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Effects of polystyrene
microplastics on the growth and
metabolism of highland barley
seedlings based on LC-MS
Wenqi Xiao †, Peng Xiang †, Wenlong Liao, Zhuang Xiong,
Lianxin Peng, Liang Zou, Bingliang Liu*‡ and Qiang Li*‡

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan
Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and
Biological Engineering, Chengdu University, Chengdu, Sichuan, China
Microplastics are widely present in the environment and can adversely affect

plants. In this paper, the effects of different concentrations of microplastics on

physiological indices andmetabolites of highland barley were investigated for the

first time using ametabolomics approach, and revealed the response mechanism

of barley seedlings to polystyrene microplastics (PS-MPs) was revealed. The

results showed that the aboveground biomass of highland barley exposed to low

(10 mg/L) and medium (50 mg/L) concentrations of PS-MPs increased by 32.2%

and 48.2%, respectively. The root length also increased by 16.4% and 21.6%,

respectively. However, the aboveground biomass of highland barley exposed to

high (100 mg/L) concentrations of PS-MPs decreased by 34.8%, leaf length by

20.7%, and root length by 25.9%. Microplastic exposure increased the levels of

antioxidant activity, suggesting that highland barley responds to microplastic

stress through oxidative stress. Metabolome analysis revealed that the contents

of 4 metabolites increased significantly with increasing PS-MPs concentration in

positive ionmode, while the contents of 8 metabolites increased significantly

with increasing PS-MPs concentration in negative ionmode (P < 0.05), including

prunin, dactylorhin E, and schisantherin B. Additionally, PS-MPs significantly

interfered with highland barley flavonoid biosynthesis, pyrimidine metabolism,

purine metabolism, fatty acid biosynthesis, and phenylpropanoid biosynthesis

metabolic pathways. This study provides a new theoretical basis for a deeper

understanding of the effects of different concentrations of PS-MPs on

highland barley.
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1 Introduction

Microplastics (MPs) are widespread in the environment and

may adversely affect plants. Microplastics are fragments and

particles less than 5 millimeters in diameter that result from

physical, chemical, biological, and other forms of abrasion,

consumption, and decomposition of larger plastics (Catarino

et al., 2018; Napper et al., 2020; Xu et al., 2020). MPs are

considered to be more serious and persistent pollutants than

plastics. According to reports, 79% of the world’s plastic waste

ends up in landfills (Horton et al., 2017; Rillig et al., 2017).

Therefore, the soil could be a significant sink for MPs (Geyer

et al., 2017). Agricultural film residues and sewage irrigation are

important sources of MPs in soil, which can cause serious harm to

plants (Steinmetz et al., 2016; Liu et al., 2018; Ng et al., 2018;

Serrano-Ruiz et al., 2021). MPs can enter plants through the plant

root system and adversely affect plant characteristics, growth, and

nutrient uptake (Wan et al., 2019). Therefore, considering the

hazards of MPs, there is a need to explore their uptake,

accumulation, and transport in plants (Li et al., 2020a).

Polystyrene (PS) is widely used worldwide. The material is often

used in the manufacture of products such as disposable tableware,

insulation foam, and packaging for various goods. However, under

natural environmental conditions, PS has a relatively long

decomposition cycle, making it one of the most abundant

microplastics in agroecosystems (Sun et al., 2020). However,

current research on the effects of polystyrene microplastics (PS-

MPs) on plants is limited. Therefore, it is urgent to elucidate the

effects of PS-MPs on plants. Zhou et al (Zhou et al., 2021).

demonstrated the possibility of transporting polystyrene

nanoplastics (PS-NPs) in rice roots, and the significant

enhancement of antioxidant enzyme activities reflected the

oxidative stress response of rice roots to PS-NPs. Lian et al (Lian

et al., 2021). found thatMPs affected the synthesis and photosynthesis

of lettuce chlorophyll, resulting in a reduction of micronutrients and

ultimately affecting the yield. Similar phenomena were observed in

lettuce by Gao et al (Gao et al., 2021a, Gao et al., 2021b). In addition,

Hernandez-Arenas et al (Hernandez-Arenas et al., 2021). found that

MPs also affected the yield of tomatoes.

Highland barley is the smallest staple and largest coarse grain

species in China, and the main food crop for people living at high

altitudes (Guo et al., 2020). It has been shown to have a range of

dietary benefits, including being low in fat and sugar, high in fiber,

and especially high in levels of beta-glucan (Zhou and Wu, 2022).

Studies have shown that mulching with plastic film can improve the

chlorophyll content, photosynthetic rate, and yield of highland

barley. However, mulching with plastic film can also lead to a

large amount of MPs remaining in the cultivated soil of highland

barley, thus increasing the harm of highland barley exposure to

MPs. To date, no study has comprehensively revealed the risk of

exposure to MPs and the mechanisms of their response to MPs in

highland barley.

Metabolomics is widely used to analyze the metabolic state and

metabolic pathways of biological systems. The technique is capable

of qualitatively and quantitatively analyzing all metabolites in a

given biological sample under specific conditions (Fiehn et al.,
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2000). It has proven to be an effective tool for understanding

changes in the chemical composition of crops and for further

revealing the mechanism of this process (Soria et al., 2017). The

remodeling of the metabolome under stress largely reflects the

response and defense of plants to stress, and metabolomics

technology provides a reliable means to study the remodeling of

metabolites under different stresses. Metabolites play a variety of

important roles in plant physiology, including providing energy and

carbon sources, storing nutrients, synthesizing hormones,

providing antioxidant protection, and enhancing stress tolerance.

These roles are important for plant growth, development, and

adaptation to the environment. At present, some studies have

used metabolomics to analyze the changes in plant metabolites

exposed to MPs, including rice (Wu et al., 2020a), lettuce (Wang

et al., 2022a, Wang et al., 2023a), and Glycine max L (Qiu et al.,

2023). Analysis of crop metabolite changes reveals that exposure to

MPs triggers a biological detoxification mechanism to protect plants

from this stress (Zhang et al., 2019). However, studies using

metabolomics to assess the effects of MPs on crops are still lacking.

In this study, the effects of different concentrations of PS-MPs

on physiological indicators and metabolites of plateau barley

seedlings were investigated in depth for the first time using

metabolomics techniques. This study provides valuable data and

insights into the processes and mechanisms of potential toxicity of

PS-MPs to highland barley and offers a new perspective on the

effects of microplastics on plant production systems. This will help

researchers to more comprehensively assess the potential hazards

of microplastics.
2 Materials and methods

2.1 Experimental material

Non-fluorescent PS (particle size of 96 nm, density of 1.05 g/cm3)

has a distribution coefficient of ≤ 5.8%. The red fluorescent-labeled

polymethyl methacrylate (PMMA) (particle size of 103 nm, density

of 1.18 g/cm3) has a distribution coefficient of ≤ 6.5%. PS was used to

study the effects on the physiological and biochemical indicators of

highland barley, and a red fluorescently labeled PMMA was used to

examine the distribution of MPs in the roots of highland barley

seedlings. The fluorescence excitation and emission wavelengths of

the fluorescently labeled PMMA were 630 nm and 680 nm,

respectively. Highland barley seeds (white barley) were purchased

from Orson Horticultural Company (Jiangsu, China). PS-MPs were

dispersed in a Hoagland nutrient solution using a DTD series

sonicator (SB-800DTD, China) to make the PS-MPs concentrations

reach 10 mg/L, 50 mg/L, and 100 mg/L. The concentrations of PS-

MPs were determined based on phytotoxicological test exposure

concentrations (Besseling et al., 2014; Leifheit et al., 2021).
2.2 Experimental design

Highland barley seeds were surface sterilized with a 2% NaClO

solution for 30 minutes, washed with distilled water 3 times, and
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germinated in a seedling tray filled with purified water at 25°C in the

dark for 2 days. Subsequently, seedlings with consistent germination

were selected and transplanted into 1/2 strength Hoagland solution

(Shorobi et al., 2023) (1 mM KNO3, 1 mM Ca(NO3)2·4H2O, 4 mM

MgSO4·7H2O, 0.2 mM NH4NO3, 0.1 mM KH2PO4, iron solution (4

mM Fe-EDTA), and micronutrients (9.2 mM H3BO3, 1.8 mM
MnCl2·4H2O, 0.15 mM ZnSO4·7H2O, 0.04 mM CuSO4·5H2O and

0.1 mM H2MoO4·H2O), with a pH of 5.5). The seedlings were placed

in seedling trays, each containing 25 seedlings (5 columns x 5 rows).

