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Introduction: Early identification of drought stress in crops is vital for implementing

effective mitigation measures and reducing yield loss. Non-invasive imaging

techniques hold immense potential by capturing subtle physiological changes in

plants under water deficit. Sensor-based imaging data serves as a rich source of

information for machine learning and deep learning algorithms, facilitating further

analysis that aims to identify drought stress. While these approaches yield favorable

results, real-time field applications require algorithms specifically designed for the

complexities of natural agricultural conditions.

Methods: Our work proposes a novel deep learning framework for classifying

drought stress in potato crops captured by unmanned aerial vehicles (UAV) in

natural settings. The novelty lies in the synergistic combination of a pre-trained

network with carefully designed custom layers. This architecture leverages the

pre-trained network’s feature extraction capabilities while the custom layers

enable targeted dimensionality reduction and enhanced regularization,

ultimately leading to improved performance. A key innovation of our work is

the integration of gradient-based visualization inspired by Gradient-Class

Activation Mapping (Grad-CAM), an explainability technique. This visualization

approach sheds light on the internal workings of the deep learning model, often

regarded as a ”black box”. By revealing themodel’s focus areas within the images,

it enhances interpretability and fosters trust in the model’s decision-

making process.

Results and discussion: Our proposed framework achieves superior

performance, particularly with the DenseNet121 pre-trained network, reaching

a precision of 97% to identify the stressed class with an overall accuracy of 91%.

Comparative analysis of existing state-of-the-art object detection algorithms

reveals the superiority of our approach in achieving higher precision and

accuracy. Thus, our explainable deep learning framework offers a powerful

approach to drought stress identification with high accuracy and

actionable insights.
KEYWORDS

stress phenotyping, drought stress, machine learning, deep learning, transfer learning,
convolutional neural network, explainable machine learning
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1 Introduction

Abiotic stress adversely affects the development, yield, and

quality of the products (de Medeiros et al., 2023). Among various

abiotic stresses, soil water deficit or drought stress has the strongest

impact on plant health as well as soil biota as drought aggravates

other stresses like salinity, heat stress, nutritional deficiency, and

pathogen attack which cause further damage to plants (Ahluwalia

et al., 2021). Hence, it is essential to detect drought stress at a point

where its impacts can be mitigated through prompt irrigation,

maximizing the crop’s yield potential. However, the complex

nature of drought stress inducing a range of physiological and

biochemical responses in plants, operating at both cellular and

whole-organism levels (Farooq et al., 2009), make this task

increasingly challenging. These responses have been closely

associated with specific wavelengths of light that crops reflect and

absorb within the visible and near-infra-red (NIR) spectrums

(Tucker, 1979). Consequently, various imaging techniques have

demonstrated their utility in stress phenotyping (Al-Tamimi et al.,

2022). Imaging techniques offer a non-invasive and non-destructive

means of identifying plant stress, utilizing a range of methods,

including red-blue-green (RGB) imagery (Zubler and Yoon, 2020),

thermal imaging (Pineda et al., 2021), fluorescence imaging

(Legendre et al., 2021), multi-spectral, and hyper-spectral imaging

(Sarić et al., 2022) for stress assessment.

The recent progress in computer vision, particularly artificial

intelligence(AI)-driven techniques, including machine learning

(ML) and image processing have been extremely useful in

detecting and identifying various forms of biotic and abiotic

stresses through the utilization of digital image datasets (Li et al.,

2020; Gill et al., 2022). While ML models (Singh et al., 2016) have

shown considerable success in recognizing plant stress, the manual

feature extraction process is constrained by the inability to

generalize to diverse tasks, hindering automation and rendering

the developed ML model unsuitable for real-time field

implementation. In contrast, deep learning (DL), a subset of ML,

streamlines the learning process by eliminating the need for manual

feature extraction (Singh et al., 2018). Through various convolution

layers, DL, particularly convolutional neural networks (CNN),

achieves hierarchical feature extraction by automatically

extracting valuable information from images. This breakthrough

in image classification has been extensively applied to identify and

categorize various forms of biotic and abiotic stresses using digital

image datasets (Jiang and Li, 2020).

Considerable advancement has been made in drought stress

phenotyping through the recent application of ML and DL

methods. Zhuang et al. (2017) employed a methodology involving

segmentation, followed by the extraction of color and texture features.

They implemented a supervised learning method, gradient boosting

decision tree (GBDT), to identify water stress in maize. A subsequent

study utilizing the same RGB dataset revealed that a deep

convolutional neural network (DCNN) outperformed GBDT in

terms of performance (An et al., 2019). Detection of water stress in

groundnut canopies through hyperspectral imaging is employed,

involving various phases for assessing image quality, denoising, and

band selection, and eventually classifying using Support Vector
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Machine (SVM), Random Forest (RF), and Extreme Gradient

