
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Huatao Chen,
Jiangsu Academy of Agricultural Sciences
(JAAS), China

REVIEWED BY

Wei Zhang,
Jiangsu Academy of Agricultural Sciences
(JAAS), China
Qun Cheng,
Guangzhou University, China

*CORRESPONDENCE

Quanzhong Dong

ksdqzdqz@126.com

†These authors have contributed equally to
this work

RECEIVED 08 August 2024
ACCEPTED 20 September 2024

PUBLISHED 07 October 2024

CITATION

Li W, Wang L, Xue H, Zhang M, Song H, Qin M
and Dong Q (2024) Molecular and genetic
basis of plant architecture in soybean.
Front. Plant Sci. 15:1477616.
doi: 10.3389/fpls.2024.1477616

COPYRIGHT

© 2024 Li, Wang, Xue, Zhang, Song, Qin and
Dong. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Mini Review

PUBLISHED 07 October 2024

DOI 10.3389/fpls.2024.1477616
Molecular and genetic basis of
plant architecture in soybean
Weiwei Li †, Lei Wang †, Hong Xue, Mingming Zhang,
Huan Song, Meng Qin and Quanzhong Dong*

Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
Plant architecture determines canopy coverage, photosynthetic efficiency, and

ultimately productivity in soybean (Glycine max). Optimizing plant architecture is

a major goal of breeders to develop high yield soybean varieties. Over the past

few decades, the yield per unit area of soybean has not changed significantly;

however, rice and wheat breeders have succeeded in achieving high yields by

generating semi‐dwarf varieties. Semi-dwarf crops have the potential to ensure

yield stability in high-density planting environments because they can

significantly improve responses to fertilizer input, lodging resistance, and

enhance resistance to various abiotic and biotic stresses. Soybean has a unique

plant architecture, with leaves, inflorescences, and pods growing at each node;

internode number greatly affects the final yield. Therefore, producing high-

yielding soybean plants with an ideal architecture requires the coordination of

effective node formation, effective internode formation, and branching. Dozens

of quantitative trait loci (QTLs) controlling plant architecture have been identified

in soybean, but only a few genes that control this trait have been cloned and

characterized. Here, we review recent progress in understanding the genetic

basis of soybean plant architecture. We provide our views and perspectives on

how to breed new high-yielding soybean varieties.
KEYWORDS

soybean, plant architecture, stem growth habit, internode length, branch,
leaf architecture
Introduction

Soybean (Glycine max [L.] Merr.) is an economically important crop, and provides

approximately one-quarter of the world’s plant protein for food and animal feed (Graham

and Vance, 2003; Carter et al., 2004; Wilson, 2008; Hartman et al., 2011). Cultivated

soybean was domesticated from wild soybean (G. soja Sieb. & Zucc.) approximately 5000

years ago in China, and subsequently spread worldwide (Carter et al., 2004; Wilson, 2008).

Soybean yield is ultimately determined by the number of seeds per unit area and seed mass,

both of which are affected by number of internodes, branches, pods per plant, seeds per

pod, seed size, and plant height (Pedersen and Lauer, 2004; Liu et al., 2020). In addition,

soybean yield also is affected by the angle of petiole and length of petiole, both of which are
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associated with canopy structure and photosynthetic efficiency

(Gao et al., 2017; Liu et al., 2020; Zhang et al., 2022). Soybean

yield component traits are significantly correlated with both

phenotype and genotype (Zhang et al., 2015).

Plant architecture is an essential target trait for developing high-

yielding soybean cultivars. This trait can be altered by modulating

genes that control stem growth habit, node number, internode

length, branch number, leaf size and shape, and leaf angle (Hartung

et al., 1981; Bao et al., 2019; Sun et al., 2019; Chen et al., 2021). In the

past decade, many quantitative trait loci (QTLs) controlling

important agronomic traits have been identified in soybean, some
Frontiers in Plant Science 02
of which have been integrated into the soybase database (https://

www.soybase.org/). However, only a small number of the

responsible genes for these QTLs have been cloned and

functionally characterized. Here, we focus on the genes that have

been functionally validated (Table 1).
Genetic basis of stem growth habit

Stem growth habit is a major agronomic trait affecting soybean

seed yield because it is related to plant height, flowering time,
TABLE 1 Genes of published in soybean plant soybean plant architecture.