Each seedling tray was filled with 700 mL of Hoagland’s solution. The

control group was grown in Hoagland’s solution without PS-MPs. In

addition, 9 germinated seeds were selected to grow in nursery trays

containing fluorescently labeled PMMA at a concentration of 0.5 g/L

in Hoagland’s solution (100 mL) to examine the distribution of

PMMA. The solutions above were changed every six days. There were

six replicates per treatment group. All seedling trays were placed in an

artificial climate chamber (RXZ-300B, Kaled Technology Co., Ltd.,

China) with 16 hours of light during the day, a light intensity of 6,000

lx, and a temperature of 25°C; 8 hours at night, the temperature was

20°C, and the relative humidity was 60%. After 12 days of treatment,

leaf and root samples were collected to determine physiological

indicators and enzyme activities. For metabolic analysis, we selected

root samples from three treatment groups: control, low concentration

(10 mg/L), and high concentration (100 mg/L), with six replicates for

each treatment group, for a total of 18 samples.
2.3 Determination of growth indices of
highland barley seedlings

At the end of the test, the physical properties of seedlings in

each group (25 samples in each group) were recorded, including

root length (cm), root fresh weight (g), leaf length (cm), and leaf

fresh weight (g). A root scanner (WinRHIZO, Canada) was used to

acquire high-resolution images of barley seedlings in the highlands.

The experiments were performed in six replicates.
2.4 Detection of PMMA absorption in
highland barley roots by confocal
scanning microscopy

Confocal Laser Scanning Microscopy (CLSM, Olympus FV10i,

Japan) was used to detect the distribution of fluorescently labeled

PMMA in the roots. Before the commencement of the test, the

instrument was accurately calibrated and verified. Rigorous tests

were conducted using standard samples to ensure the stability of the

instrument’s performance, as well as the accuracy and reliability of

the results obtained. All root samples were sonicated for 5 minutes

and washed three times with distilled water to remove any possible

residual PMMA attached to the surface. According to Kuixian et al

(Kuixian et al., 2010), a 1 cm root tip was cut with a stainless steel

blade and fixed in 0.5% glutaraldehyde for 30 min to enhance

fluorescence intensity. Scan the z-plane of the root, where the

central vascular bundle serves as the internal reference. Confocal

laser scanning was repeated at least three times before selecting
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representative images. The excitation and emission wavelengths

were 630 nm and 680 nm, respectively.
2.5 Biochemical analysis of highland
barley seedlings

To assess the possible physiological and biochemical effects of

PS-MPs on highland barley seedlings, root and leaf samples of

uniformly growing seedlings were selected from each treatment

group after 12 days of treatment. Root and leaf samples were

collected using clean tools to ensure that the samples were not

contaminated. The samples were rinsed three times with ultrapure

water after collection to avoid adsorption of PS-MPs. After the

sample collection was completed, the samples were stored in a

-80°C refrigerator. Next, catalase (CAT), peroxidase (POD),

superoxide dismutase (SOD), malondialdehyde (MDA),

superoxide anion (O2
-), and hydrogen peroxide were quantitatively

determined using a commercially available assay kit (supplied by

Nanjing Jianjian Biological Co., Ltd., China). The specific steps of the

experiment include sample pretreatment, extraction, centrifugation,

and finally, the data is analyzed using a multifunctional microplate

reader. The results are processed and interpreted according to the

relevant calculation formula. In the sample pretreatment stage, the

sample needs to be fully dissolved and diluted first tomake it easier to

analyze. In the extraction stage, specific extraction reagents are used

to separate the substances to be analyzed from the sample. This

facilitates subsequent analyses. The centrifugation step is used to

remove impurities and unwanted substances from the sample,

improving the accuracy of the analysis. Each sample is repeated six

times to ensure the stability and reliability of the experimental data.
2.6 Analysis of metabolites in highland
barley roots

For the Liquid Chromatography-Mass Spectrometry (LC-MS)

nontargeted metabolomic analysis of highland barley root

metabolites (Want et al., 2010; Dunn et al., 2011), the experimental

process mainly included sample metabolite extraction, LC-MS

detection, and data analysis. Metabolome analysis was performed

on 6 replicates with a sample size of >200 mg (fresh weight) per

replicate. First, the plant root samples were frozen and ground into

powder form; then, an 80% aqueous methanol solution was added

and subjected to vortex shaking, followed by extraction in an ice-

water bath for 1 h; Immediately thereafter, the metabolites were

extracted by centrifugation (15,000g, 4°C for 20 min); finally, the

metabolites in the extracts were analyzed using LC-MS for qualitative

and quantitative analysis (Gromova and Roby, 2010; Hiraga et al.,

2020). We also performed quality control (QC) to ensure the stability

of the system. The raw data from the machine was preprocessed using

the CD3.1 data processing software. First, simply screen through

parameters such as retention time and mass-to-charge ratio. For each

sample, peak alignment was performed based on retention time

deviation, mass deviation (parts per million, ppm), signal-to-noise

ratio (S/N), adduct ions, and other information to ensure accurate
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identification. Peaks were extracted and their corresponding peak

areas were quantified simultaneously. Then, the high-resolution

secondary spectrum databases mzCloud and mzVault and the

MassList primary database were searched to identify metabolites.

Next, the metabolites were subjected to multivariate statistical

analysis, including principal component analysis (PCA) and partial

least squares discriminant analysis (PLS-DA), to reveal differences in

metabolic patterns among different groups. Hierarchical clustering

(HCA) and metabolite correlation analysis were used to reveal

relationships between samples and among metabolites. Finally, the

biological significance associated with metabolites is explained

through functional analysis, such as metabolic pathways.
2.7 Statistical analysis

In this study, three replicated experiments (n = 3) were used for

analysis, while metabolites were assayed in six plant samples treated

under the same conditions. The data for this study were analyzed

using analysis of variance (ANOVA) with SPSS 21.0 statistical

software. The data is expressed as the mean ± standard error. For

comparisons between groups, a p-value of less than 0.05 was

considered a significant difference. Multivariate statistical analysis

will use an unsupervised principal component analysis (PCA) to

observe the overall distribution among samples and the stability of

the overall analysis process. Statistical analysis of significant

differences was assessed using a one-way analysis of variance

(ANOVA) and Tukey’s honestly significant difference (HSD) test.
3 Results

3.1 Effects of PS-MPs on biomass and
length of barley seedlings

Microplastics have a significant effect on plant growth. In this

study, Figure 1 shows the specific biomass, root length, and leaf
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length of plateau barley seedlings after 12 days of exposure to PS-

MPs. It can be seen from thefigure that low concentrations (10mg/L)

and medium concentrations (50 mg/L) treatments promoted the

growth of highland barley seedlings, while a high concentration

(100 mg/L) treatment inhibited the growth of highland barley

seedlings. As shown in Figure 2A, the below-ground biomass of

highland barley exposed to low (10 mg/L) and medium (50 mg/L)

concentrations of PS-MPs increased by 32.2% and 48.2%,

respectively, which was significantly higher than that of the

control group (P < 0.05). Meanwhile, the underground biomass

exposed to high concentrations of PS-MPs decreased by 23.5%,

which was significantly lower than that of the control group (P <

0.05). In addition, exposure to low and medium concentrations of

PS-MPs did not have a significant effect on aboveground biomass.

