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wavelet transform
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Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Rapid and non-destructive diagnosis of plant nitrogen (N) status is crucial to

optimize N management during the growth of summer maize. This study aimed

to evaluate the effectiveness of continuous wavelet analysis (CWA) in estimating

the nitrogen nutrition index (NNI), to determine the most suitable wavelet

analysis method, and to identify the most sensitive wavelet features across the

visible to near-infrared spectrum (325–1,025 nm) for accurate NNI estimation.

Field experiments were conducted across two sites (Kaifeng and Weishi) during

the 2022 and 2023 growing seasons using four summer maize cultivars (XD20,

ZD958, DH661, and DH605) under varying N application rates (0, 80, 160, 240,

and 320 kg N ha-1). Canopy reflectance spectra and plant samples were collected

from the V6 to V12 growth stages. The wavelet features for each spectral band

were calculated across different scales using the CWA method, and their

relationships with NNI, plant dry matter (PDM), and plant N concentration

(PNC) were analyzed using four regression models. The results showed that

NNI varied from 0.61 to 1.19 across different N treatments during the V6 to V12

stages, and the Mexican Hat wavelet was identified as the most suitable mother

wavelet, achieving an R² value of 0.73 for NNI assessment. The wavelet features

derived from the Mexican Hat wavelet were effective in estimating NNI, PDM, and

PNC under varying N treatments, with the most sensitive wavelet features

identified as 745 nm at scale 7 for NNI, 819 nm at scale 5 for PDM, and 581 nm

at scale 6 for PNC using linear regression models. The direct and indirect

methods for NNI estimation were compared using independent field data sets.

Both methods proved valid to predict NNI in summer maize, with relative root

mean square errors of 10.8% for the direct method and 13.4% for the indirect

method. The wavelet feature at 745 nm, scale 7, from the direct method (NNI =

0.14 WF (745 nm, 7) + 0.3) was found to be simpler and more accurate for NNI

calculation. These findings provide new insights into the application of the CWA

method for precise spectral estimation of plant N status in summer maize.
KEYWORDS

maize, critical nitrogen concentration, nitrogen nutrition index, wavelet feature,
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1 Introduction

Nitrogen nutrition index (NNI) is a well-known tool that can

diagnose crop nitrogen (N) status accurately and has shown

potential for estimating crop yield and quality, plant N uptake

and partition, photosynthesis capacity, and so on (Ata-Ul-Karim

et al., 2016, 2017; Dordas, 2017; Hu et al., 2014). Its calculation is

the ratio between actual plant N concentration (PNC) and plant

critical N concentration (Nc) based on the same plant dry matter

(PDM) (Lemaire et al., 2008). The NNI provides a quantitative

measure of the N status of crops, which is essential to optimize N

fertilizer use in improving crop yield and quality. The NNI is

increasingly used to assess and manage crop N requirements more

accurately. However, the current methods to determine NNI have

certain limitations, such as reliance on labor-intensive field

sampling and variability in measurements due to environmental

factors (Ziadi et al., 2010). In order to reduce the determination

time of NNI, previous studies have reported some rapid and non-

destructive methods to assess NNI based on chlorophyll meter and

remote sensing (Zhao et al., 2018).

The assessment of plant N status is an important application of

remote sensing in the agriculture sector; its application is based on

the analysis of canopy spectral reflectance on crops (Li et al., 2014).

Many spectral indices have been developed to estimate crop growth

indices (PDM, PNC, leaf area index, and chlorophyll and pigment

content) to monitor and diagnose crop N status (Schlemmer et al.,

2013; Gnyp et al., 2014; Jay et al., 2016). However, these growth

indices are difficult to use in estimating the extent of plant N deficit

qualitatively and quantitatively due to the lack of a critical value

during crop growth. NNI is better to use than a single growth index

(PDM, PNC, and so on) to estimate plant N status qualitatively and

quantitatively since it contains two growth indices (PDM and PNC)

and is based on the theory of Nc dilution (Lemaire et al., 2008). At

present, a few studies have developed some empirical models to

estimate NNI value using canopy spectral reflectance; the

estimation method was classified into two types: direct method

and indirect method. The two methods with traditional spectral

indices are indeed mentioned, but to fully understand their impact

on practical applications, it is important to delve deeper into the

specific reasons for their instability in different environments.

Traditional spectral indices often suffer from sensitivity to

variations in soil background, atmospheric conditions, and sensor

angles, which can lead to inconsistencies in the data and

unreliable results.

The direct method is such that spectral indices construct the

relationship with NNI directly. Mistele and Schmidhalter (2008)

utilized the red edge inflection point (REIP) to directly estimate the

NNI of winter wheat. The indirect method involves estimating

PDM and PNC using canopy sensing technologies to calculate NNI.

Cao et al. (2013) demonstrated that while PDM could be reliably

estimated using spectral indices, the performance of PNC

estimation using Crop Circle ACS-470 was less satisfactory due to

a lower R² value. Previous studies have shown that the accuracy of

NNI estimation varies across different crops and environmental

conditions. The spectral indices used in these studies are typically

designed to estimate specific growth parameters, such as PDM,
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PNC, or leaf area index, rather than being exclusively tailored for

NNI assessment. Additionally, the structure of some spectral

indices is quite complex, requiring reflectance measurements at

multiple points along the spectral curve. A simple and exclusive

spectral index is needed to estimate NNI.

Recently, continuous wavelet analysis (CWA) is considered as

an emerging spectroscopy tool for the quantitative analysis of

biochemical constituent concentrations from leaf and canopy

spectral reflectance (Cheng et al., 2011, 2014a). CWA decomposes

the reflectance spectra into a series of scale components, and every

component has the same length as reflectance spectrum and is

composed of wavelet features as a function of wavelength and scale

(Li et al., 2018). This analysis has shown the potential to estimate

water content (Cheng et al., 2011; Cheng et al., 2014a; Ullah et al.,

2012), chlorophyll content (Liao et al., 2013; Li et al., 2017; He et al.,

2018), and nitrogen content (Li et al., 2018) from leaf and canopy

reflectance spectra. The CWAmethod can offer greater stability and

accuracy by reducing sensitivity to such environmental factors. By

focusing on the specific spectral features of the target parameter,

CWA can provide more consistent and reliable measurements, even

under varying conditions. This robustness in diverse environments

underscores the practical benefits of adopting the CWA method in

modern agricultural applications.

