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1 Introduction

Terrestrial plants are affected by action of numerous stressors (e.g., increased or

decreased temperatures, excess light, mechanic damages, and others) which can be spatially

heterogenous. Induction of physiological responses in non-irritated parts of plant can be

based on generation and propagation of electrical signals (ESs) including action potentials,

variation potentials, and system potentials (Gallé et al., 2015; Li et al., 2021; Pachú et al.,

2021; Sukhova et al., 2023). It is known (Gallé et al., 2015; Farmer et al., 2020; Li et al., 2021)

that ESs influence expression of defense genes, production of phytohormones, respiration,

phloem mass-flow, transpiration, and many other processes and, thereby, increase plant

tolerance to action of adverse factors (Szechyńska-Hebda et al., 2017; Zandalinas

et al., 2020).

Photosynthesis is an important target of ESs because these signals can change the CO2

assimilation (Ahv), quantum yields of photosystem I and II (gPSI and gPSII), non-
photochemical quenching of chlorophyll fluorescence (NPQ), linear electron flow (LEF),

and cyclic electron flow around photosystem I (CEF) (Gallé et al., 2015; Szechyńska-Hebda

et al., 2017; Sukhova et al., 2023). It is traditionally considered that ESs suppress

photosynthetic processes decreasing Ahv, gPSI, gPSII, and LEF and increasing NPQ and

CEF (see, e.g., Lautner et al., 2005; Grams et al., 2009; Pavlovič et al., 2011; Gallé et al., 2013;

Sukhov et al., 2015; Białasek et al., 2017; Krausko et al., 2017; Szechyńska-Hebda et al.,

2022). However, there are works which show that electrical signals can activate

photosynthesis including increasing Ahv and gPSII (Grams et al., 2007; Vuralhan-Eckert

et al., 2018; Yudina et al., 2022; Grinberg et al., 2023). Considering an important role of the

ESs-induced photosynthetic inactivation in stimulation of the plant tolerance to adverse

factors (Sukhov, 2016; Sukhova et al., 2023), potential mechanisms of the positive influence

of electrical signals on photosynthesis require additional discussion.
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2 Mechanisms of ESs-induced
photosynthetic inactivation

Mechanisms of the ESs-induced photosynthetic inactivation are

relatively investigated now (Sukhov, 2016; Sukhova et al., 2023).

There are at least two groups of potential targets of electrical signals:

photosynthetic dark and light reactions (Pavlovič et al., 2011; Gallé

et al., 2013; Sukhov et al., 2015). The ESs influence on both targets is

related to transient inactivation of H+-ATPase in the plasma

membrane, which accompanies induction of all types of ESs,

increases pH in the apoplast, and decreases pH in the cytoplasm,

stroma and lumen of chloroplasts (Sukhova et al., 2023).

Decreasing pH in the chloroplast lumen inactivates

photosynthetic light reactions through the direct NPQ

stimulation by the PsbS protonation (Ruban, 2015, 2016) and

LEF suppression by slowing the plastoquinol oxidation

(Tikhonov, 2013, 2014); the last process activates CEF (Sukhov

et al., 2015). In contrast, the ESs-induced inactivation of

photosynthetic dark reactions is caused by disruption of the CO2

flux into the chloroplast stroma through decreasing the mesophyll

CO2 conductance (gm) (Gallé et al., 2013). This response is probable

to be related to pH-dependent increase of HCO3
-: CO2 ratio in the

apoplast (Sukhova et al., 2023) because HCO3
- is weakly

transported through the plasma membrane (Tholen and Zhu,

2011). Alternative hypotheses explain influence of pH shifts on

gm through changes in activity of carbonic anhydrases (Grams et al.,

2009) or aquaporins (Gallé et al., 2013). It should be noted that the

ESs-induced inactivation of photosynthetic dark reactions also

suppresses photosynthetic light reactions providing additional

mechanism of changes in NPQ, gPSI, gPSII, LEF, and CEF

(Pavlovič et al., 2011; Sukhov et al., 2015; Sukhov, 2016).
3 Participation of changes in stomatal
CO2 conductance in forming ESs-
induced photosynthetic activation
and inactivation

It is known (Flexas et al., 2008, 2012) that the CO2 flux from air

to the chloroplast stroma is dependent on gm and the stomatal CO2

conductance (gs). Potentially, it means that changes in gs can also

participate in induction of photosynthetic responses by electrical

signals. However, ESs-induced decreasing the CO2 assimilation is

accompanied by increasing the stomatal CO2 conductance in many

investigations (Koziolek et al., 2004; Grams et al., 2009; Gallé et al.,

2013); therefore, the changes in gs can weakly influence Ahv in

some cases.