However, exposure to high concentrations of PS-MPs resulted in a

34.8% decrease in aboveground biomass, which was significantly

lower than that of the control group (P < 0.05). Similar effects were

also observed for the lengths of the roots and leaves of highland

barley seedlings (Figure 2B). The root lengths of PS-MPs exposed to

low (10 mg/L) and medium (50 mg/L) concentrations increased by

16.4% and 21.6%, respectively, which were significantly higher than

those of the control group (P < 0.05). However, the root and leaf

lengths exposed to high concentrations of PS-MPs were reduced by

25.9% and 20.7%, respectively. These values were significantly lower

than those of the control group (P < 0.05).
3.2 Uptake of PMMA by highland
barley roots

Red fluorescence signals were detected at 630 nm in both the

treated and control groups (Figure 3). The weak red fluorescent

signal in the control sample was considered to be autofluorescence

in the roots of highland barley. The red fluorescence signal of

highland barley roots was significantly enhanced after exposure to

PMMA compared to the control. This phenomenon indicates the

ability of highland barley roots to absorb PMMA (Figure 3).
FIGURE 1

Morphology of highland barley seedlings after 12 days of exposure to different concentrations of PS-MPs.
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3.3 Effects of PS-MPs on the physiology
and biochemistry of highland barley

The study found that varying concentrations of PS-MPs had a

significant effect on the biomass and length of highland barley.

Therefore, the activities of antioxidant enzymes and the MDA

content in the roots and leaves of highland barley were

determined. In the root samples, all concentrations of PS-MPs

significantly inhibited the activity of SOD (Figure 4A) compared to

the control, with a maximum inhibition of up to 59.4%.

Additionally, they significantly increased the activity of POD

(Figure 4B) by up to 26.3% (P < 0.05). The MDA content showed

a decreasing and then increasing trend; specifically, low

concentrations of PS-MPs significantly inhibited the activity of

MDA by up to 27.8%, whereas medium and high concentrations

of PS-MPs significantly increased the activity of MDA by 17.6% and

27.4%, respectively (Figure 4C) (P < 0.05). Compared with the two

antioxidant enzymes, CAT showed a different trend in the highland
Frontiers in Plant Science 05
barley roots. Low concentrations of PS-MPs significantly increased

the activity of CAT, while medium and high concentrations had no

significant effect (Figure 4D). All concentrations of MPs increased

the content of hydrogen peroxide and increased with an increasing

concentration (Figure 4E); all concentrations of PS-MPs had no

significant effect on the superoxide anion in root samples

(Figure 4F). In leaves, compared with the control group, PS-MPs

had no significant effect on SOD activity in leaves (Figure 4A) (P <

0.05) but increased POD activity in leaves (Figure 4B) (P < 0.05). A

similar situation was also observed for MDA (Figure 4C) (P < 0.05);

CAT activity showed an increasing, then decreasing, then

increasing trend., and both low and high concentrations of PS-

MPs significantly increased CAT activity in leaves (Figure 4D) (P <

0.05). Similar to the root samples, all concentrations of PS-MPs

increased the content of hydrogen peroxide in the leaves and

increased with increasing concentrations (Figure 4E). All

concentrations of PS-MPs had no significant effect on superoxide

anions in leaf samples (Figure 4F) (P < 0.05).
FIGURE 2

Biomass and length of highland barley roots and leaves after 12 days of exposure to PS-MPs. (A) biomass of roots and leaves (B) lengths of roots and
leaves. (Upper-case letters represent differences between leaf samples, and lower-case letters represent differences between root samples. Different
letters indicate significant differences between samples) (P < 0.05).
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3.4 Analysis of metabolites in highland
barley roots

3.4.1 Metabolite classification
We used an untargeted metabolomic approach to analyze the

metabolic profiles of barley roots after treatment with the control

(CK), low (10 mg/L), and high (100 mg/L) concentrations of PS-MPs.

In this study, two samples treated with low and high concentrations

of PS-MPs were selected for metabolite extraction. This was done to

reduce the saturation effect between the samples and the extraction

solvents, obtain a more comprehensive metabolite profile, and

improve the coverage of metabolomics analyses. The goal was to

obtain optimal results from differential analysis. In positive ionmode,

a total of 1,059 metabolites were detected. A total of 557 metabolites

were detected in negative ionmode. Among them, in positive

ionmode (Figure 5A), there were 231 lipids and lipid-like

molecules, 119 organoheterocyclic compounds, 119 organic acids

and derivatives, 87 phenylpropanoids and polyketides, and 62

benzenoids, accounting for a total of 30.88%, 15.91%, 15.91%,

11.63%, and 8.29%, respectively. In the negative ionmode

(Figure 5D), there were 183 lipids and lipid-like molecules, 75

phenylpropanoids and polyketides, 50 organic acids and

derivatives, 42 organic oxygen compounds, and 31 benzenoids,

accounting for a total of 40.04%, 16.41%, 10.94%, 9.19%, and

6.78%, respectively. PCA analysis of peaks extracted from samples

exposed to different doses of PS-MPs was performed to transform

high-dimensional data into a low-dimensional spatial form, making it

easier to visualize the data and reveal the structure and distribution

more intuitively. Eighteen samples from three treatment groups were

separated in this experiment, demonstrating the excellent stability of
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the method and high data quality. The positive ionmode is shown in

Figures 5B, C. The negative ionmode is shown in Figures 5E, F.

3.4.2 Metabolite annotation
The identified metabolites were functionally and taxonomically

annotated, and the main databases used included KEGG, HMDB,

and LIPID MAPS. The identified metabolites were annotated using

these databases to understand the functional properties and

classification of different metabolites. We can quickly obtain the

classification information of metabolites through the HMDB

annotation. The annotation results of HMDB are shown in Figure 6.

The positive ionmode contains up to 139 types of lipids and lipid-like

molecules, followed by 100 types of organoheterocyclic compounds and

91 types of organic acids and derivatives (Figure 6A); the negative

ionmode contains up to 87 types of lipids and lipid-like molecules,

followed by 43 types of organoheterocyclic compounds and 43 types of

organic acids and derivatives (Figure 6D). Pathway analysis can

determine the most important biochemical metabolic pathways and

signal transduction pathways involved in metabolites. The KEGG

pathway annotation results are shown in Figures 6B, E. In positive

ionmode, global and overview maps show the most metabolic pathways

and signal transduction pathways in metabolism, with a total of 119;

translation is the most metabolic pathway and signal transduction

pathway in genetic information processing, with a total of 9;

membrane transport is environmental, and there are 12 metabolic

pathways and signal transduction pathways in information processing

(Figure 6B). LIPID MAPS is a database containing biologically

relevant lipid structures and annotations and it is currently the

largest public lipid database in the world. The annotation results of

the LIPIDMAPS database are shown in Figure 6. In positive ionmode,
FIGURE 3

Distribution of fluorescently-labeled PMMA in highland barley roots. Scale bar, 200 mm.
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FIGURE 4

Effects of PS-MPs on the physiological indices of highland barley roots and leaves. (A) Superoxide Dismutase (SOD) activity (B) Peroxidase (POD)
activity (C) Malondialdehyde (MDA) content (D) Catalase (CAT) activity (E) Hydrogen peroxide (H2O2) content (F) Superoxide Anion (O2

