSWEET14, plays a crucial role in susceptibility to bacterial blight
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by mediating sucrose efflux for bacterial proliferation. These genes

are targeted by specific transcription activator-like effectors

(TALEs) from Xoo (Wang et al., 2024g). This approach

demonstrates the potential of CRISPR/Cas9 to address other

pathogen-related challenges in rice. Similarly, the OsCS511 gene

has been edited to improve cold tolerance in rice, which is critical

for expanding rice cultivation to cooler climates (Park et al., 2024).

It highlights the adaptability of CRISPR/Cas technology in enabling

rice to grow in suboptimal conditions, thereby expanding its

cultivation area. Furthermore, base editing has been used to

increase zinc uptake and plant yield by editing the promoter

region of the OsNAS2 gene, which plays a crucial role in zinc

translocation and accumulation (Ludwig et al., 2024). This precise

editing has led to a significant increase in zinc concentration in rice

grains, addressing both yield improvement and nutritional

enhancement in a single genetic modification. Additionally, the

knockout of the OsDSG1 and OsbHLH024 transcription factor has

been shown to significantly enhance salt stress resistance, allowing

rice to thrive in saline soils (Alam et al., 2022; Ly et al., 2024). This

advancement is particularly important in regions where soil salinity

limits agricultural productivity. Furthermore, CRISPR/Cas9-

mediated mutagenesis of the susceptibility gene OsHPP04 has

conferred enhanced resistance to rice root-knot nematode, a

significant pest that causes major yield losses in rice crops,

demonstrating CRISPR/Cas9’s potential in sustainable rice

production (Huang et al., 2023).

Despite these successes, challenges such as off-target effects,

potentially lead to undesirable mutations. For instance, when

editing the OsWRKY71 gene to enhance resistance against brown

plant hopper, careful analysis was necessary to ensure that no off-

target effects compromised the plant’s health (Li et al., 2023b). This

case underscores the importance of precision in gene editing to

avoid unintended consequences that could negate the benefits of the

modifications. Another challenge is the relatively low efficiency of
FIGURE 4

Application of CRISPR/Cas genome editing in rice and maize for the improvement of different traits.
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HDR in rice, which is required for precise gene insertions or

complex modifications. This limitation has been addressed in part

by developing more precise methods like prime editing, which does

not rely on HDR. Prime editing has been successfully applied to the

OsMLH1 gene to enhance the efficiency of the editing process

without disturbing rice fertility, offering a promising approach for

future genetic improvements (Liu et al., 2024a).

Recent advancements in CRISPR technology, particularly base

editing and prime editing, have opened new avenues for improving

specific traits in rice. Base editing has been successfully applied to

the OsALS gene to confer herbicide resistance, allowing rice to

resistant to herbicides such as imazamox, which is crucial for

effective weed management (Zafar et al., 2023). This modification

allows for more targeted and sustainable weed control strategies,

reducing the need for broad-spectrum herbicides that can harm the

environment. Additionally, prime editing has been applied to the

Xa13 and Xa25 genes, creating rice varieties with enhanced

resistance to bacterial blight by targeting and disrupting these

susceptibility genes (Zhu et al., 2024). These innovations,

including the application of base editing and prime editing to

improve traits like herbicide resistance and bacterial blight

resistance, are crucial for developing resilient rice varieties suited

to climate change and global food security challenges.
Case study: CRISPR/Cas in maize

The application of CRISPR/Cas systems, including advanced

techniques like prime editing and base editing, has revolutionized

the ability to enhance maize’s tolerance to various abiotic and biotic

stresses. Prime editing, particularly the optimized ePE5max system,

has been instrumental in generating heritable mutations in maize,

enabling resistance to herbicides by targeting key enzymes such as

EPSPS, ALS, and ACCase. This has significantly improved the

resilience of maize to herbicide stress. Base editing has also

shown potential in this area, with the introduction of specific

nucleotide substitutions, such as the triple amino acid

substitution in the ZmEPSPS gene, leading to heightened

glyphosate tolerance (Kaul et al., 2024). Additionally, the editing

of ZmSWEET1b, a sugar transporter crucial for assimilate

allocation, has demonstrated improved salt stress response,

showcasing the effectiveness of these gene-editing techniques in

enhancing maize’s abiotic stress tolerance (Wu et al., 2023).