Trait Name Gene ID Conserved
domain
or function

Alleles References

Stem growth habit Dt1 Glyma.19G194300 Terminal flower 1b Dt1, dtab, dtbb,
dtta, dttb

Liu et al., 2010; Tian
et al., 2010

Dt2 Glyma.18G273600 MADS-domain
transcription factor

Dt2, dt2 Ping et al., 2014

Internode length DW1 Glyma.08G163900 Key enzyme
entkaurene synthase

DW1, dw1 Li et al., 2018

CRY1/2 CRY1a (Glyma.04G101500) CRY1b
(Glyma.06G103200) CRY1c (Glyma.14G174200)
CRY1d (Glyma.13G089200) CRY2a
(Glyma.10G180600) CRY2b (Glyma.02G005700)
CRY2c (Glyma.20G209900)

Cryptochromes Lyu et al., 2021

STF1/2 STF1 (Glyma.18G117100)
STF2 (Glyma.08G302500)

bZIP
transcription factor

Lyu et al., 2021

GA2ox7a/7b GA2ox7a (Glyma.20G141200)
GA2ox7b (Glyma.11G003200)

Gibberellin 2-oxidase Lyu et al., 2021

GA2ox8A/8B GA2ox8A (Glyma.13G287600)
GA2ox8B (Glyma.13G288000)

Gibberellin 2-oxidase Wang et al., 2021

LHY1/2 LHY1a (Glyma.16G017400) LHY1b
(Glyma.07G048500) LHY2a (Glyma.03G261800)
LHY2b (Glyma.19G260900)

MYB domain
transcription factor

Tof16, tof16-1(lhy1a-
1), tof16-2 (lhy1a-2)

Cheng et al., 2019;
Dong et al., 2021

RIN1 Glyma.12G224600 SPA family protein rin1 Li et al., 2023

PH13 Glyma.13G276700 SPA family protein PH13H3 Qin et al., 2023

Branch number miR156b Glyma.14G013200 MicroRNA156b Sun et al., 2019

SPL9 SPL9a (Glyma.02G177500) SPL9b
(Glyma.09G113800) SPL9c (Glyma.03G143100)
SPL9d (Glyma.19G146000)

Squamosa promoter
binding protein-like
(SPL)
transcription factors

Bao et al., 2019

Dt2 Glyma.18G273600 MADS-domain
transcription factor

Dt2, dt2 Liang et al., 2022

SOC1a Glyma.18G224500 MADS-domain
transcription factor

Tof18A (SOC1aA),
Tof18G (SOC1aG)

Liang et al., 2022;
Kou et al., 2022

Leaf architecture Ln Glyma.20G116200 JAGGED
transcription factor

Ln, ln Jeong et al., 2012

ILPA1 Glyma.11G026400 APC8-like protein ILPA1, ilpa1 Gao et al., 2017

PIN1 PIN1a (Glyma.08G054700) PIN1b
(Glyma.07G102500) PIN1c (Glyma.09G30700)
PIN1d (Glyma.03G126000)
PIN1e (Glyma.19G128800)

Pinformed 1 Zhang et al., 2022
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maturity, abiotic stress tolerance, root architecture, node

production (Bernard, 1972; Specht et al., 2001; Heatherly and

Smith, 2004; Zhang et al., 2019). Semi-dwarf soybean plant is one

of the most important target traits for enhancing lodging resistance

and improving yield. Over the past few decades, great efforts have

been done to improve soybean yields by stem growth habit-based

selection for a semi-dwarf soybean plant (Liu et al., 2010; Tian et al.,

2010; Ping et al., 2014). It has been demonstrated that stem growth

habit is controlled by two classical genetic loci Dt1 and Dt2 in

soybean (Bernard, 1972; Ping et al., 2014). Dt1Dt2 genotypes

produce semi-determinate phenotypes, Dt1dt2 genotypes produce

indeterminate phenotypes, dt1Dt2 and dt1dt2 genotypes produce

determinate, indicating that the dt1 allele has an epistatic effect on

the Dt2/dt2 locus.