-) Content.
(Upper case letters represent differences between leaf samples and lower case letters represent differences between root samples, different letters
indicate significant differences between samples) (P < 0.05).
FIGURE 5

Metabolite classification and Principal Component Analysis (PCA) of samples. (A–C) Positive ion patterns (D–F) Negative ion patterns. (Horizontal and
vertical coordinates PC1 and PC2 denote the scores of the first and second-ranked principal components, respectively, different-colored scatters denote
samples from different experimental groupings, ellipses are 95% confidence intervals) (CK: control, M10: 10 mg/L, M00: 100 mg/L).
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fatty amides [FA08] are the most abundant metabolites in fatty acyls

[FA], with 10 metabolites in total; glycerolipids [GL] containing one

each of glycosylmonoradylglycerols [GL04] and monoradylglycerols

[GL01]; flavonoids [PK12] are polyketides with the most metabolites

in [PK], with a total of 19; sterols [ST01] contain the most metabolites

in sterol lipids [ST], with a total of 14 (Figure 6C). In negative

ionmode, fatty acids and conjugates [FA01] were the most

abundant metabolite in fatty acyls [FA], with a total of 20;

glycerophosphocholines [GP01] were the most abundant metabolite

in glycerophospholipids [GP], with a total of 12; flavonoids [PK12]

were the most abundant metabolite in polyketides [PK], with 28 in

total; sterols [ST01] were the most abundant metabolite in sterol lipids

[ST], with 4 in total (Figure 6F).

3.4.3 Differential metabolite analysis
We compared the differential metabolites obtained by combining

the differences in each group, which can indicate the upregulation of

metabolites and substances with large differential changes (Figure 7).

By analyzing and interpreting the variations of different metabolites,

we can gain a deeper understanding of the regulatory mechanisms of

metabolic processes, physiological functions, and biological features

relevant to diseases in living organisms. This can provide important

information and support for achieving research goals. In positive

ionmode, treatment with low-concentration PS-MPs resulted in

significant changes in 57 metabolites compared with controls (P <

0.05). As shown in Figure 7A, the contents of prunin, methyl

linolenate, mycophenolic acid, 5-O-caffeoylshikimic acid, and 4’-

(imidazol-1-yl)acetophenone were significantly increased by

463.9%, 415.2%, 407.0%, and 279.2%, 273.4%, respectively. The

contents of (+)-isolariciresinol, cyclobutyl fentanyl-d5, D-gluconic

acid, yamagenin, and lysoPE 14:0 were significantly reduced by

83.2%, 81.2%, 79.8%, 76.3%, and 73.5%, respectively. As shown in

Figure 7E, treatment with high concentrations of PS-MPs resulted in
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significant changes in 163 metabolites compared to the control (P <

0.05). The contents of prunin, 5a-dihydrotestosterone glucuronide,
brucine, 1-(4-methoxyphenyl)propane-1,2-diol, and ginkgolide B

were significantly increased by 3581.8%, 1856.3%, 1815.7%,

1499.3%, and 1403.2%, respectively. 6-Phenyl-3,4-dihydro-1H-2,5-

benzoxazocin-1-one, dipotassium glycyrrhizinate, 1-(3,4-

dihydroxyphenyl)-7-(4-hydroxyphenyl)heptan-3-one, artesunate,

and N’-p-coumaroylspermine were the five metabolites with the

most significant content reductions, which decreased by 93.7%,

92.3%, 91.5%, 90.1%, and 95.5%, respectively (P < 0.05).

Compared with the low-concentration treatment, the high-

concentration treatment resulted in significant changes in 156

metabolites; 96 metabolites were significantly increased, and 60

metabolites were significantly decreased (P < 0.05) (Figure 7C). In

the negative ionmode, treatment with low-concentration PS-MPs

resulted in significant changes in 36 metabolites compared with the

control (P<0.05).As shown inFigure 7D, the contents ofDactylorhiza

E, Quercetin 3-alpha-L-arabinofuranoside (Avicularin), 2-[6-(1H-

benzo[d]imidazol-2-yl)-2-pyridyl]-1H-benzo[d]imidazole,

Narirutin, and Baohuoside II were significantly increased by 2584.2%,

1164.2%, 834.2%, 456.5%, and 449.2%, respectively. LPE 17:1,

enoxolone, 4’,7-dimethoxyisoflavone, 2-hydroxycaproic acid, and

galangin were the five metabolites with the most significant content

reduction, which were reduced by 88.39%, 73.8%, 65.0%, 63.6%, and

63.0%, respectively. As shown in Figure 7E, treatment with high

concentrations of PS-MPs resulted in significant changes in 119

metabolites compared to the control (P < 0.05). The contents of

dactylorhin E, narirutin, 2-[6-(1H-benzo[d]imidazol-2-yl)-2-

pyridyl]-1H-benzo[d]imidazole, sinapyl alcohol, and schisantherin B

were significantly increased by 15932.5%, 2994.3%, 2451.6%, 1769.9%,

and 1627.5%, respectively. Panthenol, capryloylglycine, 4-

isopropylbenzoic acid, LPE 17:1, and oleic acid were the five

metabolites with the most significant reductions, which were
FIGURE 6

Classification of metabolic pathways against different databases. (A–C) Positive ion patterns (D–F) Negative ion patterns. The horizontal coordinates
represent the number of metabolites, while the vertical coordinates represent the pathways to which they are annotated.
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reduced by 97.7%, 95.7%, 94.2%, 93.1%, and 92.9%, respectively.

Compared with the low-concentration treatment, the high-

concentration treatment resulted in significant changes in 122

metabolites, with 44 metabolites significantly increased and 78

metabolites significantly decreased (P < 0.05) (Figure 7F).

Hierarchical clustering analysis (HCA) was performed on all the

differential metabolites between each comparison pair obtained

(Chen et al., 2015) (Supplementary Figures S1, S2). In positive

ionmode, 257 metabolites were significantly changed (P < 0.05) in

all samples exposed to PS-MPs (Supplementary Figure S1). Prunin,

1,1-dimethyl-2-oxopropyl, N-[2-(2-pyridyl)ethyl]carbamate,

nicotinate ribonucleoside, and 4-acetamidobutyric acid metabolite

contents increased significantly with an increasing concentration of

PS-MPs (P < 0.05). The contents of vinblastine and (2R,3S,4S,5R,6R)-

2-(hydroxymethyl)-6-(propan-2-yloxy)oxane-3,4,5-triol metabolites

were instead significantly decreased (P < 0.05) with increasing

concentrations of PS-MPs (P < 0.05). In addition, some metabolites

responded differently after exposure to different concentrations of PS-

MPs. The contents of the metabolites alnustone, 3,4-

dihydroxyphenylpropionic acid, 2-phenyl-2,4,6,7-tetrahydrothiino

[4 ,3-c]pyrazol-3-o l , and N4-phenethy lmorphol ine-4-

carbothioamide increased significantly at low concentrations, but

the contents decreased significantly with increasing concentrations of

PS-MPs (P < 0.05). The contents of (+)-catechin and 5-[5-

(ethylsulfonyl)-2-hydroxyanilino]-5-oxopentanoic acid metabolites

decreased significantly after exposure to low concentrations of PS-

MPs, but increased with increasing concentrations of PS-MPs and

significantly increased (P < 0.05). In negative ionmode, 177

metabolites were significantly changed (P < 0.05) in all samples
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exposed to PS-MPs (Supplementary Figure S2). Dactylorhin E,

Schisantherin B, Dehydrodiisoeugenol, Narirutin, Eleutheroside B,

N1-(2,6-dimethylphenyl)-4-aminobenzene-1-sulfonamide,

Secoisolariciresinol diglucoside, and Glucose 1-phosphate metabolite

contents all increased significantly with the concentration of PS-MPs

(P < 0.05). The contents of 2-hydroxycaproic acid, 9-(3-O-

methylpentofuranosyl)-1,9-dihydro-6H-purin-6-one, and 4’,7-

dimethoxyisoflavone metabolites significantly decreased with

increasing concentrations of PS-MPs (P < 0.05). The content of

azelaic acid metabolites was significantly increased after exposure to

low concentrations of PS-MPs but significantly decreased with

increasing PS-MP concentrations (P < 0.05). Conversely, the

content of the 8-O-acetyl shanzhiside methyl ester metabolite was

significantly decreased after exposure to low concentrations of PS-

MPs, but it increased significantly with increasing concentrations of

PS-MPs (P < 0.05).