Unlike traditional spectral indices, which often struggle with the

complexity and volume of hyperspectral data, CWA excels in

decomposing and analyzing these data sets. It allows for the

extraction of meaningful features across multiple scales, leading to

more accurate and nuanced interpretations of the data (Kaewpijit

et al., 2003). To date, there is no attempt to analyze systematically

the relationship between the wavelet feature of reflectance spectrum

from visible light to near infrared and NNI using CWA method.

The hypothesis of this study was that CWA could be used to assess

the N status of summer maize. Therefore, the objectives of this

study are to compare different mother wavelets in CWA method to

determine the most suitable mother wavelet, to develop wavelet

features based on a mother wavelet across a series of scales and

wavelengths (visible light to near infrared), to identify the most

accurate of the wavelet features to estimate NNI based on

comprehensive analysis, to construct optimum regression models

between wavelet features and NNI using the direct and indirect

methods during the V6 to V12 growth stages of summer maize, and

to validate the developed regression models of the direct and

indirect methods to establish the most appropriate way for NNI

estimation. This study will provide a new technical support to

diagnose plant N status based on CWA method to analyze the

canopy reflectance spectra of summer maize.
2 Materials and methods

2.1 Experiment design

During the 2022 and 2023 seasons, field experiments of summer

maize were carried out at Kaifeng andWeishi in China, respectively.

These experiments included four cultivars of summer maize and

five N application treatments. Detailed information about the series
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of field experiments is shown in Table 1. The 0–20-cm soil samples

were sampled before the planting of summer maize and then air-

dried, and sieved to measure total N, Olsen-P, NH4OAc-K
+, and

organic matter (Nelson and Sommers, 1982; Bremner and

Mulvancy, 1982; Olsen et al., 1954; van Reeuwijk, 1992). Weather

information of the season of summer maize is shown in Figure 1.

Randomized complete block design was used in every experiment

with three replicates. The size of each plot was 60 m2 (6 m × 10 m)

in every field experiment. The total N fertilizer was divided into base

fertilizer (50%) and top-dressing fertilizer (50%), which were

applied before sowing and at the V6 stage, respectively. Adequate

amounts of phosphate fertilizer (triple superphosphate) and potash

fertilizer (potassium chloride) were applied into the soil before

sowing. The planting density for all the experiments was 60,000

plants ha-1, with a row spacing of 60 cm. Moreover, 40 mm was

irrigated into the field to ensure the emergence of summer maize.

During the growth progress of summer maize, the irrigation

amount ranged from 250 to 350 mm, and the fertilization timings

were in mid-August during the 2022 and 2023 growth seasons.

Additional crop management was consistent with local agriculture

production. There was no obvious water, disease, and pest stress

during growth season of summer maize. The amount of N input

was the only limiting factor during the process of the

field experiments.
TABLE 1 Characteristics of the six experiments in this study.

Experiment No. Cultivar Soil charac

Experiment 1 Xundan20 Type: sandy soil

(2022 Kaifeng) (XD20) Organic matter: 9.3 g

Total N: 0.62 g kg–1

Olsen-P: 10.5 mg kg–

NH4oAc-K
+: 72.5 mg

Experiment 2 Zhengdan958 Type: light loam soil

(2022 Weishi) (ZD958) Organic matter: 11.73

Total N: 0.58 g kg–1

Olsen-P: 34.52 mg kg

NH4oAc-K
+: 75 mg k

Experiment 3 Denghai661 Type: sandy soil

(2023Kaifeng) (DH661) Organic matter: 8.4g

Total N: 0.52 g kg–1

Olsen-P: 11.3 mg kg–

NH4oAc-K
+: 71.5 mg

Experiment 4 Denghai605 Type: light loam soil

(2023Weishi) (DH605) Organic matter: 11.2

Total N: 0.48 g kg–1

Olsen-P: 21.52 mg kg

NH4oAc-K
+: 54.23 m
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2.2 Field sampling and measurement

To obtain a representative plant sample, six plants were

destructively sampled at the V6, V9, and V12 stages by randomly

cutting in the middle of each plot. All of these samples were oven-

dried at 80°C to a constant weight and then weighed and ground for

chemical analysis later. PNC was determined using the traditional

Kjeldahl method (Bremner and Mulvancy, 1982). Canopy spectral

reflectance was measured using a portable spectrometer (FieldSpec

Handheld 2; Analytical Spectral Devices (ASD), USA) at 10 A.M.

and 14 P.M. local time under cloudless conditions. The canopy

reflectance was calculated through the calibration of measurements

of dark current and a white spectrum on the reference panel with

known reflectance properties. The spectrometer covers the 325–

1,075-nm (visible light to near-infrared) spectral range, with 1.4-nm

sampling interval and 25°field of view. The data of spectral

reflectance was re-sampled to 1-nm bandwidth using a self-driven

interpolation method of this machine and then saved. Each

measurement was taken randomly at five sites in each plot at a

height of 50 cm above the plant canopy; scans of 10 times were

collected in each site and then calculated as an average curve to

represent the canopy reflectance spectra of each plot. The

calibration of the spectrometer was taken every 15 min to correct

potential effects caused by changes in the external environment.
teristics N(kg N ha–1) Sampling stage

0 (N0) V6

kg–1 80 (N1) V9

160 (N2) V12

1 240 (N3)

kg–1 320 (N4)

0 (N0) V6

g kg–1 75 (N1) V9

150 (N2) V12

–1 225 (N3)

g–1 300 (N4)

0 (N0) V6

kg–1 75 (N1) V9

150 (N2) V12

1 225 (N3)

kg–1 300 (N4)

0 (N0) V6

g kg–1 90 (N1) V9

180 (N2) V12

–1 270 (N3)

g kg–1
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Due to machine noise and the external environment, the spectral

value varied irregularly at the 906- to 1,075-nm region. In this

study, 325–905 nm was used to develop the relationships between

spectral value and NNI. Canopy reflectance was collected at the V6,

V9, and V12 stages of summer maize. These stages are the critical

time windows for top-dressing N fertilizers on summer maize.
2.3 Calculation of nitrogen nutrition index

NNI is calculated based on the Nc dilution curve of summer

maize. This curve has been developed by Plénet and Lemaire (2000)

and shown in (Equation 1). The calculation of NNI is listed in

(Equation 2).