Boosting (XGBoost/XGB) (Sankararao et al., 2023). Ramos-Giraldo

et al. (2020) conducted the classification of four levels of drought

severity in soybean color images using a transfer learning technique

and a pre-trained model based on DenseNet-121. Azimi et al. (2021)

generated a dataset under controlled conditions for chickpea crops,

aiming to identify water stress at three stages: control, young seedling,

and pre-flowering. They employed a CNN and long short-term

memory (LSTM) combination, where CNN architectures

functioned as feature extractors, and LSTM was employed for

predicting the water stress category. Chandel et al. (2021)

investigated the potential of CNN models based on deep learning

techniques for accurately identifying stress and non-stress conditions

in water-sensitive crops, including maize, okra, and soybean. Three

different CNN models—AlexNet, GoogLeNet, and Inception V3—

were utilized to assess their efficacy in identification accuracy,

revealing that GoogLeNet outperformed the other models. Gupta

et al. (2023) utilizes chlorophyll fluorescence images of wheat

canopies, employing a multi-step approach that involves

segmentation and feature extraction. Feature extraction is done

through correlation-based gray-level co-occurrence matrix

(CGLCM) and color features (proportion of pixels in each of the

nine selected bands). Subsequently, machine learning classifiers are

employed for classification, using tree-based methods, particularly

the random forest (RF) and extra trees classifier, demonstrating

superior performance. Chen et al. (2022) applied the regression

approach to predict the drought tolerance coefficient using SVM,

RF, and Partial Least Squares Regression (PLSR) based on

hyperspectral images of the tea canopy, the findings revealed that

SVM outperformed the other two models. A study by Dao et al.

(2021) evaluated the effectiveness of machine learning and deep

learning methods in detecting drought stress using both full spectra

and first-order derivative spectra, comparing their performance with

the traditional use of spectral indices. The findings demonstrated the

benefits of employing derivative spectra for identifying changes in

the entire spectral curves of stressed vegetation, emphasizing the

robustness of deep learning algorithms in capturing this complex

change. A dataset comprising RGB images of maize crops was

curated by Goyal et al. (2024) and their proposed custom-designed

CNN model showcases superior performance compared to five

prominent state-of-the-art CNN architectures, namely InceptionV3,

Xception, ResNet50, DenseNet121, and EfficientNetB1, in the early

detection of drought stress in maize. Butte et al. (2021) generated a

dataset comprising aerial images of potato canopies and introduced a

DL-based model designed to identify drought stress, leveraging

diverse imaging modalities and their combinations.

While DL models often outperform traditional Machine ML

methods in plant phenotyping tasks, their “black-box” nature

makes it difficult to understand how they arrive at decisions. This

lack of interpretability is a growing concern as practitioners seek

models to deliver accurate results and justify their decisions. There

is a limited number of explainable DL models in plant phenotyping

research. Ghosal et al. (2018) built a model that accurately identifies

soybean stress from RGB leaf images. This model offered valuable

insights by highlighting the visual features crucial for its decisions.

While Nagasubramanian et al. (2020) acknowledged the
frontiersin.org

https://doi.org/10.3389/fpls.2024.1476130
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Patra and Sahoo 10.3389/fpls.2024.1476130
importance of interpretability, their approach lacked a detailed

explanation of the methods used. Our work addresses these

challenges by introducing a novel DL architecture for drought

stress assessment in potatoes using aerial imagery. Even with a

smaller dataset, our framework achieves superior results compared

to the existing methods. Our work offers three key benefits: 1) A

transfer learning-based model that effectively leverages knowledge

from larger datasets to address the limitations of smaller potato

crop stress datasets, overcoming challenges like over-fitting, 2) A

light-weight DL pipeline specifically designed to enhance stress

identification in potato crops, 3) Integration of Gradient-based

visualization for model explainability, highlighting the image

regions most relevant to stress detection.
2 Materials and methods

2.1 Data set description

The potato crop aerial images utilized in this study have been

sourced from a publicly accessible dataset encompassing multiple

modalities (Butte et al., 2021). Collected from a field at the

Aberdeen Research and Extension Center, University of Idaho,

these images serve as valuable resources for training machine

learning models dedicated to crop health assessment in precision

agriculture applications. Acquired using a Parrot Sequoia multi-

spectral camera mounted on a 3DR Solo drone, the dataset features

an RGB sensor with a resolution of 4,608 × 3,456 pixels and four

monochrome sensors capturing narrow bands of light wavelengths:

green (550 nm), red (660 nm), red-edge (735 nm), and near-

infrared (790 nm), each with a resolution of 1,280 × 960 pixels.

The drone flew over the potato field at a low altitude of 3 meters,

with the primary objective of capturing drought stress in Russet

Burbank potato plants attributed to premature plant senescence.

The dataset comprises 360 RGB image patches in JPG format,

each sized 750×750 pixels. These patches were obtained from high-

resolution aerial images by cropping, rotating, and resizing

operations. The dataset is split into a training subset of 300

images and a testing subset of 60. Ground-truth annotations are

provided in XML and CSV formats, indicating regions of healthy

and stressed plants outlined by rectangular bounding boxes.

Annotation was performed manually using the LabelImg software.

Figure 1A shows a sample RGB field image, while Figure 1B

presents the corresponding annotated regions, with yellow

representing healthy areas and red indicating stressed areas. The

testing subset is independent of the training subset sourced from

different aerial images. The dataset also includes image patches

from spectral sensors featuring red, green, red-edge, and near-

infrared bands, with a size of 416×416 pixels. However, we are solely

utilizing RGB images due to the limitations of the low-resolution

monochromatic images.

In this study, we utilized 1500 augmented images generated

from the original 300 images using the method devised by

Butte et al. (2021). From each augmented image, annotated

windows—rectangular bounding boxes with provided coordinates
Frontiers in Plant Science 03
in the data repository—were extracted, resulting in separate

“healthy” and “stressed” classes. The final count of images for the

“stressed” and “healthy” classes were 11,915 and 8,200, respectively.