3.4.4 Venn diagram analysis and correlation
analysis of metabolites

Through a Venn diagram, the differential metabolites in

multiple comparison groups can be visually compared, displaying

both overlapping and unique differential metabolites between

different groups (Figure 8). In positive-ion mode (Figure 8A),

there were 17 unique differential metabolites in the M10 and CK

samples compared to all combinations. Additionally, there were 56

unique differential metabolites in the M100 and CK samples and 71

unique differential metabolites in the M100 and M10 samples.

There were 6 differential metabolites in all combinations. There

were 34 common differential metabolites in the M100, CK, and
FIGURE 7

Differential metabolite matchstick diagrams. (A–C) Positive ionmode (D–F) Negative ionmode. The color of the dots represents the up and down
tuning: blue represents the down tuning, and red represents the up tuning. The length of the rods represents the magnitude of log2 (Fold Change),
while the size of the dots represents the magnitude of the VI value. (CK: control, M10: 10 mg/L, M00: 100 mg/L).
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M10, CK groups of samples; 12 common differential metabolites in

the M100, M10, and M10, CK groups of samples; and 79 common

differential metabolites in the M100, M10, and M100, CK groups of

samples. In negative ionmode (Figure 8B), compared with all

combinations, there were 10 unique differential metabolites in the

M10 and CK samples, 32 unique differential metabolites in the

M100 and CK samples, and 47 unique differential metabolites in

the M100 and 10 samples. There were 12 different metabolites in all

combinations. There were 25 common differential metabolites in

the M100, CK, and M10, CK groups of samples; 13 common

differential metabolites in the M100, M10, and M10, CK groups

of samples; and 74 common differential metabolites in the M100,

M10, and M100, CK groups of samples.

Statistical test of significance for correlations among different

metabolites (Rao et al., 2016). In the positive ion mode, as shown in

Figures 9A–C, compared to the control, H-Gly-Pro-OH and
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glycylproline showed the highest positive correlation at low

concentrations, with a correlation coefficient of 1. On the other

hand, 5-methyl-dl-tryptophan was negatively correlated with

glycylproline, with a correlation coefficient of 0.84. Compared to

the control, brucine and 5a-dihydrotestosterone glucuronide showed
the highest positive correlation at high concentrations, with a

correlation coefficient of 1. N-butyl-N’-[5-(tert-butyl)-1,3,4-

thiadiazol-2-yl]urea and narcissoside showed the highest negative

correlation, with a correlation coefficient of 0.88. Compared to low

concentrations, brucine, and 5a-dihydrotestosterone glucuronide

had the highest positive correlation at high concentrations, with a

correlation coefficient of 0.99. On the other hand, tributyl citrate and

N’-p-coumaroylspermine had the highest negative correlation, with a

correlation coefficient of 0.84. In the negative ion mode, as shown in

Figures 9D–F, compared to the control, baohuoside II and

dactylorhin E showed the highest positive correlation with a
frontiersin.org
FIGURE 8

Venn diagrams of differentially expressed metabolites. (A) Positive ionmode (B) Negative ionmode. (CK: control, M10: 10 mg/L, M00: 100 mg/L).
FIGURE 9

Correlation plots of differentially expressed metabolites. (A–C) Positive ion patterns (D–F) Negative ion patterns. The highest correlation is 1, which
indicates a perfect positive correlation (red); the lowest correlation is -1, which indicates a perfect negative correlation (blue); and the part without
color indicates a P-value > 0.05. The figure shows the correlation of the top 20 differential metabolites, sorted from smallest to largest P-value. (CK:
control, M10: 10 mg/L, M00: 100 mg/L).
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correlation coefficient of 0.98. Schisantherin B and 1,3,5-

trimethoxybenzene showed the highest negative correlation with a

correlation coefficient of 0.70. Compared to the control, aucubin and

salidroside showed the highest positive correlation at high

concentrations, with a correlation coefficient of 1. Vitamin B2 and

2-[6-(1H-benzo[d]imidazol-2-yl)-2-pyridyl]-1H-benzo[d]imidazole

showed the highest negative correlation, with a correlation coefficient

of 0.87. Compared to low concentrations, salidroside and aucubin

had the highest positive correlation at high concentrations, with a

correlation coefficient of 1. Dehydrodiisoeugenol and 2-

isopropylmalic acid had the most negative correlation, with a

correlation coefficient of 0.91.
3.5 Affected biological pathways in
highland barley roots

By studying the affected metabolic pathways, it is possible to gain

a more comprehensive understanding of the adaptive and

physiological characteristics of plateau barley under the stress of

PS-MPs. The results of the biological pathway analysis showed that,

as shown in Figure 10, exposure to different doses of PS-MPs

significantly disturbed the metabolic pathways of flavonoid
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biosynthesis, pyrimidine metabolism, purine metabolism, fatty acid

biosynthesis, and phenylpropanoid biosynthesis in highland barley

roots. Specifically, in the positive ionmode, compared with the

control, upregulation of Prunin and caffeoyl shikimic acid

metabolites and downregulation of (+)-gallocatechin metabolites

are key factors affecting the flavonoid biosynthesis metabolic

pathway in root samples exposed to low concentrations of PS-MPs

(Supplementary Figure S3). The downregulation of deoxycytidine, 5-

methylcytosine, and thymine metabolites was the main factor

affecting the metabolic pathway of pyrimidine metabolism in root

samples at high concentrations of PS-MPs compared with low

concentrations (Supplementary Figure S4). In addition, the

downregulation of hypoxanthine and deoxycytidine metabolites

and the upregulation of AMP metabolites significantly affected the

metabolic pathways of purine metabolism (Supplementary Figure

S5). In negative ionmode, compared with low concentrations, the

downregulation of tetradecanoic acid, hexadecenoic, and

octadecenoic acid metabolites in high-concentration root samples

was the key factor affecting the metabolic pathway of fatty acid

biosynthesis (Supplementary Figure S6); the upregulation of sinapyl

alcohol and syringin metabolites and sinapic acid metabolites

significantly affected the metabolic pathways of phenylpropanoid

biosynthesis (Supplementary Figure S7).
FIGURE 10

Bubble plots of KEGG-enriched pathways. (A–C) Positive ionmode (D–F) Negative ionmode. The horizontal coordinate in the graph represents the
ratio of the number of differential metabolites in the corresponding metabolic pathway to the total number of metabolites identified in the pathway.
A larger value indicates a higher degree of differential metabolite enrichment in the pathway. The color of the dots represents the P-value of the
hypergeometric test; the smaller the value, the more reliable and statistically significant the test is. The size of the dots represents the number of
differential metabolites in the corresponding pathway. The larger the value, the more differential metabolites there are in the pathway. (CK: control,
M10: 10 mg/L, M00: 100 mg/L).
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4 Discussion

4.1 Effects of different concentrations of
microplastics on the growth of
highland barley

The ecological pollution caused by PS-MPs has received

extensive attention worldwide (Maity and Pramanick, 2020). The

presence of PS-MPs may affect the structure and function of

microbial communities in the oceans and soils, negatively

impacting biodegradation and ecological processes. More

importantly, PS-MPs can be accidentally ingested or absorbed by

marine and terrestrial organisms and then passed on to humans

through the food chain. Long-term ingestion may pose a potential

threat to human health (Stabnikova et al., 2021; Yin et al., 2021). In

addition, PS-MPs can have a positive or negative effect on seed

germination, plant morphology, and growth physiology, either

directly or indirectly. For example, Wu et al (Wu et al., 2020a).

exposed rice to a solution of MPs at a concentration of 500 mg/L.