Nc = 3:4PDM−0:37 (1)
NNI =
Na

Nc
(2)

where PDM is plant dry matter (t ha-1), Nc is plant critical N

concentration (%), and Na is plant actual N concentration (%).
2.4 Wavelet analysis

Wavelet analysis is an efficient signal processing tool that can

decompose the original signal into multiple scales, which has been

successfully applied to hyperspectral data for dimensionality

reduction (Bruce et al., 2001). Wavelet transform is a very

important step to analyze hyperspectral data in wavelet analysis.

Wavelet transform includes two variations: discrete wavelet

transform (DWT) and continuous wavelet transform (CWT)

(Cheng et al., 2014a). Cheng et al. (2011) recommended the CWT

method to analyze the relationships between hyperspectral data and

agronomy variables.

Continuous wavelet transform is a linear operation that

transforms the convolution of reflectance spectra f(l) with a

scaled and shifted mother wavelet. The mother wavelet is

expressed as shown below (Equation 3):

ja,b(l) =
1ffiffiffi
a

p j(
l − b
a

) (3)
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where f(l) is the mother wavelet function, a is the scaling factor

representing the width of the mother wavelet, which can be

comparable with the width of an absorption feature, and b is the

shifting factor determining the position, which denotes the band

position (325 to 905 nm) of the hyperspectral curve. The result of

CWT is calculated as shown below (Mallat, 1991) (Equation 4):

Wf (a, b) = f ,ja,b

� �
=
Z +∞

−∞
f (l)ja,b(l)dl (4)

where Wf(a,b) is the wavelet feature (coefficient) that is the

inner product of wavelets and spectrum reflectance. In this study,

Mexican Hat, Gaussian Hat, Morlet Hat, and Haar Hat are used as

the mother wavelet bases. Figure 2 shows the shape of the four

mother wavelets, which was used to compare which mother wavelet

can best represent the relationship with NNI (Ngui et al., 2013). All

CWT procedures are completed by means of the wavelet toolbox of

MATLAB 7.

The selection method of the sensitive wavelet feature is divided

by four main steps. At the first step, the average R2 values were used

to compare the difference between NNI and wavelet features under

different mother wavelet conditions. At the second step, the spectral

curve of each treatment is imported into the continuous wavelet 1-

D function of the wavelet toolbox in MATLAB 7. The wavelet

coefficient of every reflectance spectra was calculated as a function

of wavelength (325 to 905 nm) and scale (Power 2 Mode; power

coefficient is 10). A scalogram of wavelet power with dimensions of

power, wavelength, and scale is shown using the analysis system of

continuous wavelet 1-D function. At the third step, the wavelet

coefficient of the scalogram was read progressively within the range

of 325–905-nm wavelength and 21 to 210 scale; every wavelet

coefficient is regressed with NNI, including linear, power, and

logarithmic and exponential types. The contour map of

determination coefficients (R2) is plotted according to the change

of R2 values. This step is completed with a self-programmed

software by using MATLAB 7. At the fourth step, the most

sensitive region and wavelet coefficient (wavelength in

nanometers, scale) were determined by the maximum R2 value

based on the scalogram plot. The specific technical flowchart is

shown in Figure 3. The regression figure between the optimum

wavelet coefficient and NNI was plotted using Microsoft Excel

(Microsoft Corporation, Redmond, WA, USA).
FIGURE 1

Total monthly precipitation (A, mm), total monthly sunshine (B, h) and mean monthly temperature (C, ℃) during 2022 and 2023 seasons of
summer maize.
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FIGURE 2

The shape of four different mother wavelets.
FIGURE 3

Flowchart for constructing a nitrogen nutrition index inversion model based on wavelet analysis.
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2.5 Statistical analysis

Univariate multivariate analysis of variance is used to analyze

the difference of PNC, plant nitrogen uptake, PDM, and NNI using

SPSS v.13 software package (SPSS Inc., Chicago, IL, USA). The fix

factors are season, cultivar, and N treatment in the analysis process.

The significance level was preset as P <0.05, P <0.01, and P <0.001

for all hypothesis testing. The calibration data sets from

experiments 1 and 3 are used to develop the relationships

between NNI and wavelet feature, and the validation data sets

from experiments 2 and 4 are used to validate these developed

relationships. The statistical parameters coefficient of determination

(R2), root mean square error of calibration (RMSEC), and relative

error of calibration (REC) are used to evaluate goodness of fit, and

the other statistical parameters relative root mean square root

(RRMSE), root mean square error of prediction (RMSEP), and

relative error of prediction (REP) were used to assess prediction

abilities and stability. Microsoft Excel (Microsoft Corporation,

Redmond, WA, USA) was used to calculate the parameters. The

calculation equations of R2, RMSEC, REC, RMSEP, RRSME, and

REP are shown as follows (Equations 6–11):

R2 = 1 −
o
n

i=1
(Oi − Pi)

2

o
n

i=1
(Oi − O

−
)2

(5)

RMSEC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Oi − O

0
i)
2

n

vuuut
(6)

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Oi − Pi)

2

n

vuuut
(7)

RRMSE =
RMSEP

O
− � 100% (8)

REC =
o
n

i=1
Oi − O

0
i

���
���

n� O
− � 100% (9)

REP =
o
n

i=1
Oi − Pij j

n� O
− � 100% (10)
TABLE 2 Spectral indices for predicting nitrogen nutrition index.