These images underwent further augmentation during training,

as outlined in the proposed model. The evaluation of the model

was performed on a specific test set comprising 60 images, from

which 401 healthy images and 734 stressed images were extracted

using the bounding boxes similar to the process used for the

training image set.
2.2 Proposed methodology

We present an integrated approach for drought stress

classification, featuring a CNN-based pipeline with transfer

learning and an interpretability technique to enhance model

transparency. This methodology combines data augmentation,

transfer learning, and a CNN architecture for robust feature

extraction, followed by explainability methods that leverage

gradients to provide insights into the model’s decision-making

process. The methodology is structured as follows:

2.2.1 Deep learning pipeline with transfer learning
The proposed framework uses CNN-based architecture with

transfer learning to differentiate between drought-stressed and

healthy plants. Transfer learning enables the model to start with a

pre-trained network, reducing training time and improving

accuracy, especially with smaller datasets. The model is divided

into three key components: data augmentation, a pre-trained

network, and additional layers for final classification. The pipeline

is depicted in Figure 2.
• Data Augmentation: It tackles the challenge of limited

training data by artificially expanding the dataset with

variations of existing samples. This approach injects

variability and improves the model’s generalization ability

to unseen data. Transformations like re-scaling, shearing,

rotating, shifting, and flipping are applied to create a more

diverse training set. This robustness to variations helps the

model perform better on real-world data and reduces the

risk of over-fitting.

• Pre-trained Network: Transfer learning is employed to

speed up the training process and improve accuracy by

starting with a pre-trained CNN. The pre-trained model

serves as the backbone of the architecture, effectively

extracting low-level and mid-level features from the images.

Networks like EfficientNetB0, MobileNet, DenseNet121, and

NASNetMobile, trained on vast and diverse datasets such as

ImageNet, are repurposed to recognize drought stress by

fine-tuning them for this specific task.

• Additional Layers: Two types of layers are applied after the

pre-trained architecture: the Global Average Pooling Layer

and Dense Layers.

• Global Average Pooling: It reduces the dimensionality of

spatial data (like feature maps from convolutional layers)
frontiersin.org
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Fron
into a single feature vector. It achieves this by calculating

the average of all elements within each feature map,

resulting in one value per feature map.

• Dense layers: Two fully connected dense layers are stacked

sequentially after global average pooling. These layers

perform computations to learn complex relationships

between the features extracted by the pre-trained network.

Dropout and L2 regularization are applied between each

dense layer to prevent over-fitting. Dropout randomly

drops a certain percentage of neurons during training,

forcing the model to learn from different subsets of

features and reducing its reliance on any specific feature.

L2 regularization penalizes large weights in the model,

discouraging the model from becoming overly complex.

Each neuron in the dense layer applies a weighted sum and

activation function (ReLU) to determine the probability of

an image belonging to a particular class.
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• Output Layer: This layer uses a sigmoid activation function

to generate the final probability scores between 0 and 1,

indicating stressed or healthy.
In essence, the model incorporates data augmentation to enrich

the training data, takes advantage of a pre-trained network’s feature

extraction capabilities, and uses dense layers with regularization and

dropout to learn a classification boundary between stressed and

healthy images.

2.2.2 Explainability through gradient-
based visualization

We integrated a gradient-based explainable approach into our

framework to ensure model transparency and to enhance

interpretability. It is inspired by Grad-CAM (Selvaraju et al.,

2017), a technique that provides visual explanations by

highlighting the regions of input images that contribute most to
FIGURE 2

Deep learning framework for drought stress identification.
FIGURE 1

Field images showing (A) sample RGB image and (B) healthy and stressed plants.
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the model’s predictions. While Grad-CAM focuses on class-specific,

high-level features, gradient-based visualization emphasizes pixel-

level sensitivities, offering a broader perspective on what influences

the model’s output. By visualizing the areas most relevant to the

model’s decision, the devised explainable approach offers valuable

insights into the decision-making process of the deep learning

model. The practical application involves taking an input image

that the deep learning pipeline can classify as healthy or stressed.

According to the trained model, we can then use the identified

stressed image to locate the specific areas of the field that are

affected by stress. The following steps are involved in the proposed

explainable approach, which takes its cue from Grad-CAM.

1. Forward Pass: The model output q is computed by performing

a forward pass through the deep learning model, represented as:

q = f(x)

where:
Fron
• q represents the model output.

• f(·) represents the deep learning model.

• x represents the input image.
2. Compute Gradients: The gradients of the model output with

respect to the input image are calculated, represented as:

∇xq =
∂q
∂x

where:
• ∇xq represents the gradients of the model output with

respect to the input image.

• ∂q
∂x represents the partial derivatives of the model output

with respect to the input image.
3. Gradient Visualization: The absolute gradients are

computed and visualized as a heatmap, represented as:

Heatmap = abs(∇xq)

where:
• Heatmap represents the heatmap visualization of

the gradients.

• abs(·) represents the absolute value function.
4. Standardization: The heatmap is optionally standardized by

subtracting the mean and dividing by the standard deviation to

improve visualization, represented as:

Heatmapstd =
Heatmap − m

s

where:
• Heatmapstd represents the standardized heatmap.

• µ represents the mean of the heatmap.

• s represents the standard deviation of the heatmap.
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5. Plotting: Finally, the input image and the heatmap are

plotted side by side for visualization.