Dt1 encodes a TERMINAL FLOWER 1 (TFL1) protein in

soybean (Liu et al., 2010; Tian et al., 2010). It has been showed

that the transition from indeterminate to determinate stem growth

habit was caused by independent human selection of four distinct

single-nucleotide substitutions in the coding sequence of Dt1 gene

during soybean domestication, each of which led to a single amino

acid change that resulted in a recessive dt1 allele specifying

determinate stem growth (Tian et al., 2010). Dt2 encodes a gain-

of-function MADS-domain transcription factor belonging to the

APETALA (AP1)/SQUAMOSA subfamily in soybean (Bowman

et al., 1993; Gu et al., 1998; Ferrandiz et al., 2000; Ping et al., 2014).

Dt2 interacts with SUPPRESSOR OF OVEREXPRESSION OF

CONSTANS 1 (SOC1) in the shoot apical meristem, where they

directly bind to the promoter of Dt1 to repress its transcription and

modulate the semi-determinate growth habit in soybean (Liu et al.,

2016). Recently, a third locus Dt3 that controlling soybean stem

growth habit was discovered, and confirmed that recessive allele dt3

was responsible for semi-determinate stem growth habit in soybean

(Clark et al., 2023).
Genes responsible for
internode length

Plant height is a key plant architecture trait that directly affects

lodging resistance and soybean yield (Chapman et al., 2003; Liu

et al., 2020). Internode length and main stem node number

determine plant height in soybean (Liu et al., 2013; Chang et al.,

2018). Reduced plant height due to shortened stems is beneficial for

improving crop yield potential, increasing resilience to abiotic

stress, and the use of agronomic and management practices for

rapid crop production (Peng et al., 1999; Hedden, 2003; Liu et al.,

2020; Lee et al., 2022). A shorter stem due to shortened internodes is

typically observed in plants deficient in endogenous gibberellin

(GA) biosynthesis or defective in the perception of GA (Yamaguchi,

2008; Binenbaum et al., 2018).

In soybean, DWARF MUTANT 1 (DW1) encodes an ent-

kaurene synthase, a key enzyme in the GA biosynthetic pathway

that plays a crucial role in GA-regulated cell elongation in stem

internodes (Li et al., 2018). The dw1 mutant shows reduced

bioactive GA contents, resulting in a dwarf phenotype (Li et al.,
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2018). Overexpressing the cryptochrome genes CRY1s increased the

abundance of STF1 and STF2 proteins, which directly activated the

expression of GA2ox genes to deactivate GA1 and repress stem

elongation (Lyu et al., 2021). Meanwhile, overexpressing gibberellin

2-oxidase 8 genes (GA2ox8A and GA2ox8B) reduced bioactive GA

contents to decrease internode and suppress trailing growth (Wang

et al., 2021). Meanwhile, there is a strong artificial selection in

cultivated soybean in the genomic region of GA2ox8A and

GA2ox8B (Wang et al., 2021).

A quadruple mutant of soybean LATE ELONGATED

HYPOCOTYL (LHY) genes exhibited reduced expression of GA

pathway genes, reduced plant height, and shortened internodes

(Cheng et al., 2019; Dong et al., 2021). In addition, multiple genes

involved in regulating plant height by shortening internode length

have been reported. For example, overexpression of GmMYB14

transgenic soybean plants shows reduced plant height, internode

length, leaf area, and leaf petiole length and angle as well as

improved soybean yield when grown in the field under high-

density conditions (Chen et al., 2021). Recent research shows that

two homologous SUPPRESSOR OF PHYA (SPA) genes Plant Height

13 (PH13) and reduced internode 1 (rin1) play an important role in

regulating internode length in soybean. Loss-of-function of RIN1

and PH13 significantly reduced internode length and enhanced

grain yield under high-density planting conditions in field trials (Li

et al., 2023; Qin et al., 2023).
Molecular basis of branch number

Shoot architecture plays a pivotal role in determining high-

yielding crops, and shoot branching is a major component of

shoot architecture (Mathan et al., 2016; Barbier et al., 2017).