Index Name

REIP-LI Red edge inflection point

MTCI MERIS Terrestrial Chlorophyll Index

mSR705 Modified Red Edge Simple Ratio Index
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where Pi is the estimated value from the regression model, Oi is

the observed value, Ō is the average value of all observed values, O’

is the calculation value of the regression model, and n is the number

of samples. The higher R2 value and the lower values of RMSEC and

REC are considered as a higher goodness of fit between wavelet

feature and NNI, and the lower values of RMSEP, REP, and RRMSE

are considered as a higher predicted accuracy of the

developed models.
2.6 Spectral indices

Some spectral indices have been used to estimate the NNI values

of different crops. In this study, three commonly used spectral

indices (Table 2) were chosen to test their usefulness to estimate the

NNI of summer maize. Red edge inflection point (REIP-LI) was

used by Mistele and Schmidhalter (2008) to assess the NNI of

winter wheat. MTCI was proposed by Chen (2015) to relate canopy

reflectance with the NNI of winter wheat. Modified red edge simple

ratio index (mSR705) was recommended by Liu et al. (2018) to

estimate the NNI of winter oilseed rape.
3 Results

3.1 Variance analysis of plant nitrogen
concentration, plant biomass, plant
nitrogen uptake, and nitrogen
nutrition index

In this study, there was no significant difference of plant N

concentration, plant N uptake, plant biomass, and NNI across

cultivars (XD20 and DH661) and seasons (2022 and 2023). PNC,

PDM, NNI, and plant N uptake differed significantly by N

application rate at the P <0.001 level (Table 3). The effect on

PNC, PDM, NNI, and plant N uptake was shown non-significantly

under the interaction of season × cultivar condition; however, the

effects on PDM and plant N uptake (P < 0.001) and PNC and NNI

(P < 0.01) were observed significantly under the interaction of

season × N treatment and cultivar × N treatment condition. There

was a significant effect (P < 0.05) on PNC, NNI, PDM, and plant N

uptake (P < 0.01) under the season × cultivar × N treatment

condition. These parameters have shown a large variability under

different N conditions, which made a good data set to develop the

relationship between NNI and reflectance spectra.
Formula Developed by

700 + 40
(R670 + R780)=2 − R700

R740 − R700
Mistele and Schmidhalter, (2008)

R750 − R710

R710 − R680
Chen (2015)

R750 − R445

R705 + R445
Liu et al. (2018)
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TABLE 3 Variance analysis of plant nitrogen concentration, plant dry matter, plant nitrogen uptake and nitrogen nutrition index affected by season,
cultivar, nitrogen treatments and their interactions.

Source PNC (%) Plant N uptake (kg ha-1) PDM (t ha-1) NNI

Cultivar(C) NS NS NS NS

Season(S) NS NS NS NS

N treatment (N) *** *** *** ***

S×C NS NS NS NS

S×N *** ** *** **

C×N *** ** *** **

S×C×N ** * ** *

NS represents no significant at 0.05 probability level.* Represents significant at 0.05 probability level.** Represents significant at 0.01 probability level.*** Represents significant at 0.001
probability level.

Wang et al. 10.3389/fpls.2024.1478162
3.2 Change of nitrogen nutrition index
across different nitrogen treatments and
growth stages

There was significant difference of nitrogen nutrition index

(NNI) under different N treatments (Figure 4). NNI increased with

the application of N fertilizer, NNI values of XD20 ranged from 0.68

to 1.15 (Figure 4A), and NNI values of DH661 ranged from 0.69 to

1.14 (Figure 4B). The NNI values of the two cultivars were lower than

those at the N0, N1, and N2 treatments, and the NNI values were

nearly equal to those at the N3 treatments and were higher than those

at the N4 treatments. The NNI values decreased gradually from the

V6 to V12 stages of summer maize at the N0, N1, and N2 treatments;

however, the NNI values increased gradually at the same stages of

summer maize at the N3 and N4 treatments.
3.3 Change of canopy spectral reflectance
across different N treatments and
growth stages

In this study, the canopy spectral reflectance of summer maize

increased with the growth process in the near-infrared bands, but
Frontiers in Plant Science 07
the reflectance was not significantly different across the V6 to V12

stages in the visible bands (Figure 5A). N application had a

significant influence on the change of canopy spectral reflectance

(Figure 5B); the trend was similar to the growth stage. The main

difference of the reflectance also existed in the near-infrared bands.

The near-infrared bands could better show the effect of growth

stages and N application to the canopy spectral reflectance of

summer maize. The change of canopy spectral curves across

different growth stages and N applications provided a basic

support to analyze and develop empirical relationships between

NNI and the canopy reflectance spectra of summer maize.
3.4 Performance of four mother wavelets
with nitrogen nutrition index, shoot
biomass, plant N concentration, and plant
N accumulation

The relationships between four mother wavelets and nitrogen

nutrition index, shoot biomass, plant N concentration, and plant N

accumulation were developed across different average spectral

values. The performance of the four mother wavelets is shown in

Figure 6. The result indicated that the values of the determination
FIGURE 4

The change of nitrogen nutrition index across different nitrogen treatments from V6 to V12 growth stages of summer maize during 2022 and 2023
seasons ((A): 2022 XD20; (B): 2023 DH661).Vertical bars represent the value of least significant difference (P<0.05) for each growth stage.
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coefficient (R2) of NNI, shoot biomass, plant N concentration, and

plant N accumulation with Mexican Hat were significantly higher

than those of the three other mother wavelets across 1 to 10 scales.