Thus, the explainable approach based on Grad-CAM leverages

the strength by analyzing gradients to pinpoint image regions

crucial for the model’s decisions, offering valuable insights into

what triggers the model’s stress responses.
2.3 Evaluation metrics

The model’s performance underwent assessment using various

evaluation metrics, including accuracy, precision, and recall

(sensitivity). These metrics are computed based on the counts of

true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN), which collectively form a 2x2 matrix known as

the confusion matrix. The format is illustrated in Figure 3, where

the negative class represents the “healthy” class, and the positive

class corresponds to the stressed class.

In this matrix, TP and TN indicate the accurate predictions of

water-stressed and healthy potato crops, respectively. FP, termed

type 1 error, denotes predictions where the healthy class is

inaccurately identified as water-stressed. FN, referred to as type 2

error, represents instances where water-stressed potato plants are

incorrectly predicted as healthy. The classification accuracy is a

measure of the ratio between correct predictions for stressed and

healthy images and the total number of images in the test set.

Precision is the ratio of true positives to the sum of true positives

and false positives, indicating the proportion of correctly identified

positive instances out of all instances predicted as positive. Recall

(sensitivity) is the ratio of true positives to the sum of true positives

and false negatives, reflecting the model’s ability to correctly

identify all positive instances. The formulas for accuracy,

precision and recall are given below.

Accuracy =
True Positive + True Negative

Total Population

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative
FIGURE 3

Confusion matrix.
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2.4 Model workflow

The proposed pipeline is a comprehensive framework that

involves model training, evaluation, and explainability to provide

a robust and transparent solution for identifying stressed plants in

field images. It is demonstrated in Figure 4. The training phase of

the pipeline utilizes a dataset of 1500 augmented field images, each

annotated with bounding boxes to delineate regions of healthy and

stressed plants. These annotated windows were extracted from

each augmented image, resulting in separate “healthy” and

“stressed” classes with 8,200 and 11,915 images, respectively.

The dataset is divided into 80% for training and 20% for

validation to prevent over-fitting. In the testing phase, a distinct

testing dataset comprising 60 field images are employed to

evaluate the model ’s performance on unseen data. The

evaluation is conducted on a test set of 60 images, with 401

healthy and 734 stressed images extracted using bounding boxes.

The model’s performance is assessed using standard evaluation

metrics such as accuracy, precision, and recall. Then, to

understand the model’s decision-making process, the pipeline

incorporates a devised explainable approach based on gradients.

It involves using an already identified stressed image as input,

leveraging the trained model and gradient-based visualization

techniques to generate heatmaps highlighting the areas of the

image the model identifies as affected by stress. These heatmaps

provide valuable insights into the model’s reasoning and can help

identify the visual cues that indicate plant stress.
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3 Results and discussion

The methodology employed in this study utilizes transfer

learning, leveraging knowledge from models trained on the

‘ImageNet’ dataset and adapting it to address drought stress

identification. By using pre-trained networks as a foundation

rather than starting from scratch, the approach reduces storage

requirements and computational demands. This approach results in

a light-weight model, with trainable parameters ranging from 3.3

million to 7.36 million across various pre-trained networks, a

notable departure from the considerably heavier models typically

used in deep learning tasks. Specifically, the trainable parameters for

EfficientNetB0, MobileNet, DenseNet121, and NASNetMobile are

4.18 million, 3.35 million, 7.09 million, and 4.37 million,

respectively, as depicted in Figure 5.

In our deep learning framework, Python version 3.8.8 serves as

the programming language foundation, while TensorFlow and

Keras, widely recognized and utilized libraries, are employed for

model development and training. Additionally, various libraries

such as os, pandas, numpy, and sklearn were employed to facilitate

data manipulation and metric calculations.

In the proposed deep learning framework, the input data

undergoes augmentation through various transformations. Four

pre-trained networks are systematically evaluated, each serving

as a backbone feature extractor. Additional layers are stacked on

top of these networks to complement their ability to identify

drought stress in images collected from natural settings. The
FIGURE 4

Work-flow of the model.
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following discussion provides an in-depth analysis of the

parameters, the pipeline’s performance based on learning

curves and confusion matrices, and the model’s explainability

by identifying stressed spatial features in field images. In

addition, our approach is compared to previous works based

on object detection algorithms, demonstrating that the proposed

method outperforms them.
3.1 Model parameters

The input dataset is divided into two subsets for training and

validating, utilizing a fixed random seed of 42. The random_state =

42 parameter ensures re-producibility by setting a specific random

seed, guaranteeing consistent results across different runs of the

code. Separate generators are created for training, validation, and

testing datasets using the ImageDataGenerator function from Keras.

Each generator is configured with specific settings tailored to the

respective pre-trained architectures: EfficientNetB0, MobileNet,

DenseNet121, and NASNetMobile within the deep learning

framework as discussed in section 2.2.1. The target image sizes

are set to 224x224 for EfficientNetB0, MobileNet, and DenseNet121,

and 299x299 for NASNetMobile. The re-scaling factor, batch size,

and class mode are standardized across all architectures, with values

of 1/255, 128, and binary, respectively. The training generator is also

equipped with data augmentation transformations to enhance the

dataset’s variability and improve model generalization. Key

parameters governing these transformations, including the shear

range, rotation range, width shift range, and height shift range, are

configured as 0.2, 30, 0.2, and 0.2, respectively. Horizontal and

vertical flipping are enabled with boolean values set to True for

both, while the fill mode is specified as nearest.