Meanwhile, shoot branching also plays an important role in

controlling soybean yield (Liang et al., 2022), and modulating

branch number is crucial for high-yield soybean breeding (Liu

et al., 2020). Shoot branching is an agronomically important and

complex developmental trait controlled by a group of genes and

influenced by environment and genotype × environment

interactions. Genome-wide analysis using homology searches

identified 406 genes that might be associated with branching in

soybean, 57 of which colocalize with QTLs for soybean branching

(Tan et al., 2013). However, to date, few genes associated with

soybean branching have been described.

Overexpressing miR156b in soybean significantly increased the

number of long branches and the 100-seed weight, resulting in a

46%–63% increase in yield per plant (Sun et al., 2019). GmmiR156b

regulated plant architecture by directly cleaving the SQUAMOSA

PROMOTER BINDING PROTEIN-LIKE9d (SPL9d) transcript.

SPL9d physically interacted with the homeobox protein

WUSCHELa/b (WUSa/b) to regulate axillary bud formation and

shoot branching (Sun et al., 2019). The soybean genome contains

four SPL9 homologs (SPL9a, SPL9b, SPL9c, and SPL9d), all of which

are negatively regulated by GmmiR156b (Cao et al., 2015; Sun et al.,

2019). The spl9abcd homozygous quadruple mutant of Williams 82

has more branches and nodes than the wild type (Bao et al., 2019).
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Dt2 interacted with Agl22 and SOC1a to bind the promoters of

Ap1a and Ap1d to activate their transcription, resulting in reduced

branching (Liang et al., 2022). In addition, Overexpression of

GmMYB181 could increase the branch number in Arabidopsis

(Yang et al., 2018).
Critical genes for leaf architecture

Leaf architecture affects photosynthetic efficiency, canopy

coverage, and ultimately plant productivity in many legume crops

(Gao et al., 2017). Leaf growth direction is controlled by the

curvature of the petiole, which is defined as the angle between the

leaf petiole and the main stem (Rodrigues and MaChado, 2008; Gao

et al., 2017). A few genes that control leaf shape and leaf petiole

angle in soybean have been identified.

Leaves and flowers develop continuously at the flanks of the

shoot apical meristem in flowering plants. A single mutation often

causes pleiotropic phenotypes during leaf and flower development

(Tsukaya, 2006), suggesting that a common regulatory circuit is

involved in the production of leaves and flowers. One major Ln

locus that contributes to the variation in leaflet and seed number per

pod (Domingo, 1945; Tischner et al., 2003). Broad leaflets are

usually associated with non-4-seeded pods, and narrow leaflets

are linked to 4-seeded pods. Broad leaflets and non-4-seeded pods

are thought to be dominant over narrow leaflets and 4-seeded pods

(Domingo, 1945; Jeong et al., 2011). It has been demonstrated that

Ln encodes JAGGED1 (JAG1) protein, which regulates lateral organ

development; variants of JAG1 have pleiotropic effects on fruit

patterning (Dinneny et al., 2004; Ohno et al., 2004; Jeong et al.,

2012; Fang et al., 2013). The transition from broad (Ln) to narrow

leaflets (ln) is associated with an amino acid substitution in the EAR

motif of JAG1 (Jeong et al., 2012; Fang et al., 2013).

Leaf petiole angle is particularly important for determining

plant architecture in soybean and many other legumes (Rodrigues

and MaChado, 2008; Zhou et al., 2012). A soybean mutant

Increased Leaf Petiole Angle1 (ilpa1) with increased leaf petiole

angle is a gamma ray-induced mutant derived from Chinese

soybean cultivar Hedou 12 (Song et al., 2015). The ILPA1 locus

encodes an APC8-like protein that functions as a subunit of the

anaphase-promoting complex/cyclosome. Loss-of- function alleles

ILPA1 lead to leaf development defects and alter petiole angle by

promoting cell proliferation (Gao et al., 2017).