The R2 values from Mexican Hat ranged from 0.5 to 0.7 about NNI,

from 0.35 to 0.75 about shoot biomass, from 0.32 to 0.82 about

plant N concentration, and from 0.28 to 0.78 about plant N

accumulation across 1 to 10 scales, which was, on average, 30% to

50% higher than those of the three other methods (Figure 6).

Therefore, the Mexican Hat could be considered as the best

mother wavelet to assess NNI and growth indices in summer maize.
3.5 Estimation model of nitrogen nutrition
index using the direct method

The correlation analysis between NNI and wavelet feature was

developed to select the best wavelet feature to assess NNI using

linear, exponential, power, and logarithmic regression models
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through a direct method. All of the bands were used to construct

the empirical relationships between NNI and wavelet feature, from

the visible light to NIR bands (325 to 905 nm), based on continuous

wavelet analysis. The results indicated that the R2 values were higher

than 0.8 at the NIR region compared with the four regression types.

The R2 values of the linear and exponential regression models were

greater than those of the power and logarithmic regression models

at the NIR region (Figures 7A, B). The R2 values of the power and

logarithmic regression models were equal to 0 at the lower scale

region of the wavelet feature, which could not be used to develop the

relationship between NNI and wavelet feature (Figures 7C, D). The

higher scale of wavelet feature was more suitable to assess the NNI

of summer maize from the V6 to V12 growth stages using the linear

and exponential regression models. The strongest relationship

between NNI and wavelet feature was observed for feature (745

nm, 7) based on the linear regression and feature (784 nm, 7) based

on the exponential regression. The feature (745 nm, 7) was located

among the red edge region, and the feature (784 nm, 7) occurred on
FIGURE 6

The determination coefficient of four mother wavelets with nitrogen nutrition index (A), shoot biomass (B), plant N accumulation (C) and plant N
concentration (D).
FIGURE 5

The change of canopy reflectance spectra across V6 to V12 growth stages ((A): XD20 N3 treatment of 2022 season) and N0 to N4 nitrogen
treatments ((B): DH661 V6 stage of 2023 season) of summer maize.
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the right shoulder of the red edge region. The relationships between

NNI and the features (745 nm, 7) and (784 nm, 7) are shown in

Supplementary Figure S1, respectively.
3.6 Estimation model of nitrogen nutrition
index using the indirect method

In the indirect method, PDM was estimated using continuous

wavelet analysis to calculate the NNI. The R2 values of the
Frontiers in Plant Science 09
regression models between PDM and wavelet feature are shown

in Figure 8. The regression type was based on linear, exponential,

power, and logarithmic regression types (Figure 9), respectively.

The result indicated that the power and logarithmic regression types

were not suitable to estimate PDM, and the R2 value was equal to 0

at the lower scale of the wavelet feature and lower than 0.5 at the

higher scale of the wavelet feature. The linear and exponential

regression types were more suitable to develop the relationship

between PDM and wavelet feature, and the R2 values based on linear

and exponential regression types were higher than those based on
FIGURE 8

The contour maps of determination coefficient (R2) for the linear, exponential, power and logarithmic regression types between plant dry matter (PDM)
and wavelet feature from 325 to 905 nm. (A): R2 between PDM and wavelet feature using linear model; (B): R2 between PDM and wavelet feature using
exponential model; (C): R2 between PDM and wavelet feature using power model; (D): R2 between PDM and wavelet feature using logarithmic model.
FIGURE 7

The contour maps of determination coefficient for the linear, exponential, power and logarithmic regression types between nitrogen nutrition index
(NNI) and wavelet feature from 325 to 905 nm. (A): R2 between NNI and wavelet feature using linear model; (B): R2 between NNI and wavelet
feature using exponential model; (C): R2 between NNI and wavelet feature using power model; (D): R2 between NNI and wavelet feature using
logarithmic model.
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power and logarithmic regression types across different scales of the

wavelet feature. The strongest relationship between PDM and

wavelet feature was observed for feature (819 nm, 5) based on the

linear regression and feature (782 nm, 3) based on the exponential

regression. The features (819 nm, 5) and (782 nm, 3) were located at

the near-infrared region. The relationships between PDM and the

features (819 nm, 5) and (782 nm, 3) are shown in Supplementary

Figure S2, respectively.

Another estimated variable was PNC to calculate NNI in the

indirect method. The four regression types (linear, exponential,

power, and logarithmic) were used to develop the relationship

between PNC and wavelet feature based on continuous wavelet

analysis. The regression performance of power and logarithmic types

between PNC and wavelet feature was similar with that between

PDM and wavelet feature (Figures 8C, D). The R2 value was lower at

the low-scale region of the wavelet feature than at the high-scale

region of the wavelet feature across the two regression types, which

was equal to 0 at the low scale. The regression performance of the

linear and exponential types was better than that of the power and

logarithmic types. The R2 value was higher than 0.7 from the visible

light to the NIR bands under the linear and exponential regression

types (Figures 8A, B). The sensitive region between PNC and wavelet

feature was greater under the linear regression type than under the

exponential regression type. The optimal relationship between PNC

and wavelet feature was observed for feature (581 nm, 6) under the

linear regression type and feature (573 nm, 6) under the exponential

regression type (Supplementary Figure S3). The optimal WP mainly

existed at the higher region of scale. The R2 value was slightly higher

based on linear regression than exponential regression. Therefore,

the PDM estimation model of feature (819 nm, 5) and the PNC
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estimation model of feature (581 nm, 6) were used to assess the NNI

value in the indirect method. The integrated model of NNI was

expressed as follows:

NNI =
−3:38WP(581nm, 6) + 2:1

3:4(6:59WP(819nm, 5) + 0:03)−0:37
(11)
3.7 Validation of the estimation linear
model of nitrogen nutrition index based
on wavelet features

The calibration result showed that the goodness of fit of the

linear model was better than that of the exponential model, so this

study chose the linear model to validate the feasibility of wavelet

analysis for assessing NNI. The independent experiment data sets

(experiments 3 and 4) were used to validate the newly developed

regression models based on wavelet features (Figure 10). The result

indicated that the performances of the new models were acceptable

using the direct and indirect methods. In the direct method, the

wavelet feature (745 nm, 7) produced an accurate prediction of

NNI values, with RMSEP, RRMSE, and REP values of 0.09, 10.8%,

and 9.88%, respectively. In the indirect method, (Equation 11),

which included wavelet feature (581 nm, 6) and (819 nm, 5),

predicted NNI values with RMSEP, RRMSE, and REP values

of 0.12, 13.4%, and 10.68%, respectively. The validation result of

the direct method was better than that of the indirect method.