The proposed custom architecture builds on the pre-trained

network by adding several layers. It begins with global average

pooling, followed by two dense layers utilizing 128 and 64 neurons,
Frontiers in Plant Science 07
respectively. Each dense layer utilizes ReLU activation for efficient

learning, dropout with a 50% rate to prevent over-fitting, and L2

regularization with a weight decay of 0.01 to further enhance

robustness during feature extraction. The final layer of the

network comprises a single neuron with sigmoid activation,

outputting a value between 0 and 1, representing the probability

of the input belonging to a specific class. The Adam optimizer is

employed for training, starting with an initial learning rate of 0.001.

An exponential decay schedule is applied to adjust the learning rate

over epochs. This schedule gradually reduces the learning rate after

every two epochs with a decay rate 0.9. The chosen loss function is

binary cross-entropy, which measures the difference between the

predicted probabilities and the actual class labels.

A callback function is utilized using ModelCheckpoint from

Keras to save the best-performing version of the model during

training. This callback monitors the validation loss and saves the

model only when a new minimum validation loss is achieved. After

training, the code identifies the epoch with the lowest validation loss

and loads the corresponding model weights. These weights are then

utilized to evaluate the model’s performance on a separate test

dataset. This strategy ensures that the model evaluated on unseen

data represents the optimal performance attained during training.
3.2 Performance of the model

We investigated four pre-trained networks individually as part

of the proposed deep learning pipeline. While EfficientNetB0 and

NASNetMobile achieved high training accuracies of 99.38% and

98.47%, respectively, their validation and test accuracies were

notably lower, indicating potential weaknesses as evidenced by

their loss and accuracy learning curves, which is discussed later in

the section. In contrast, MobileNet demonstrated impressive

performance with a training accuracy of 99.81%, a validation

accuracy of 99.33%, a test accuracy of 88.72%, and a low
FIGURE 5

Number of trainable parameters of the model with different pre-trained CNN architectures.
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validation loss of 0.033. Similarly, DenseNet121 showcased robust

performance across training, validation, and test sets, achieving a

training accuracy of 99.69%, a validation accuracy of 98.86%, and a

test accuracy of 90.75%. Overall, DenseNet121 emerged as the best-

performing model among those investigated, boasting the highest

test accuracy, closely followed by MobileNet. The comparative

performance is summarized in Table 1. Epochs in training are

chosen based on observing the convergence pattern of the model,

typically by monitoring performance metrics on a validation

dataset. The training continues until the model’s performance on

the validation set plateaus or degrade, indicating convergence and

preventing over-fitting. The deep learning pipeline was trained with

EfficientNetB0, MobileNet, DenseNet121, and NASNetMobile for

30, 60, 60, and 30 epochs, respectively. The optimal performance for

each model was achieved at epochs 30, 59, 55, and

28, correspondingly.

Analysis of learning curves: Analyzing the learning curves for

training and validation loss and training and validation accuracy

offers valuable insights into how the model performs and behaves

throughout the training process when employing different pre-

trained networks. For EfficientNetB0, as illustrated in Figure 6A,

the training loss stabilizes at a low value, indicating that the model

has learned most of the patterns in the training data and is not

finding any substantial new information. On the other hand, the

fluctuating validation loss indicates that the model’s performance

on unseen data (the validation set) is inconsistent, suggesting

potential over-fitting or instability during training. Furthermore,

the training accuracy remains consistently high, as shown in

Figure 7A. In contrast the validation accuracy fluctuates more,

implying that the model performs well on the training data but

struggles to generalize effectively to unseen data. Additionally, the

noticeable gap between the training and validation accuracy further

suggests over-fitting, where the model becomes too specialized to

the training data and fails to generalize well to new data.

For NASNetMobile, as depicted in Figure 6D, the learning

curves for training and validation loss reveal evidence of over-

fitting, given the considerable gap between the two curves.

Regarding training and validation accuracy learning curves, a

similar pattern is observed, as shown in Figure 7D. This suggests

that while these models perform well on the training data, their

performance on unseen validation data is substantially lower.

For DenseNet121, the trends observed in the loss graphs

indicate that the model is effectively learning from the data. Both

training and validation loss curves (i.e., Figure 6C) demonstrate a

consistent decrease over time. While there is an initial gap between

the training and validation loss curves, this gap gradually
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diminishes as the training progresses. This narrowing gap

suggests the model is improving its generalization ability to

unseen data. Additionally, the validation accuracy steadily

increases throughout the training process and remains closely

aligned with the training accuracy(i.e., Figure 7C), indicating the

model’s positive performance on both training and validation sets.

The performance of MobileNet exhibits a similar trend, where the

loss graphs indicate effective learning by the model. Both training

and validation loss curves (i.e., Figure 6B) depict a consistent

decrease over time. Nonetheless, a noticeable gap persists between

the training and validation loss curves, suggesting a potential for

over-fitting, although not severe, given the concurrent increase in

validation accuracy (i.e., Figure 7B). This indicates that the model is

still able to generalize well to unseen data, despite the observed gap

between the loss curves.

Analysis of Confusion Matrices: The analysis of confusion

matrices is essential to provide deeper insight into the model’s

performance beyond accuracy. The deep learning pipeline utilizing

various pretrained CNN models were evaluated on an independent

test set of 1,135 images that were not part of the training process.