Further advancements in maize stress tolerance have been

achieved through the targeted editing of specific genes associated

with drought, salinity, and disease resistance. For example, the gene

editing of ZmGA20ox3 has not only improved drought tolerance

but also optimized plant architecture, while the co-expression of

ZmVPP1 with ZmNAC111 has conferred robust drought resistance

by enhancing the plant’s stress response mechanisms (Liu et al.,

2023d; Liu et al., 2024b). Similarly, genes like ZmHAK17, which

encodes a Na+-selective transporter, and the HKT1 family sodium

transporter have been pivotal in improving maize’s tolerance to

salinity by regulating sodium influx and promoting seed

germination under salt conditions (Zhang et al., 2023d; Wang

et al., 2024a). Moreover, the genome editing of the ZmNANMT
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gene has conferred multiple disease resistance without agronomic

penalties, addressing major diseases like southern leaf blight,

northern leaf blight, and Fusarium stalk rot (Li et al., 2023c).

These targeted genetic modifications underline the versatility of

CRISPR/Cas systems in addressing both biotic and abiotic stresses

in maize.

However, despite these promising developments, the

application of CRISPR/Cas systems in maize faces several

challenges, including off-target effects, regulatory hurdles, and

efficiency in gene editing techniques. For instance, while the

DNA-free genome edi t ing of the ZmPLA1 gene via

ribonucleoprotein complexes has been successful in increasing

haploid induction rates in tropical maize, optimizing these

methods further remains crucial to enhancing efficiency and

reducing unintended mutations (Rangari et al., 2023). Similarly,

the generation of maize lines with enhanced cold stress tolerance

through the overexpression of ZmG6PDH1 in glucose-6-phosphate

dehydrogenase family, and the regulation of heat stress tolerance

through the HSF20-HSF4-cellulose synthase A2 module, illustrate

the complexity of stress responses in maize that require precise and

efficient gene editing tools (Li et al., 2023a, Li et al., 2024b).

Addressing these challenges through ongoing research and

technological advancements will be key to fully harnessing the

potential of CRISPR/Cas systems in improving maize resilience

and productivity under various environmental stresses.
Challenges and future prospect

Off-target effects

Off-target effects in CRISPR/Cas systems present a significant

challenge in genome editing, where unintended cuts by the Cas

enzyme at non-target sites can lead to adverse consequences. In

crops, such unintended mutations can affect traits, reducing yield or

introducing unwanted characteristics. Therefore, minimizing off-

target effects is critical to ensuring the safety and efficacy of

CRISPR-based technologies, making precision in genome editing

a top priority. To address these challenges, considerable progress

has been made in developing high-fidelity Cas variants and

optimizing gRNA design. High-fidelity Cas9 variants, such as

eSpCas9, SpCas9-HF1 and FrCas9, have been engineered to

enhance precision by reducing nonspecific DNA interactions

(Guo et al., 2023; He et al., 2024). These variants demonstrate

lower off-target activity while maintaining robust on-target efficacy,

making them suitable for applications. Additionally, studies have

shown that Cas12b, with its strict PAM requirements and low

tolerance for mismatches, has minimal sgRNA-dependent off-target

effects, showing great promise in rice genome editing (Gurel et al.,

2023). This system’s ability to precisely target specific genomic sites

with minimal off-target activity underscores the importance of

optimizing both the Cas enzyme and gRNA design to enhance

the specificity of CRISPR/Cas systems. Future research should focus

on enhancing accuracy, minimizing off-target effects, and

developing novel variants or engineered Cas proteins that can

better handle the complexities of multiplex editing, especially in
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crops with polyploid genomes. This will not only improve precision

in genome editing but also reduce unintended consequences,

making CRISPR technology safer and more reliable for

agricultural applications.