The two new models provided enhanced accuracy and stability

in estimating the NNI of summer maize with a simplified and

applicable formulation.
FIGURE 9

The contour maps of determination coefficient for the linear, exponential, power and logarithmic regression types between plant nitrogen
concentration (PNC) and wavelet feature from 325 to 905 nm. (A): R2 between PNC and wavelet feature using linear model; (B): R2 between PNC
and wavelet feature using exponential model; (C): R2 between PNC and wavelet feature using power model; (D): R2 between PNC and wavelet
feature using logarithmic model.
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4 Discussion

4.1 Theoretical analysis of plant nitrogen
diagnosis based on nitrogen nutrition index

Nitrogen plays a crucial role in the growth and development of

crops (Ata-Ul-Karim et al., 2016). As a key component of

chlorophyll, nitrogen was essential for photosynthesis, the process

by which plants convert light energy into chemical energy. It is also

a major constituent of amino acids, the building blocks of proteins,

which are vital for cell growth and function. An adequate nitrogen

supply promotes vigorous vegetative growth, leading to a larger leaf

area, enhanced root development, and overall improved plant

health. Conversely, nitrogen deficiency could result in stunted

growth, yellowing of leaves (chlorosis), and reduced crop yields.

Thus, N treatments had a significant effect on specific parameters

(such as PNC and PDM).

The responses of plant DM accumulation and N uptake varied

under different N application conditions. Under low N application,

both DM accumulation and N uptake were jointly influenced by the

plant’s growth potential and the soil’s N supply capacity. As N

application increased, both DM accumulation and N uptake also

increased (Justes et al., 1994), showing significant differences as

shown in Table 3. However, under optimal or excessive N

application, plant N uptake was primarily determined by soil N

availability, independent of the plant’s growth potential.

Conversely, under these conditions, DM accumulation was

dictated by the plant’s growth potential and was independent of

soil N availability (Plénet and Lemaire, 2000). As a result, while

plant N concentration (PNC) continued to increase with higher N

application, DM accumulation did not significantly increase once N

application reached a critical level (Zhao et al., 2017). Based on the

behavior of DM accumulation and PNC under varying N

conditions, Lemaire and Salette (1984) introduced the concept of

Nc dilution concentration, which refers to the minimum N

concentration required for maximum crop growth. Plénet and

Lemaire (2000) further developed the first Nc dilution curve for
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maize, which has since been widely adopted to diagnose the N status

of maize globally.

Nitrogen nutrition index was developed based on Nc dilution

curve (Equation 1). A statistical significance existed between different

N treatments, which is due to the difference of plant DM and PNC.

When NNI was equal to or higher than 1, plant N status was

considered optimal or excessive, and when NNI was lower than 1,

plant N status was considered insufficient. The lower plant DM and

PNC were from the low N treatments, which can contribute to the

low NNI value. Due to the characteristic of the Nc curve, even if the

plant DM accumulation of maize was not significantly different under

excessive N condition, NNI could still recognize a plant’s excessive N

status by comparing PNC with plant Nc concentration (Ziadi et al.,

2008; Ata-Ul-Karim et al., 2017).
4.2 Wavelet features for the estimation of
nitrogen nutrition index

The Mexican Hat wavelet may have performed better due to its

strong localization in both the time and frequency domains, which

makes it particularly effective at detecting subtle variations in crop

reflectance at certain scales. In contrast, other wavelets like the Haar

or Morlet wavelet may have struggled with capturing these

variations due to their different frequency responses or poorer

localization properties (Cheng et al., 2011). Including this type of

comparative analysis in the “Results” section would not only clarify

why the Mexican Hat wavelet was superior but also provide valuable

insights into the suitability of different wavelets for agricultural

spectral analysis (Ngui et al., 2013).

Nitrogen nutrition index was estimated using four regression

types—linear, exponential, power, and logarithmic—in this study.

The linear models offer simplicity and ease of interpretation but may

not capture complex, non-linear relationships as effectively as

exponential models could provide valuable context. Conversely,

exponential models might better fit certain data patterns, especially

when there are diminishing returns in response to increasing
FIGURE 10

The validation result between estimated nitrogen nutrition index based on the direct method (A, linear) and indirect method (B, linear) and actual
nitrogen nutrition index using the validation data set acquired from experiments 3 and 4.0
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nitrogen levels, but they can be more challenging to interpret and

apply. In this study, the regression types of power and logarithmic

could not be used to fit the relationship between NNI and wavelet

feature (Figures 7C, D). This is because there was a negative value

appearing in the lower scale of the wavelet feature; the fitting result of

power and logarithmic types was invalid between NNI and wavelet

feature. The R2 value is shown as 0 in Figures 7C, D under the lower

scale conditions. Cheng et al. (2011) considered that more than 210

scale ought to be discarded because the decomposed components at

higher scales do now carry meaningful spectral information. The

linear and exponential regression types were fit to develop the

relationships between NNI and wavelet feature (Figures 7A, B).

The R2 value of wavelet power (745 nm, 7) deduced from the

linear regression was slightly better than that of wavelet power (784

nm, 7) based on exponential regression. The wavelet feature (745 nm,

7) was close to the leading red edge position. Many studies reported

that the red edge was very sensitive to the change of PDM and PNC,

which can reflect plant N stress (Yao et al., 2010; Pellissier et al., 2015;

Li et al., 2017). The feature (745 nm, 7) carried information of

reflectance spectra across the red edge and near-infrared region (715

to 775 nm) that is mainly controlled by crop N stress and biophysical

parameters (PDM) centered at 740 nm (Thenkabail et al., 2004; Chan

and Paelinckx, 2008).