They found that the aboveground biomass of rice was reduced by

40.3%. Under agro-cultivation conditions (250 mg/kg), the

aboveground biomass of rice was reduced by 25.9%. Urbina et al

(Urbina et al., 2020). exposed maize to a 100 mg/L solution of MPs

and found a 50% reduction in height and biomass. According to

research, there is a significant correlation between biomass and crop

yield. A decrease in biomass is usually accompanied by a decrease in

yield. Given that highland barley is a major food crop in the

highlands of China, the extent to which it is affected by

microplastic pollution is of even greater concern.

In this study, it was found that a low concentration (10 mg/L)

and a medium concentration (50 mg/L) of PS-MPs increased the

biomass and length of the highland barley leaves and roots, while a

high concentration (100 mg/L) of PS-MPs significantly reduced the

biomass and length of both the highland barley leaves and roots

(Figure 2). Different concentrations of MPs had different effects on

the growth of plants. Studies have found that low concentrations of

PS-MPs (10 mg/L) can significantly increase the root length of rice

(Zhang et al., 2021), while Jiang et al (Jiang et al., 2019). have shown

that high concentrations of MPs (100 mg/L) can inhibit crop

growth. Interestingly, Bouaicha et al (Bouaicha et al., 2022).

found that a high concentration (100 mg/L) of PE-MPs could

significantly increase the barley root biomass(30.2%). Changes in

plant biomass may be related to plant species and types of MPs. In

addition, Zhang et al (Zhang et al., 2022a). found that PS-NPs with

different particle sizes had a significant effect on the biomass of

plant stems. We believe that an appropriate concentration and

particle size of MPs can significantly promote plant growth; this

requires further exploration. MPs can enter through cracks at the

initiation site of lateral roots in plants (Li et al., 2020b). The

reduction in biomass and length may be related to the disruption

of nutrient transport caused by the uptake of PS-MPs in the plant

roots. It has been shown that PS-MPs cause damage to the structure

of plant root hairs and may lead to morphological abnormalities in

root hairs and alterations in secretions, which can affect nutrient

uptake (Ren et al., 2022). In addition, some studies have found that
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PS-MPs, after entering the root tissues, interact with the cell

membrane and may cause a breakage of the cell membrane,

increasing permeability (Zhang et al., 2022b). This may also lead

to a decrease in the nutrient uptake capacity of the plant root

system. Therefore, we suggest that the decline in nutrient transport

capacity and nutrient uptake is responsible for the reduction in

highland barley biomass and length.

Through research, we found that there was a weak red

fluorescent signal in the roots of highland barley in the control

group (Figure 3); this was considered to be the spontaneous

fluorescent signal of the plant’s roots (Li et al., 2020b; Zhou et al.,

2021). However, a more significant fluorescence signal appeared in

the root samples treated with PS-MPs. By comparing the intensity

offluorescence, it can be concluded that the roots of highland barley

can absorb PS-MPs. Li et al (Li et al., 2021a). observed the same

phenomenon in barley root samples. The possibility of transporting

PS-NPs in rice roots was also confirmed (Zhou et al., 2021). More

seriously, the accumulation of MPs was found in the stem, leaf,

calyx, and fruit of cucumber (Li et al., 2021b). MPs were also found

to accumulate in the roots of rice seedlings and transfer them to the

stems and leaves (Liu et al., 2022). MPs in fruits can be transferred

into the human body, posing potential health risks.

In this paper, the effects of MPs on the growth of highland

barley were revealed for the first time, and the absorption of MPs in

the roots was observed. The results of this study provide strong

support for further research on the harm of MPs. In future studies,

special attention should be paid to the absorption of MPs in the

roots, stems, and leaves of plants to prevent MPs from reaching the

human body through the enrichment of the food chain.
4.2 Effects of different concentrations of
microplastics on the physiology and
biochemistry of highland barley

Typically, exposure to adverse environmental conditions

triggers oxidative stress in plants, which is reflected in the

formation of reactive oxygen species (ROS) in plant cells (Alscher

et al., 1997). While plant cells are protected from oxidative damage

caused by reactive oxygen species (Liu et al., 2015), plants can

regulate a series of antioxidant enzymes to scavenge ROS (Wiegand

and Pflugmacher, 2005; Nel et al., 2006; Wang et al., 2010). O2
− and

H2O2 are key ROS, and their content can reflect the level of ROS

stress in plants (Zhang et al., 2021). POD, SOD, and CAT are the

main enzymes in the plant antioxidant system, and their activity

levels can reflect the degree of adverse effects on plants. SOD can

catalyze the conversion of O2
− into H2O2 and O2 and is the primary

substance for scavenging free radicals in living organisms

(Wojtaszek, 1997; Lin and Kao, 2000; Martinez et al., 2001). CAT

and POD are enzymes that scavenge H2O2. The three compounds

maintain a steady-state level of free radicals in plants through

synergistic action, preventing the changes in plant physiology and

biochemistry caused by free radicals (Weckx and Clijsters, 1996).

This study found that in highland barley roots (Figure 4), all

concentrations of PS-MPs significantly inhibited SOD activity and
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increased POD activity, while CAT activity was significantly

increased at the 10 mg/L concentration (P < 0.05) but not

s ignificantly changed at the 50 mg/L and 100 mg/L

concentrations. In the roots of highland barley, the decrease in

SOD activity may be related to the accumulation of ROS in the

roots. At the same time, the increase in POD activity and the change

in CAT activity in roots reflected the metabolic state of plants and

their adaptability to the external environment. A similar

phenomenon was found in the study of antioxidant enzyme

activity of polystyrene microplastics on rice seeds by Zhang et al

(Zhang et al., 2021). In leaves, PS-MPs had no significant effect on

SOD activity, while POD activity showed a tendency to increase and

then decrease. The changes in CAT activity were complex, showing

a trend of increasing, then decreasing, and then increasing. POD is

involved in redox reactions in plants and plays an important role in

antioxidant defense. The observed first increase and then decrease

in activity may reflect the plant’s response to initial environmental

stimuli, such as oxidative stress. The first increase in activity may be

an adaptive response of the plant to stress, enhancing antioxidant

defenses to scavenge excess reactive oxygen species. However, when

the stress is sustained or excessive, it may lead to inhibition of POD,

resulting in a decrease in its activity (Zhang et al., 2024). The initial

increase in CAT activity may be a response to an increase in reactive

oxygen species, helping to catabolize hydrogen peroxide and reduce

oxidative stress. Subsequent decreases in activity may reflect

inhibition or depletion of enzyme activity or the effects of

regulatory mechanisms. However, as the plant adapts to

environmental changes or recovers, a renewed increase in CAT

activity may indicate that the plant’s antioxidant defenses are

effectively restored and re-established to adapt to the new

growing conditions (Lian et al., 2022; Zhang et al., 2022b; Sun

et al., 2023). In addition, the decrease in CAT activity at high

concentrations may be due to the production of H2O2 when SOD is

induced, which is decomposed under the action of CAT. As a result,

the activity of CAT is greatly reduced due to the large consumption

of it. Enhancement of antioxidant enzyme activity helps eliminate

excess ROS (Lai and Luo, 2019).