Delivery methods

Delivering CRISPR components into plant cells, particularly in

recalcitrant staple crops like wheat, maize, and certain rice varieties,

presents significant challenges due to their complex genetic makeup

and poor tissue culture responses. Traditional methods, such as

Agrobacterium-mediated transformation and biolistic particle

delivery, are often ineffective in these crops. Agrobacterium-

mediated transformation is limited by its host range and often

results in random transgene integration, leading to gene silencing

and unpredictable expression patterns. Similarly, while biolistic

delivery bypasses some limitations of Agrobacterium, it frequently

causes multiple, unstable transgene insertions and physical damage

to plant tissues, reducing transformation efficiency. Nanoparticle-

mediated delivery, a more recent approach, shows promise but faces

challenges related to the precise release and stability of CRISPR

components within plant cells, as well as potential cytotoxicity

concerns (Antony Ceasar and Ignacimuthu, 2023).

To overcome these challenges, research is increasingly focused

on developing novel delivery methods that enhance the efficiency

and specificity of CRISPR delivery in recalcitrant crops (Kocsisova

and Coneva, 2023). Viral vectors offer a promising avenue by

utilizing natural plant infection mechanisms to deliver CRISPR

components, though their limited cargo capacity remains a

significant hurdle (Liu et al., 2023c). Enhancements in

nanoparticle systems, such as surface functionalization with

specific ligands and the development of biodegradable particles,

could improve the specificity and safety of CRISPR delivery.

Protoplast transfection, combined with optimized regeneration

protocols, offers a direct method for introducing CRISPR

components, though its application is currently limited to species

with efficient protoplast regeneration systems (Yang et al., 2024).

Grafting techniques, which use transgenic rootstocks to deliver

CRISPR components to wild-type scions, represent another

innovative approach for achieving transgene-free genome editing

in recalcitrant crops (Yang et al., 2023b). To achieve sustainable

improvements, future research should not only focus on developing

novel delivery methods but also on ensuring the long-term stability

and heritability of CRISPR-induced modifications across multiple

generations. Understanding mechanisms such as chromosomal

rearrangements and DNA repair fidelity will be crucial to

maintaining the integrity of these genetic edits. Longitudinal

studies that track the persistence and effects of these

modifications over time are essential to confirm their stability and

effectiveness, ensuring that the benefits of CRISPR technology are

retained through successive crop generations.
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Ethical, and regulatory issue and
public acceptance

CRISPR technology offers significant potential in crop

improvement, but it also presents challenges in ethics, regulation,

and socioeconomic impact. Ethically, the precision and speed of

CRISPR modifications, such as those used in rice and wheat to

enhance yield and nutritional content, raise concerns about the moral

acceptability of altering plant genomes. These concerns are especially

pronounced in regions like Europe, where public sentiment is

cautious about genetic modifications. The ethical debate includes

potential unintended consequences, the creation of “unnatural”

organisms, and the long-term ecological impacts (Marone et al.,

2023). Additionally, the regulatory landscape for CRISPR-edited

crops varies significantly across countries. In European Union

classifies CRISPR-edited crops as genetically modified organisms

(GMOs), subjecting them to rigorous regulations that have

hindered the commercialization of crops like CRISPR-edited wheat.

Countries like Argentina and Brazil have adopted more flexible

regulatory frameworks, focusing on the final product rather than

the process, allowing for the development and commercialization of

crops like CRISPR-edited sugarcane with less regulatory burden.