The model generated the confusion matrices shown in Figure 8

using these already trained networks. The values within each

confusion matrix were arranged according to the layout shown in

Figure 3. Following the similar pattern observed in the previous

learning curves, the EfficientNetB0 and NASNetMobile showed the

poorest performance on the test dataset. For EfficientNetB0,

analysis of the confusion matrix (Figure 8A) reveals a total of 295

misclassified instances out of 1135 predictions, comprised of 138

false positives (FP) and 157 false negatives (FN). This results in a

misclassification rate of 26%. In contrast, the confusion matrix for

NASNetMobile (Figure 8D) indicates a strange behavior where the

model correctly identifies all stressed images but fails to recognize

any healthy ones. In the case of EfficientNetB0, the higher

misclassification rate suggests suboptimal performance across

both classes. Conversely, NASNetMobile’s performance is

characterized by a notable bias towards the “stressed” class,

resulting in a complete oversight of the “healthy” class. Both

scenarios are deemed undesirable, rendering the models

ineffective for their intended purpose. On the other hand, both

MobileNet and DenseNet121 achieve very low misclassification

rates between healthy and stressed classes, as shown by the

minimal Type I and Type II errors in their respective confusion

matrices (Figures 8B, C). This translates to high overall accuracies of

88.72% for MobileNet and 90.75% for DenseNet121.

DenseNet121 stands out as the top-performing backbone in the

proposed deep learning pipeline, strengthened by data
TABLE 1 Model performance.

Model Train Acc Val Acc Val Loss Test Acc No. Epoch Best Result Epoch

EfficientNetB0 99.38 74.30 0.5033 74.00 30 30

MobileNet 99.81 99.33 0.0330 88.72 60 59

DenseNet121 99.69 98.86 0.0508 90.75 60 55

NASNetMobile 99.47 59.81 0.6815 64.67 30 28
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FIGURE 6

Training loss vs. validation loss of the model for the various PreTrained Networks: (A) EfficientNetB0, (B) MobileNet, (C) DenseNet121 and
(D) NASNetMobile.
FIGURE 7

Training vs. validation accuracy of the model for the various PreTrained Networks: (A) EfficientNetB0, (B) MobileNet, (C) DenseNet121, and
(D) NASNetMobile.
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augmentation and additional layers. Analysis of both learning

curves and confusion matrices shows that it generalizes better on

unseen data and distinguishes healthy and stressed classes more

effectively than EfficientNetB0, MobileNet, and NASNetMobile.
3.3 Explaining the model

We employ a method to generate visual explanations for

decisions made by the proposed deep learning pipeline,

enhancing its transparency. We utilize the DenseNet121 pre-

trained network in our pipeline due to its superior performance

compared to other networks. The explanations are derived from

analyzing gradients at two distinct stages of the pipeline, resulting in

two scenarios for investigation:
Fron
• Scenario 1: Gradients are considered at the last dense layer.

• Scenario 2: Gradients are considered at the last

convolutional layer of DenseNet121.
These gradients are used to generate a coarse localization map

for a specific target concept, such as drought stress. This map

highlights key regions within the image that contribute greatly to
tiers in Plant Science 10
predicting the concept. Analyzing an RGB image for drought stress

involves examining various visual cues and patterns indicative of

plant stress. In such images, areas of interest often exhibit

discoloration, wilting, or reduced foliage density compared

to healthy regions. The color spectrum may shift towards

yellow or brown, signifying decreased chlorophyll content and

photosynthetic activity. Additionally, leaf curling or necrotic spots

may be visible, indicating water scarcity and cellular damage. The

explainability process begins with pre-processing the drought-

stressed image by resizing it to match the model’s input

dimensions and normalizing the pixel values to ensure consistent

data representation. After pre-processing, the image is fed into the

trained deep learning model. We used the model weights from the

55th epoch, as they provided the best performance in terms of

classification accuracy, precision, and recall. Gradients are then

calculated using GradientTape, a TensorFlow component that

facilitates automatic differentiation. These gradients are

subsequently used to generate a heatmap that effectively

highlights the critical regions within the input image that

contribute to the prediction of drought stress. The entire process

is summarized in the Algorithm 1. The generated heatmap overlays

the original image, highlighting areas where the model places

greater importance in its decision-making process. The original
FIGURE 8

Confusion matrix of the model for the various PreTrained networks with test data set comprising of 1135 images: (A) EfficientNetB0, (B) MobileNet,
(C) DenseNet121 and (D) NASNetMobile.
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image, along with the heatmaps for both Scenario 1 and Scenario 2,

are shown in Figures 9A–C, respectively. The seismic colormap is

used for heatmap visualization, where red shades highlight areas of

high importance, blue indicates regions of low importance, and

white represents the neutral point.
Fron
Input: Trained Model, Input image

Output: Visualization of input image and heatmap

1 Load the Trained Model;

2 Read the image to be assessed;

3 Resize image to match model input size;

4 Normalize pixel values;

5 Compute gradients as per procedure mentioned in

section 2.2.2 using GradientTape;

6 Take absolute value of gradients and normalize;

7 Calculate mean and standard deviation;

8 Standardize the heatmap;

9 Plot input image and heatmap side by side;
Algorithm 1. Visualize image regions associated with stress.

The sensitivity analysis is conducted to evaluate the robustness of

the model against noise and small changes in the input in both

scenarios. Specifically, it assesses how a trained model’s predictions

are influenced by perturbations in input images through the addition of

Gaussian noise. This analysis involves introducing Gaussian noise to

148 images, which represent 20% of the drought-stressed images from
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the test set, using a variance of 0.01. Sensitivity is measured by

calculating the absolute difference in prediction scores between the

original and perturbed images, providing a numerical sensitivity score

that reflects the model’s resilience to slight variations in input data. To

summarize the findings, key statistics are computed, including the

average sensitivity, median sensitivity, and standard deviation of the

sensitivity scores across all tested images. Furthermore, the distribution

of these sensitivity scores is visualized using a histogram, with the score

plotted against frequency and a bin size of 10.