Assuming that gm and gs are series connected (Flexas et al.,

2008), (Equation 1) can be used for description of the total CO2

conductance (g):

g =
gsgm

gs + gm
(1)
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Equation 1 shows that g≈gm at gs>>gm; i.e., ESs-induced

changes in gs should not influence the total CO2 conductance

and, therefore, assimilation in this case. This point is in a good

accordance with works noted above. In contrast, ESs-induced

changes in gs can influence g and, thereby, Ahv at gs≈gm or

gm>>gs; in the last case (gm>>gs), decreasing gm should not

strongly influence the photosynthetic CO2 assimilation.

It is known that electrical signals can induce both initial

increasing and decreasing gs (Koziolek et al., 2004; Kaiser and

Grams, 2006; Grams et al., 2007, 2009; Gallé et al., 2013).

Increasing gs can be observed under specific conditions; e.g., under

the high air humidity (Yudina et al., 2019) or strong soil drought

(Yudina et al., 2022). It is also probable that ESs induce this increasing

in some plant species including, e.g., maize (Grams et al., 2009),

mimosa (Kaiser and Grams, 2006), and soybean (Gallé et al., 2013).

In accordance with Yudina et al. (2019), final ESs-induced changes in

stomatal conductance can be caused by combination of two opposite

processes: decreasing turgor of guard cells, which contributes the

stomata closure, and decreasing turgor of epidermal cells, which

contributes the stomata opening. Therefore, different contributions of

these mechanisms can provide both opening and closure of stomata.

The turgor decreasing is related to fluxes of ions and protons from the

cytoplasm to apoplast, which accompany the transient inactivation of

H+-ATPase and changes in activity of ion channels during the ESs

generation (Sukhov, 2016; Sukhova et al., 2023).

As a result, it can be hypothesized that the positive influence of

ESs on photosynthesis requires increasing gs and substantial

contribution of gs to g (gm>>gs). Despite absence of works, which

directly investigated influence of ESs-induced increasing gs on Ahv

under the low gs:gm ratio, there are points supporting this hypothesis.

First, the ESs-induced activation of the photosynthetic CO2

assimilation has dynamics being similar to dynamics of increasing

gs in all investigations (Peña-Cortés et al., 1995; Grams et al., 2007;

Vuralhan-Eckert et al., 2018; Yudina et al., 2022; Grinberg et al.,

2023); in contrast, dynamics of the Ahv inactivation can be similar

(Hlavácková et al., 2006; Hlavinka et al., 2012) or different (Koziolek

et al., 2004; Kaiser and Grams, 2006; Grams et al., 2009; Gallé et al.,

2013) with dynamics of decreasing gs in various works.

Second, decreasing the initial gs (under the strong water deficit),

which increases contribution of gs to g in accordance with (Equation 1),

transforms the negative influence of electrical signals on photosynthesis

into the positive influence (Yudina et al., 2022). In this case, magnitude

of the ESs-induced increasing Ahv is positively dependent on the

magnitude of the ESs-induced gs increasing. In contrast, decreasing

the initial gm (under the high CO2 concentration) increases magnitude

of the ESs-induced inactivation of photosynthetic CO2 assimilation

(Gallé et al., 2013). It should be additionally noted that pea seedlings,

which mainly demonstrate unrelated dynamics of changes in gs and

Ahv under favorable conditions (Yudina et al., 2019, 2022), have the

high gs:gm ratio under these conditions (Sukhov et al., 2017); i.e., the

total CO2 flux into the chloroplast stroma is limited by gm in this plant.