Meanwhile, China’s significant investment in CRISPR research,

particularly in crops like rice, positions it as a major player,

although commercialization remains tightly regulated (Ghouri

et al., 2023; Kumawat et al., 2024). Socioeconomic challenges

further complicate the integration of CRISPR technology into

global agriculture. The contentious patent landscape, dominated by

the U.S. and European nations, restricts access to CRISPR technology,

particularly for smaller entities or developing countries. This is

evident in the development of CRISPR-edited crops like tomatoes

with enhanced GABA levels, where patent issues could limit access in

less affluent regions (Akhtar et al., 2023). Additionally, the

concentration of CRISPR technology within a few large

corporations could exacerbate inequalities in the agricultural sector,

particularly for staple crops like maize and wheat, crucial for food

security in developing regions (Molinari et al., 2024). Countries like

India and several African nations face the challenge of ensuring that

the benefits of CRISPR technology, such as drought-resistant maize

or disease-resistant cassava, are accessible to all farmers, not just large

agribusinesses (Munawar et al., 2024). As CRISPR technology

advances, ensuring that regulatory frameworks keep pace with

these developments is essential. Future research must focus on

addressing safety concerns, including off-target effects and the long-

term ecological impacts of CRISPR-modified crops. This requires the

development of comprehensive risk assessment models and strong

collaboration between scientists, regulators, and policymakers. By

aligning technological advancements with robust regulatory

measures, we can ensure the safe and responsible integration of

CRISPR into global agricultural practices, ultimately fostering public

trust and acceptance.
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Synergy of CRISPR with
advancement technologies

The intersection of CRISPR technology with emerging fields

such as nanotechnology, synthetic biology, and machine learning

(ML) offers a transformative potential to advance genome editing in

staple crops like rice, maize, wheat, and potato. Nanotechnology, in

particular, addresses one of the critical challenges in CRISPR-based

genome editing: the efficient and precise delivery of CRISPR

components into plant cells. Nanomaterials like carbon nanotubes

and mesoporous silica nanoparticles can bypass the plant cell wall,

enabling targeted and controlled delivery of CRISPR components,

which increases transformation efficiency and reduces off-target

effects (Khanna et al., 2023). Additionally, nanoparticle-mediated

delivery systems are species-independent, democratizing CRISPR

technology across diverse crops (Naik et al., 2022). Future research

should focus on optimizing these nanotechnologies for larger

CRISPR complexes, organelle-specific editing, and direct

transformation of germline cells, potentially bypassing tissue

culture. This synergy holds great potential for advancing

sustainable agriculture, improving crop resilience, nutritional

content, and reducing chemical input dependency.

The intersection of CRISPR and Synthetic Biology offers a

promising path to enhance genome editing efficiency and

precision in staple crops. CRISPR/Cas systems enable targeted

modifications, but challenges such as off-target effects, variable

efficiency, and polyploid genome complexity persist. Synthetic

Biology addresses these issues by providing tools to design and

control genetic circuits, thereby reducing off-target effects and

improving adaptability across different species (Yang and Reyna-

Llorens, 2023). Key advancements include regulatory circuits that

fine-tune CRISPR activity and feedback loops that adjust editing in

real-time, enhancing precision (Wang and Demirer, 2023).

Integrating CRISPR with synthetic metabolic pathways could

yield crops that are higher-yielding and more resilient to

environmental stressors, crucial for addressing global food

security challenges posed by climate change. Future research

should focus on developing synthetic promoters for efficient

editing in polyploid crops and combining CRISPR with metabolic

engineering to produce bioactive compounds, advancing

sustainable agriculture in both traditional and controlled

environments like vertical farming.

Machine learning (ML) adds another layer of innovation by

exponentially enhancing CRISPR’s potential for precise genome

modifications. However, when combined with the predictive

capabilities of ML, the potential of CRISPR can be vastly

expanded. One of the key challenges in CRISPR genome editing

is ensuring specificity and efficiency in targeting the correct

genomic sites while minimizing off-target effects. ML models can

address this challenge by analyzing large datasets from CRISPR

experiments to predict the most effective guide RNA sequences,

thereby enhancing the precision of the Cas9 enzyme and reducing

unintended consequences (Chen et al., 2024). Additionally, ML can

predict the phenotypic outcomes of specific gene edits, which is

particularly complex due to the multifactorial nature of traits like
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yield and stress tolerance (Das et al., 2023). In crops like rice and

maize, where multiple genes interact to influence traits such as

drought resistance, ML can identify the most impactful gene edits

by considering various genetic and environmental factors. Future

research should focus on developing sophisticated ML algorithms

capable of handling the complexity of polygenic traits and creating

extensive datasets to train these models. Integrating CRISPR-ML

into precision agriculture systems could provide tailored

recommendations, optimizing crop performance in specific field

conditions and ultimately contributing to more sustainable and

efficient agricultural practices.
Future applications with CRISPR/Cas
knock-in system