In Scenario 1, the median sensitivity score is 1.65, close to the

average sensitivity of 1.73, indicating a consistent response to noise

across various inputs. These findings suggests that the model’s

predictions remain relatively stable and predictable, with minimal

variation in how noise affects the different inputs. The standard

deviation in Scenario 1 is 0.71, further emphasizing the model’s

consistency in handling noise, as the spread of sensitivity scores is

narrow, and there are fewer outliers. In contrast, Scenario 2 exhibits a

higher median sensitivity of 2.32. Still, it is notably lower than the

average sensitivity of 3.01, indicating that while many inputs show

moderate sensitivity to noise, a few outliers with much higher

sensitivity skew the average upward. These observations suggests

that the model’s response to noise is less consistent in Scenario 2, as

the presence of outliers introduces greater variability. The standard

deviation 2.48 in Scenario 2 reflects this wider spread of sensitivity

scores, highlighting the model’s reduced robustness when gradients

are taken from the convolutional layer. The greater variability

indicates that some images are more affected by noise than others,

making the model’s behavior less predictable in this scenario.

The distribution of sensitivity scores for Scenario 1 (Figure 10A)

and Scenario 2 (Figure 10B) further supports these findings. In

Scenario 1, the distribution is concentrated around lower sensitivity

scores, with most images showing sensitivity scores below 2. This

pattern indicates that the model is generally less sensitive to noise,

with fewer outliers, reflecting better stability and consistency across

inputs. In contrast, Scenario 2 exhibits a wider range of sensitivity

scores, from 0 to 10, indicating much higher variability. Some

images show very high sensitivity scores, reaching up to 10,

suggesting that some of the inputs are more affected by noise

perturbations than others. Thus, Scenario 1 demonstrates better

stability and interpretability, while Scenario 2 is more prone to noise

and shows greater variability in its responses.
FIGURE 9

Explaining the deep learning model using gradient-based visualization. (A) Input Image (B) Heatmap 1. (C) Heatmap 2.
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In summary, gradient-based visualization of drought-specific

spatial features helps bridge the gap between a CNN model’s ‘black

box’ nature and human understanding. It empowers agricultural

practitioners to interpret the model’s reasoning and make informed

decisions about plant health based on visual cues and analysis.
3.4 Performance comparison with object
detection methodologies

We compare our proposed classifier, which incorporates

gradient-based explainability, with the object detection algorithms

implemented in a previous work (Butte et al., 2021). This comparison

is particularly insightful because the localization aspect of object

detection models aligns with our proposed approach, which also

focuses on pinpointing stress areas in crops. Both systems are

designed to identify and distinguish between two classes (stressed

and healthy) using the same dataset and bounding boxes.

The evaluation is based on precision and recall metrics to

measure each model’s effectiveness in accurately detecting

instances of the target classes. Higher precision and recall

indicate superior performance in classifying stressed and healthy

conditions. Table 2 presents the performance metrics of our

proposed model and compares them with those of models

reported by (Butte et al., 2021). Our proposed pipeline, based on

DenseNet121 notably outperforms the other models. It achieves the
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highest precision for both stressed (0.967) and healthy (0.820)

instances, along with the best recall for stressed instances (0.887).

These results demonstrate its ability to accurately identify stressed

conditions while maintaining high precision and minimizing false

positives. In contrast, while Yolo v3 shows competitive recall for

stressed plants (0.882), its low precision (0.407) indicates that it

frequently misclassifies healthy plants as stressed. The performance

comparison is further visualized in the histogram shown in

Figure 11. This result shows that our method provides the

reliable and accurate classification of stressed and healthy

conditions compared to traditional object detection models.

Moreover, the proposed classifier with explainability offers a

better alternative to traditional object detection algorithms when

interpretability and high precision in identifying stressed plants are

prioritized. The visual insights provided by the explainable approach

enhance model transparency by highlighting critical regions used in

the decision-making process. Such insights are especially useful for

applications where understanding the model’s reasoning is crucial,

such as early stress detection in agriculture. On the other hand,

traditional object detection algorithms may be more appropriate for

tasks requiring precise object localization and real-time performance.

Therefore, choosing our classifier and object detection models

depends on specific application requirements and priorities.

Our work advances non-invasive imaging techniques for crop

monitoring by offering an interpretable, high-precision classifier

that supports early stress detection. This advancement greatly aid
FIGURE 10

Distribution of sensitivity scores (A) Scenario 1 and (B) Scenario 2.
TABLE 2 Performance of the models with the RGB images.