High-scale wavelet features are particularly adept at capturing

large-scale patterns in the spectral reflectance data, which are often

influenced by the overall structure of the crop, such as leaf area,

canopy density, and plant height. These structural characteristics can

significantly impact how light interacts with the crop, affecting the

absorption and reflection of different wavelengths. Cheng et al. (2011)

explained that low-scale components are suitable for capturing the

characteristics of narrow absorption features, while high-scale

components are better suited for defining the overall spectral shape

of the canopy spectra. Since NNI reflects the canopy structure

throughout the crop growth process, the higher-scale wavelet

features in this study were found to be particularly effective in

establishing a relationship with NNI. These high-scale features can

capture the impact of crop structure on the amplitude of reflectance

spectra and partially reduce the influence of the biochemical

absorption characteristics (Li, 2016). Consequently, using high-scale

wavelet features helps maintain more stable NNI estimations.

In this indirect method, the wavelet features (819 nm, 5) for

PDM and (581 nm, 6) for PNC were determined to develop the

relationships between wavelet feature and NNI. The power and

logarithmic regression types could not be used to fit the relationships

between PDM, PNC, and wavelet feature (Figures 9C, D, 8C, D). The

wavelet feature (819 nm, 5) was located at the near-infrared region

(814 to 824 nm) of the reflectance spectra and was close to the

sensitive region of the wavelet feature based on NNI. There was a

significantly positive relationship between leaf area index and PDM

during the V6 to V12 stages of summer maize. The amplitude of the

reflectance spectra was also affected by PDM, which made the

sensitive wavelet feature to PDM influenced by other biophysical

parameters (leaf area index). The sensitive wavelet feature (581 nm,

6) to PNC was located at the green light region (567 to 587 nm)

of the reflectance spectra and was close to the strong reflected peak
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(550 nm) of chlorophyll, which has been identified as a sensitive

wavelength for N estimation in previous studies (Huang et al., 2004).

During the vegetative growth stage of crops, plants invest a higher

proportion of photosynthate in the structural compartment (low N

concentration), andmore absorbed N was transported into the upper

leaves due to plant light distribution (Lemaire et al., 2008). Therefore,

PNC decreased gradually with plant growth. Due to the capture

capacity of the high scale of wavelet feature to the information of

reflectance amplitude, the estimation of PNC was more suitable

using a higher scale based on continuous wavelet transform method.
4.3 Comparison with the traditional
method and existing wavelet feature

The change of spectral reflectance from visible to near-infrared

region could represent the change of plant N status. In the visible

region, changes in reflectance are often linked to chlorophyll

content, which directly correlates with nitrogen status. A decrease

in nitrogen can lead to chlorosis, reducing chlorophyll and thereby

increasing reflectance in the green and red bands. In the near-

infrared region, reflectance is largely influenced by the internal

structure of plant leaves, including cell density and water content. N

deficiency can alter these structural properties, leading to changes in

near-infrared reflectance.

In this study, the three existing spectral indices were used to

estimate NNI of summer maize using the calibration data set

(Table 2). The result confirmed that these indices could represent

the change of NNI, but the performance was not unsatisfactory

(Supplementary Figure S4). The strongest relationship was found

between MTCI and NNI. The R2 value was 0.61, which was lower

than 0.7. The performance of the developed wavelet feature (R2 value

higher than 0.8) was better than the existing spectral indices

(Figure 7). The first reason was that the traditional spectral indices

were not specifically designed to estimate NNI; they were originally

developed to assess parameters like PNC or PDM across different

crops (Mistele and Schmidhalter, 2008; Chen, 2015; Liu et al., 2018).

The second reason was that these traditional indices typically rely on

two or three independent spectral bands to evaluate crop growth

status. This approach was highly susceptible to external

environmental factors and cultivar characteristics, leading to

inconsistent and unstable predictive performance of the spectral

indices. The CWA method was particularly effective because it

could isolate and capture relevant features at different scales,

allowing it to account for variations in crop structure and minimize

the influence of noise or irrelevant spectral information. This led to

more consistent and reliable NNI predictions across varying

conditions. The contained spectral information of the single

spectral band was very limited, and the reflectance of the

neighboring spectral bands might be different with the determined

spectral band, which led to substantial decreases in the predictive

performance to the same objective (Cheng et al., 2014a).

In the indirect method, PDM and PNC were estimated using

wavelet features based on continuous wavelet transform,

respectively. The wavelet feature (581 nm, 6) was the most
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sensitive feature to PNC. The wavelet features based on the green

light region have been reported as a sensitive feature to estimate N

or chlorophyll content by many studies (Liao et al., 2013; Wang

et al., 2016, 2017). All R2 values between wavelet features and PDM

were lower than 0.7 (Figures 9A, B), and their performance was also

weaker than the two other indices estimated (NNI and PNC), which

indicated that the better wavelet feature to estimate PDM might be

located at the longer wavelengths (shortwave infrared region) of the

reflectance spectra. The decomposition scale (5) of this study was

similar with that (4 or 5) determined by Cheng et al. (2014b). The

correlation between dry matter and wavelet feature was better for

scale 5 than for a higher scale. The most sensitive wavelet feature

(819 nm, 4) that integrated reflectance information from the

spectral segment (814–824 nm) characterized the change of dry

matter in spectral shape more efficiently than the traditional

spectral indices (Supplementary Figure S5). This could eliminate

the effect of canopy structure on spectral segment and therefore was

highly promising for canopy-level applications.

Through the calibration and validation of the relationships

between NNI and wavelet feature using field data set, each of the

direct and indirect methods could assess the NNI of summer maize,

but the performance of the direct method was better than that of the

indirect method. External environmental factors such as variations

in weather conditions, soil heterogeneity, and unexpected pest or

disease outbreaks could introduce variability that impacts the

predictive accuracy of the developed models in this study.