While the CRISPR/Cas9 system has predominantly been used for

gene knockouts, the development of CRISPR/Cas-based knock-in

strategies has significantly expanded its potential, enabling precise

gene integration and enhancing crop traits with high accuracy. This

system allows for the insertion of desired genes into specific genomic

locations, facilitating complex genetic modifications such as the

introduction of large DNA sequences or multiple genes, which are

crucial for stacking beneficial traits like disease resistance, stress

tolerance, and improved nutritional content. However, the knock-in

approach relies primarily on HDR, which is less efficient in plants

compared to NHEJ. To address this limitation, researchers are

developing strategies to enhance HDR efficiency, including the use of

HDR enhancers, dual-gRNA systems, and advanced delivery methods

like nanoparticle-mediated delivery and viral vectors, making the

knock-in process more feasible for large-scale agricultural applications.

The application of the CRISPR/Cas knock-in system in specific

crops has demonstrated its versatility and promise in sustainable

agriculture. For instance, in rice, this system has been used to confer

glyphosate resistance by precisely editing the acetolactate synthase

(ALS) gene and to upregulate genes involved in key metabolic

pathways, significantly enhancing the crop’s nutritional content and

stress tolerance (Sony et al., 2023). In wheat, researchers are focusing

on improving HDR efficiency using fusion proteins like Cas9-VirD2 to

enhance traits such as disease resistance and grain quality (Schreiber

et al., 2024). Similarly, in maize, the knock-in of regulatory elements to

more precisely control gene expression has been explored to improve

yield, nutrient use efficiency, and stress tolerance (Kaul et al., 2024).

These examples underscore the knock-in system’s crucial role in

developing next-generation crops that are more resilient, productive,

and adaptable to changing environmental conditions.

Despite its potential, the CRISPR/Cas knock-in system faces

challenges, including low HDR efficiency and off-target effects. To

overcome these, researchers are exploring various strategies, such as

enhancing HDR pathways, developing modified CRISPR/Cas

variants, and utilizing alternative genome editing tools like

CRISPR nickase and prime editing, which reduce the risk of off-

target mutations. Improving delivery systems, such as nanoparticle-

based methods, is also critical for increasing the efficiency and

precision of gene insertion. Future directions for this technology
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include further engineering of Cas proteins for enhanced specificity,

optimizing guide RNA design to minimize off-target effects, and

integrating the knock-in system with emerging technologies like

base editing and prime editing. These advancements are essential

for refining the CRISPR/Cas knock-in system and maximizing its

impact on agricultural innovation.
Conclusion

In conclusion, this review underscores the transformative

potential of CRISPR/Cas technology in improving the resilience,

yield, and nutritional value of staple crops like rice and maize.

Through precise genome modifications, CRISPR/Cas systems have

revolutionized crop breeding by enhancing stress tolerance, disease

resistance, and overall productivity. Recent advancements,

including base editing, prime editing, and high-fidelity Cas

variants, have significantly increased the specificity and efficiency

of genome editing, reducing off-target effects and expanding its

agricultural applications. Furthermore, CRISPR/Cas technology has

played a crucial role in biofortification efforts, such as boosting pro-

vitamin A content in rice and increasing iron and zinc levels in

wheat, addressing critical global challenges like food security and

malnutrition, particularly in developing regions. To fully harness

the potential of CRISPR/Cas technology, future research should

focus on improving HDR efficiency, expanding the CRISPR toolkit,

addressing ethical and regulatory challenges, and integrating

CRISPR into traditional breeding programs to accelerate the

development of high-yielding, climate-resilient crops, thereby

contributing to sustainable and resilient global food systems.
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