This study found that different concentrations of PS-MPs

caused varying levels of damage to the antioxidant system in

different parts of highland barley (Figure 4). This is in agreement

with the findings of Lu et al (Lu et al., 2023), who found that PS-

MPs inhibit plant growth and induce oxidative stress. Li et al (Li

et al., 2021a). analysed antioxidant enzyme activities in different

parts of rice and found that treatment of PS-MPs at 2 g/mL

significantly increased the activities of dehydroascorbate reductase

(DHAR) and glutathione reductase (GR) in the roots, which in turn

promoted the ascorbate-glutathione (AsA-GSH) cycle. However, it

significantly decreased the cell wall peroxidase (cwPOX) activity in

the root. In the leaves, MPs only increased the DHAR activity, while

other antioxidant enzyme activities were not affected by MPs. In

addition, Wang, Z.S. et al (Wang et al., 2022b). found that the

presence of PS-NPs (2 g/L)significantly reduced the activities of

superoxide dismutase, ascorbate peroxidase, and catalase in

chloroplasts and the activities of ascorbate peroxidase and

catalase in mitochondria under low-temperature conditions (2°C).

Therefore, we suggest that culture conditions may also be an
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antioxidant enzymes.

Interestingly, the H2O2 content in all samples increased with

increasing concentrations, especially at 50 mg/L and 100 mg/L,

while there was no significant effect on O2
−. As one of the most

abundant reactive oxygen species (ROS) in cells, H2O2 is a key

signaling molecule for plant growth and development and

resistance to stress and, it plays an important role in the response

of plants to environmental stress (He et al., 2021). The increase in

H2O2 content also indicated changes in ROS in plants. In addition,

ROS may be formed outside the scavenging ability of the

antioxidant system, resulting in decreased membrane activity and

thus changes in MDA content (Wu et al., 2020a).

MDA is the main product of lipid peroxidation. The MDA

content can be used as an important indicator to reflect the degree

of lipid peroxidation in plant cell membranes. The higher the

content, the greater the damage to the biofilm. In the present

study, a decreasing and then increasing trend of MDA was found

in the root samples. Specifically, low concentrations decreased the

MDA content, while medium and high concentrations significantly

increased it. In contrast, the MDA content in leaves showed an

increasing and then decreasing trend. Importantly, MDA levels in

roots and leaves were higher in all treatment groups than in the

control, except for the low-concentration root samples and high-

concentration shoot samples. This suggests that PS-MPs caused a

greater degree of disruption to the biofilmof plateau barley. Increased

MDA content has also been observed in some studies, including

cucumber (Li et al., 2021b; Zhang et al., 2023), Cicer arietinumL (Dey

et al., 2023), corn (Zhang et al., 2022a), and rice (Ma et al., 2022).

By monitoring and understanding changes in plant enzyme

activity, we can better assess plant adaptability to adverse

environmental conditions and ecosystem health. A transient

increase in enzyme activity is a regulatory response that protects

the body from external stress and toxicity, while a decrease in

activity indicates that the threshold of self-regulation ability has

been exceeded, and the enzyme has been damaged (Liao et al.,

2019). For example, increasing the activity of POD and CAT

enzymes can help plants remove excess oxidizing substances and

reduce oxidative damage, thereby enhancing the plant’s ability to

adapt to environmental stress (Borges et al., 2023). This study is the

first to report the effects of different concentrations of MPs on the

physiology and biozchemistry of highland barley. The results show

that plants respond to the stress of MPs through diverse modes,

including the regulation of ROS and the activities of

antioxidant enzymes.
4.3 Effects of different concentrations of
microplastics on the metabolism of
highland barley

We investigated the metabolic profiles of highland barley roots

exposed to different concentrations of PS-MPs. The root system is

the main site of water and nutrient uptake in plants, the part of the

plant initially exposed to microplastics, and it produces specific

metabolites in response to environmental stresses. Therefore, when
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studying the effects of microplastics on plants, changes in the

metabolism of the root system can often more directly reflect the

response of plants to environmental stress. Metabolomics can reveal

the metabolic regulatory mechanisms behind observed changes in

plant metabolites (Yun et al., 2020). Studies have shown that the

metabolome is influenced by endogenous and environmental

molecules (Tuteja and Sopory, 2008), and plants can synthesize

and accumulate a variety of specialized metabolites, including

biologically active alkaloids and terpenoids (Shoji and Yuan,

2021). To date, studies have reported the effects of MPs on the

plant metabolome, including rice (Wu et al., 2020a), barley,

cucumber, tomato (Bouaicha et al., 2022), corn (Zhang et al.,

2022a), and lettuce (Wang et al., 2023a), etc. Highland barley is

the smallest staple grain and the largest coarse grain in China (Guo

et al., 2020). However, no study has reported the effect of MPs on

the metabolome of seedlings.

In this study, metabolome analysis of highland barley seedling root

samples treated with different concentrations of PS-MPs revealed

significant differences in 257 metabolites in the positive-ion mode.

Among these metabolites, the content of four increased with PS-MPs,

including prunin, 1,1-dimethyl-2-oxopropyl, N-[2-(2-pyridyl)ethyl]

carbamate, nicotinate ribonucleoside, and 4-acetamidobutyric acid

(Supplementary Figure S1). Wei et al (Wei et al., 2021). discovered

that prunin is a significant factor causing discoloration in the

Phyllostachys violascens cultivar. Céliz et al (Céliz et al., 2013).

pointed out that prunin has a strong antioxidant capacity and can

effectively prevent oxidative damage. Additionally, Matsui and

Ashihara found that nicotinic ribonucleoside is an important

metabolite in plants that can act as a coenzyme for oxidoreductases

(Matsui and Ashihara, 2008). Therefore, we believe that to protect

highland barley root cells from oxidative damage caused by reactive

oxygen species, a series of enzymes, such as prunin and nicotinamide

ribonucleotide, are upregulated to scavenge ROS. In contrast, the

content of vinblastine and (2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-

(propan-2-yloxy)oxane-3,4,5-triol metabolites decreased significantly

with increasing concentrations of PS-MPs (P < 0.05). Studies have

reported that changes in vinblastine content can reflect the stress

response of plants under environmental stress (Liu et al., 2017). In

addition, some metabolites responded differently after exposure to

different concentrations of PS-MPs. For example, the contents of the

metabolites alnustone, 3,4-dihydroxyphenylpropionic acid, 2-phenyl-

2 ,4 ,6 ,7- te t rahydrothi ino[4 ,3-c]pyrazo l -3-o l , and N4-

phenethylmorpholine-4-carbothioamide increased significantly at low

concentrations, but the contents decreased significantly with increasing

concentrations of PS-MPs (P < 0.05). The contents of (+)-catechin and

5-[5-(ethylsulfonyl)-2-hydroxyanilino]-5-oxopentanoic acid

metabolites decreased significantly after exposure to low

concentrations of PS-MPs but increased with increasing

concentrations of PS-MPs and significantly increased (P < 0.05).