Additionally, errors during data collection, such as inaccuracies in

sensor readings or sampling inconsistencies, could further

contribute to discrepancies between the predicted and observed

outcomes. These sources of error could lead to overestimation or

underestimation of certain variables, thereby affecting the model’s

overall reliability. These factors would not only highlight the

limitations of the current model but also suggest areas for

improvement, such as refining data collection methods or

incorporating additional environmental variables into the model.

Addressing these potential errors is crucial to enhance the model’s

predictive ability and ensure its robustness in different scenarios.

The combination structure and calculation method for the

newly developed wavelet feature (745 nm, 7) were simpler than

those of the two wavelet features (581 nm, 6) and (819 nm, 5),

which could reduce the risk of NNI prediction. This new wavelet

feature will be useful to design an exclusive index to diagnose the

plant N status of summer maize. However, due to the limitation of

the experiment data and spectral band, future work is required to

test the adaptation and reliability of the newly developed wavelet

feature under diverse external environments.
5 Conclusion

This study confirmed the effectiveness of using wavelet features

to predict the nitrogen nutrition index (NNI) in summer maize

through the continuous wavelet analysis (CWA) method, with the

Mexican Hat wavelet identified as the most suitable mother wavelet.
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In the direct method, the most sensitive wavelet feature (745 nm,

scale 7) was identified to assess NNI, and the linear regression

model established was NNI = 0.14 WF (745 nm, 7) + 0.3. In the

indirect method, wavelet features (819 nm, scale 5) to predict PDM

and (581 nm, scale 6) for PNC were used to construct the

calculation model for NNI. The two methods of NNI estimation

were compared by using independent data sets. The result indicated

that the performances of the direct and indirect estimation methods

were accurate and stable. Compared with the established spectral

indices, Mexican Hat is shown to have a more effective capacity in

collecting meaningful spectral information that relates to NNI,

PDM, and PNC. By decomposing the reflectance spectra into

various scales, the high scale features could capture the

information of the reflectance amplitude based on the shape of

the spectral curve, and the low scale features could capture the

absorption characteristics of the objective index (PNC and PDM).

The result of this study revealed that the wavelet feature of NNI

successfully differentiated the different plant N status of summer

maize. The CWA method was extended to the field of plant N

diagnosis and enlarged its application range. Further research could

focus on optimizing the wavelet analysis method by exploring

different wavelet functions or scales to enhance its predictive

accuracy. Moreover, validating the method across a broader range

of crops and environmental conditions would help establish its

general izabi l i ty and practical applicabi l ity in diverse

agricultural settings.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

MW: Conceptualization, Formal analysis, Investigation, Project

administration, Writing – original draft. BZ: Conceptualization,

Data curation, Formal analysis, Writing – original draft, Writing –

review & editing. NJ: Formal analysis, Investigation, Methodology,

Project administration, Software, Writing – original draft. HL:

Investigation, Methodology, Project administration, Software,

Validation, Writing – original draft. JC: Conceptualization, Data

curation, Formal analysis, Investigation, Writing – review & editing,

Writing – original draft.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The research

was funded from the key scientific and technological project of

Henan Province (232102111004).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1478162
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1478162
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Plant Science 14
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1478162/

full#supplementary-material
References
Ata-Ul-Karim, S. T., Cao, Q., Zhu, Y., Tang, L., Rehmani, M. I. A., and Cao, W.
(2016). Non-destructive assessment of plant nitrogen parameters using leaf chlorophyll
measurements in rice. Front. Plant Sci. 7, 1829. doi: 10.3389/fpls.2016.01829

Ata-Ul-Karim, S. T., Zhu, Y., Lu, X. J., Cao, Q., Tian, Y. C., and Cao, W. (2017).
Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen
dilution curve. Field Crops Res. 201, 32–40. doi: 10.1016/j.fcr.2016.10.009

Bremner, J.M., andMulvancy, C. S. (1982). “Nitrogen-total,” inMethods of Soil Analysis,
Part 2. Ed. A. L. Page (American Society of Agronomy, Madison, WI), 595–624.

Bruce, L. M., Morgan, C., and Larsen, S. (2001). Automated detection of subpixel
hyperspectral targets with continuous and discrete wavelet transforms. IEEE Trans.
Geosci. Remote Sens. 39, 2217–2226. doi: 10.1109/36.957284

Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., et al. (2013). Non-
destructive estimation of rice plant nitrogen status with Crop Circle multispectral active
canopy sensor. Field Crops Res. 154, 133–144. doi: 10.1016/j.fcr.2013.08.005

Chan, J. C. W., and Paelinckx, D. (2008). Evaluation of Random Forest and Adaboost
tree-based ensemble classification and spectral band selection for ecotope mapping
using airborne hyperspectral imagery. Remote Sens. Environ. 112, 2999–3011.
doi: 10.1016/j.rse.2008.02.011

Chen, P. F. (2015). A comparison of two approaches for estimating the wheat
nitrogen nutrition index using remote sensing. Remote Sens. 7, 4527–4548.
doi: 10.3390/rs70404527

Cheng, T., Riaño, D., and Ustin, S. L. (2014a). Detecting diurnal and seasonal
variation in canopy water content of nut tree orchards from airborne imaging
spectroscopy data using continuous wavelet analysis. Remote Sens. Environ. 143, 39–
53. doi: 10.1016/j.rse.2013.11.018

Cheng, T., Rivard, B., and Sánchez-Azofeifa, G. A. (2011). Spectroscopic
determination of leaf water content using continuous wavelet analysis. Remote Sens.
Environ. 115, 659–670. doi: 10.1016/j.rse.2010.11.001

Cheng, T., Rivard, B., Sánchez-Azofeifa, G. A., Féret, J. B., Jacquemoud, S., and Ustin,
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