The auxin signaling regulators Auxin/Indole‐3‐Acetic Acid

(Aux/IAA) and Auxin Response Factor (ARF), the auxin co‐

receptor Transport Inhibitor Response1/Auxin‐related F‐box

Protein (TIR1/AFB), and the auxin‐conjugating enzyme Gretchen

Hagen 3 (GH3) all influence the establishment of petiole angle in

monocots (Song et al., 2009; Bian et al., 2012; Zhao et al., 2013;

Chen et al., 2018; Liu et al., 2018). The auxin efflux transporter

genes PINFORMED1a (PIN1a) and PIN1c determined polar auxin

transport and controlled plant architecture and petiole angle in

soybean. The pin1abc triple mutant shows a semidwarf stature and

a small leaf petiole angle (Zhang et al., 2022). Meanwhile, (Iso)

flavonoids inhibit the transcript of PIN1a/c to regulate petiole angle

in soybean (Zhang et al., 2022).
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Conclusions and perspectives

Plant architecture plant critical role in affecting crop production

(Huyghe, 1998; Jiao et al., 2010; Miura et al., 2010; Tian et al., 2019).

The application of semi dwarf varieties has significantly improved

crop yield by increasing the planting density and the lodging

resistance. The gains in grain productivity during the Green

Revolution were a direct consequence of optimal plant height.

Mutant alleles of the Green Revolution genes Semidwarf1 (Sd1)

and Reduced height (Rht) are utilized to improve crop yields by

decreasing overall plant (Peng et al., 1999; Sasaki et al., 2002). In

addition, maize cultivars with more upright leaf angles can produce

more grains per unit land area when grown in the field under high-

density conditions (Lu et al., 2007; Tian et al., 2019). Soybeans

exhibit a unique plant architecture, as each node generates leaves,

inflorescences, and pods; internode number greatly affects final

soybean yields (Sun et al., 2019; Liu et al., 2020). It is currently

difficult to achieve high yields by decreasing the number of nodes to

reduce plant height and increasing the planting density in soybean.

Several studies have shown that introducing the brachytic stem trait

(shortened internodes with a zigzag arrangement of the main stem)

into elite modern soybean varieties altered plant architecture to

facilitate high‐density planting, reduce lodging, and increase yields

(Adams and Weaver, 1998; Cui et al., 2007). Therefore, instead of

changing the number of nodes, reducing plant height by shortening

internodes to increase planting density may be an effective strategy

for increasing soybean yields. To achieve this goal, we propose that

soybean varieties with ideal plant architecture should have shorter

internodes, more internodes, lodging tolerance, narrow leaflets, a

higher proportion of four-seeded pods, smaller petiole angle,

shorter petioles, and few or no short branches, allowing them to

tolerate high‐density planting (Figure 1).
FIGURE 1

Proposed high yield and ideal plant architecture in soybean. High
yield soybean varieties should have shorter internode length, more
internodes, lodging tolerance, narrow leaflet and higher the ratio of
four seed per pod, smaller petiole angle, and shorter petiole, few or
no short branches, tolerate high‐density planting.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1477616
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1477616
Modern crops have much lower genetic diversity than their wild

relatives because artificial selection and population/genetic

bottlenecks (Hyten et al., 2006; Lam et al., 2010; Qiu et al., 2017;

Fernie and Yan, 2019). Wild species are rich sources of natural

variation, which is important for improving the yield and quality of

crops (Tian et al., 2019; Liu et al., 2021; Goettel et al., 2022; Huang

et al., 2022). To understand the genetic architecture and networks

underlying agronomic traits, it is crucial to isolate and characterize

the genes responsible for plant architecture in soybean has been an

important research topic for decades, but only a few genes

controlling this trait have been characterized. Wild soybean

represents an excellent germplasm resource for identifying key

genes or alleles that could be used to develop high-yielding

soybean varieties that tolerate dense planting via molecular

breeding and gene editing.
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