Changes in metabolite contents revealed stress responses in highland

barley root samples under different concentrations of PS-MPs. In the

negative ionmode, 177 metabolites were significantly changed (P <

0.05). Among them, Dactylorhin E, Schisantherin B,

Dehydrodiisoeugenol, Narirutin, Eleutheroside B, N1-(2,6-

dimethylphenyl)-4-aminobenzene-1-sulfonamide, Secoisolariciresinol

diglucoside, and Glucose 1-phosphate metabolites increased
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significantly with the concentrations of PS-MPs (P < 0.05). At

present, a large number of studies have reported on schisantherin B

(Ma et al., 2019; Olas, 2023), dehydrodiisoeugenol (Godıńez-Chaparro

et al., 2022), narirutin (Kim and Lim, 2020; Mitra et al., 2022), and

secosolariciresinol diglucoside (Huang et al., 2018). Such metabolites

have high antioxidant activity and can prevent oxidative stress, which

provides support for the results of this study. Furthermore, in the

context of abiotic stress, plant metabolites can directly act as elicitors

and signals (such as amino acids) for plant adaptation mechanisms

(Hildebrandt et al., 2015). The contents of 2-hydroxycaproic acid, 9-(3-

O-methylpentofuranosyl)-1,9-dihydro-6H-purin-6-one, and 4’,7-

dimethoxyisoflavone metabolites significantly decreased with

increasing concentrations of PS-MPs (P < 0.05), indicating that the

root metabolism was adversely affected. In this paper, a metabolomic

system was used to reveal, for the first time, the metabolic response

mechanism of highland barley in response toMPs stress. The increased

content of metabolites with high antioxidant activity is an important

pathway for plants to respond to MPs stress.
4.4 Metabolic function enrichment of
highland barley in response
to microplastics

Changes in metabolic pathways may interfere with the crop’s

antioxidant defense systems, including energy metabolism and

anabolism (Wu et al., 2020a). The results of the biological pathway

analysis (Figure 10) showed that the metabolic pathways of flavonoid

biosynthesis, pyrimidine metabolism, purine metabolism, fatty acid

biosynthesis, and phenylpropanoid biosynthesis in highland barley

roots were significantly disrupted after exposure to different doses of

PS-MPs (Supplementary Figures S3–S7). Flavonoid biosynthesis is an

important class of secondarymetabolites widely present in plants, which

contribute to plant growth and development (Liu et al., 2021). In

addition, plant growth is also associated with the phenylpropanoid

biosynthesis metabolism (Muro-Villanueva et al., 2019). Nucleotide

biosynthesis and metabolism are also critical for plant growth and

development (Stasolla et al., 2003). Notably, under abiotic stress

conditions, plants exhibit increased synthesis of polyphenols such as

phenolic acids and flavonoids, which help them cope with

environmental constraints (Sharma et al., 2019). Fatty acids and lipids

are major and essential components of all plant cells, not only providing

structural integrity and energy for various metabolic processes but also

functioning as signal transduction mediators (Lim et al., 2017). The

phenylpropanoid biosynthetic pathway is activated under abiotic stress

conditions, leading to the accumulation of various phenolic compounds,

such as metabolites with the potential to scavenge harmful reactive

oxygen species (Sharma et al., 2019). Significant changes in these

metabolic pathways revealed the stress response of highland barley

roots in response to interference from PS-MPs. Changes in metabolite

content in metabolic pathways may reduce the nutritional quality or

yield of highland barley (Wu et al., 2022), soMPs contamination should

arouse our attention. Overall, an untargeted metabolomic analysis

qualitatively and quantitatively identified metabolic pathways affected

by PS-MPs in the highland barley roots (Zhao et al., 2022). This study is

the first to report changes in the metabolic pathways of highland barley
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under the stress of MPs. Among them, the metabolic pathway of

pyrimidine metabolism was discovered for the first time in plants

stressed by MPs.
5 Conclusions

Studies have shown that microplastics have adverse effects on

plant growth. As an important grain crop in the high-altitude area

of China, the safety of highland barley should be given more

attention. In this paper, we used metabolomics technology for the

first time to study the effects of different concentrations of

microplastics on physiological indicators and metabolites in

highland barley and revealed the response mechanism of barley

seedlings to PS-MPs. The results showed that low (10 mg/L) and

medium (50 mg/L) concentrations of PS-MPs increased

aboveground biomass and root length, while high (100 mg/L)

concentrations decreased aboveground biomass and root length.

The uptake of MPs by the roots may interrupt nutrient transport,

resulting in a decrease in biomass and length. Indicators of

oxidative stress (antioxidant enzymes, ROS, MDA) showed that

oxidative stress was activated in highland barley under PS-MPs

stress. Non-targeted metabolomics showed an increase in

antioxidant-active metabolites (including populin, ribonucleoside

nicotinic acid, pentosidine B, and dehydrodiisoeugenol) in the root

system. The PS-MPs mainly interfere with the normal metabolism

of flavonoid biosynthesis, pyrimidine metabolism, purine

metabolism, fatty acid biosynthesis, and phenylpropanoid

biosynthesis. These pathways are closely related to the

mechanisms of PS-MPs’ duress in highland barley. The present

study provides new perspectives for understanding the potential

impacts of microplastics on crops and contributes to a more

comprehensive assessment of their hazards to plant production

systems. In future research, the effects of different types and shapes

of microplastics on crops should be explored. Varieties that are

more resistant to microplastic stress should also be bred.

Additionally, environmental monitoring and management should

be strengthened, and appropriate strategies should be developed to

reduce the impact of microplastics on agroecosystems.
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SUPPLEMENTARY FIGURE 1

Heat map of total differential metabolite clustering of positive ions. The colors

change from red to blue, representing the content changing from high to low.
The red font represents that the content ofmetabolites has been increasing from

control to M100, the yellow font represents that the content of metabolites has

been decreasing from control to M100, the green font represents that the
content of metabolites has been increasing and then decreasing from control to

M10, and then to M100, and the blue font represents that the content of
metabolites has been decreasing and then increasing from control to M10,

and then to M100. (CK: control, M10: 10 mg/L, M00: 100 mg/L).

SUPPLEMENTARY FIGURE 2

Heat map of total differential metabolite clustering of negative ions. The color
changes from red to blue, representing the content changing from high to

low. The red font represents that the content of metabolites has been
increasing from control to M100, yellow font represents that the content of

metabolites has been decreasing from control to M100, green font represents
that the content of metabolites has been increasing and then decreasing from

control to M10 then to M100, and blue font represents that the content of

metabolites has been decreasing and then increasing from control to M10
then to M100. (CK: control, M10: 10 mg/L, M00: 100 mg/L).

SUPPLEMENTARY FIGURE 3

Metabolic pathways of flavonoid biosynthesis. Note: Circles represent
metabolites, with green solid circles marking annotated metabolites, red

circles indicating up-regulated differential metabolites, blue circles

indicating down-regulated differential metabolites, and yellow circles
indicating the inclusion of both up- and down-regulated metabolites.
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SUPPLEMENTARY FIGURE 4

Metabolic pathways of pyrimidine metabolism. Note: Circles represent
metabolites, with green solid circles marking annotated metabolites, red

circles indicating up-regulated differential metabolites, blue circles

indicating down-regulated differential metabolites, and yellow circles
indicating the inclusion of both up- and down-regulated metabolites.

SUPPLEMENTARY FIGURE 5

Metabolic pathways of purine metabolism. Note: Circles represent
metabolites, with green solid circles marking annotated metabolites, red

circles indicating up-regulated differential metabolites, blue circles
indicating down-regulated differential metabolites, and yellow circles

indicating the inclusion of both up- and down-regulated metabolites.
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SUPPLEMENTARY FIGURE 6

Metabolic pathways for fatty acid biosynthesis. Note: Circles represent
metabolites, with green solid circles marking annotated metabolites, red

circles indicating up-regulated differential metabolites, blue circles

indicating down-regulated differential metabolites, and yellow circles
indicating the inclusion of both up- and down-regulated metabolites.

SUPPLEMENTARY FIGURE 7

Metabolic pathways of phenylpropanoid biosynthesis. Note: Circles
represent metabolites, with green solid circles marking annotated

metabolites, red circles indicating up-regulated differential metabolites,
blue circles indicating down-regulated differential metabolites, and yellow

circles indicating the inclusion of both up- and down-regulated metabolites.
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