It should be additionally noted that combination of the ESs-

induced increasing gs and similar initial values of gm and gs (gs≈gm)

can potentially contribute to intricate dynamics of changes in
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photosynthetic activity because decreasing gm should suppress the

CO2 assimilation; in contrast, increasing gs should stimulate this

assimilation. Peña-Cortés et al. (1995) showed intricate dynamics of

photosynthetic changes (including increasing and decreasing Ahv)

after local action of various stressors (the electrical current,

mechanical damage, heating); however, these changes were rather

related to the intricate dynamics of gs after irritations.

Thus, simultaneous presence of both noted properties (the ESs-

induced increasing gs and substantial contribution of gs to g) seems to

be possible; at least, in some plants and under specific conditions. It can

explain variety of direction of ESs-induced photosynthetic responses

(activation or inactivation) which were shown in various works.

4 Discussion

The current analysis shows that ESs-induced photosynthetic

responses in terrestrial plants can be result of combination of three

groups of processes including suppressing photosynthetic light

reactions by acidification of the chloroplast lumen, decreasing gm,

and increasing/decreasing gs (Figure 1). The pH-dependent
Frontiers in Plant Science 03
suppression of light reactions is not probable to be strongly related

to changes in gm and gs. In contrast, changes in the mesophyll and

stomatal CO2 conductance should strongly influence the CO2 flux

from air to the chloroplast stroma and, thereby, photosynthesis.

The ratio between initial gs and gm is probable to be the first key

criterion to determine parameters of ESs-induced photosynthetic

responses. The high gs:gm ratio contributes to induction of typical

fast photosynthetic inactivation (Sukhov, 2016) which is based on the

ESs-induced decreasing gm (Gallé et al., 2013). In this case, dynamics

of changes in Ahv and other photosynthetic parameters can be weakly

related to changes in the stomatal conductance (Koziolek et al., 2004;

Kaiser and Grams, 2006; Grams et al., 2009; Gallé et al., 2013).

In contrast, the low gs:gm ratio can contribute induction of

different types of photosynthetic responses. This type is dependent

on the second key criterion which is direction of changes in gs. In

this case, the ESs-induced decreasing gs should also cause the

photosynthetic inactivation; however, dynamics of this

inactivation should be strongly related to dynamics of the stomata

closure. Particularly, this response was shown in tobacco

(Hlavácková et al., 2006) and tomato (Hlavinka et al., 2012) after
FIGURE 1

Potential ways of influence of electrical signals on photosynthetic activity. gs is the stomatal CO2 conductance, gm is the mesophyll CO2 conductance.
pHlumen is pH in the chloroplast lumen. In accordance with Equation 1, the low ratio of the initial gs to the initial gm corresponds to limitation of the CO2

flux from air to the chloroplast stroma by the stomatal CO2 conductance; the high ratio of the initial gs to the initial gm corresponds to limitation of this
CO2 flux by the mesophyll CO2 conductance. Initial conductance is conductance before induction of electrical signals.
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the local burning and the ESs propagation. The ESs-induced

increasing gs should cause the photosynthetic activation with

dynamics strongly related to dynamics of stomata opening. This

relation is observed in works showing the ESs-induced

photosynthetic activation (Grams et al., 2007; Vuralhan-Eckert

et al., 2018; Yudina et al., 2022; Grinberg et al., 2023).

It should be additionally noted that proposed mechanism

explains the ESs-induced Ahv activation, However, increasing the

quantum yield of photosystem II can be also observed after the ESs

propagation (Grinberg et al., 2023). This effect is probable to be

caused by stimulation of ATP consumption and following decrease

of electrochemical H+ gradient across the thylakoid membrane; this

decreasing can stimulate electron flows and increase the quantum

yield of photosystem II (Tikhonov, 2013, 2014).

Thus, the current analysis preliminary explains potential

mechanisms of the ESs-induced photosynthetic activation which

was observed in some works (see above). Further checking this

explanation requires experimental and model-based investigations;

however, there are other questions related to the ESs-induced

photosynthetic activation. Particularly, the ESs-induced

photosynthetic inactivation is considered to play an important

role in increasing tolerance of plants to action of adverse factors

(Sukhov, 2016; Sukhova et al., 2023). Considering this point,

analysis of influence of the photosynthetic activation on the plant

tolerance is an additional important task of future investigations.
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