Model Stressed Healthy

Precision Recall Precision Recall

Retina-Unet-Ag 0.702 0.841 0.659 0.832

Mask R-CNN 0.700 0.809 0.644 0.769

RetinaNet 0.698 0.795 0.578 0.899

Faster R-CNN 0.781 0.654 0.630 0.891

Yolo v3 0.407 0.882 0.541 0.855

Proposed Pipeline (with DenseNet121) 0.967 0.887 0.820 0.945
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decision-making in agriculture, ultimately contributing to better

crop management practices.
4 Conclusion

This study confirms the effectiveness of a deep learning pipeline,

specifically utilizing DenseNet121 as the backbone, along with a

data augmentation procedure and custom layers, to detect drought

stress in potato crops with high accuracy. The results demonstrate

that explainable machine learning can provide actionable insights

by identifying stress-specific regions within crop images, thereby

answering our hypothesis that early identification of drought stress

using non-invasive imaging can improve decision-making in

agricultural practices.

The novel integration of gradient-based visualization offers

significant advances in model transparency, allowing agricultural

practitioners to trust better and interpret the artificial intelligence-

based system’s outputs. This interpretability is crucial for practical

adoption in real-world agricultural settings, where understanding

the basis of the model’s predictions is as important as accuracy. This

framework offers a promising tool for improving crop management,

water use efficiency, and overall sustainability by enabling targeted

interventions such as precision irrigation.

While the framework has demonstrated strong performance, its

application to other crops and environmental stress factors remains

to be explored. Future efforts should expand its applicability,

improve real-time processing capabilities, and address scalability

across diverse agricultural conditions. This work presents an

innovative, light-weight, and explainable approach to crop stress

detection that has the potential to reshape current agricultural

practices, ultimately fostering more sustainable and efficient crop

management strategies.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Frontiers in Plant Science 13
Author contributions

AP: Conceptualization, Data curation, Investigation,

Methodology, Software, Validation, Visualization, Writing –

original draft, Writing – review & editing. LS: Supervision,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work

was funded partially by the research grant to LS from the

Department of Biotechnology, Govt. of 469 India (BT/PR47926/

NER/95/1967/2022).
Acknowledgments

AP extends his gratitude to the Department of BSBE, IITG Bio-

informatics Facility, Param-Ishan High-Performance Computing

Facility at IITG.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
FIGURE 11

Comparison of precision and recall metrics across various models. (A). Drought Stressed (B). Healthy.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1476130
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Patra and Sahoo 10.3389/fpls.2024.1476130
References
Ahluwalia, O., Singh, P. C., and Bhatia, R. (2021). A review on drought stress in
plants: Implications, mitigation and the role of plant growth promoting rhizobacteria.
Res. Environ. Sustain. 5, 100032. doi: 10.1016/j.resenv.2021.100032

Al-Tamimi, N., Langan, P., Bernad, V., Walsh, J., Mangina, E., and Negrao, S. (2022).
Capturing crop adaptation to abiotic stress using image-based technologies. Open Biol.
12, 1–20. doi: 10.1098/rsob.210353

An, J., Li, W., Li, M., Cui, S., and Yue, H. (2019). Identification and classification of
maize drought stress using deep convolutional neural network. Symmetry 11, 256.
doi: 10.3390/sym11020256

Azimi, S., Wadhawan, R., and Gandhi, T. K. (2021). Intelligent monitoring of stress
induced by water deficiency in plants using deep learning. IEEE Trans. Instrument.
Measure. 70, 1–13. doi: 10.1109/TIM.2021.3111994

Butte, S., Vakanski, A., Duellman, K., Wang, H., and Mirkouei, A. (2021). Potato
crop stress identification in aerial images using deep learning-based object detection.
Agron. J. 113, 3991–4002. doi: 10.1002/agj2.v113.5

Chandel, N. S., Chakraborty, S. K., Rajwade, Y. A., Dubey, K., Tiwari, M. K., and Jat,
D. (2021). Identifying crop water stress using deep learning models. Neural Comput.
Appl. 33, 5353–5367. doi: 10.1007/s00521-020-05325-4

Chen, S., Shen, J., Fan, K., Qian, W., Gu, H., Li, Y., et al. (2022). Hyperspectral
machine-learning model for screening tea germplasm resources with drought tolerance.
Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1048442

Dao, P. D., He, Y., and Proctor, C. (2021). Plant drought impact detection using
ultra-high spatial resolution hyperspectral images and machine learning. Int. J. Appl.
Earth Observ. Geoinform. 102, 102364. doi: 10.1016/j.jag.2021.102364

de Medeiros, R. L. S., de Paula, R. C., de Souza, J. V. O., and Fernandes, J. P. P. (2023).
Abiotic stress on seed germination and plant growth of zeyheria tuberculosa. J. Forest.
Res. 34, 1511–1522. doi: 10.1007/s11676-023-01608-3

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). “Plant
Drought Stress: Effects, Mechanisms and Management,” in Sustainable Agriculture.
Eds. E. Lichtfouse, M. Navarrete, P. Debaeke, S. Veronique and C. Alberola (Springer
Netherlands, Dordrecht), 153–188.

Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., and
Sarkar, S. (2018). An explainable deep machine vision framework for plant stress
phenotyping. Proc. Natl. Acad. Sci. 115, 4613–4618. doi: 10.1073/pnas.1716999115

Gill, T., Gill, S. K., Saini, D. K., Chopra, Y., de Koff, J. P., and Sandhu, K. S. (2022). A
comprehensive review of high throughput phenotyping and machine learning for plant
stress phenotyping. Phenomics 2, 156–183. doi: 10.1007/s43657-022-00048-z

Goyal, P., Sharda, R., Saini, M., and Siag, M. (2024). A deep learning approach for
early detection of drought stress in maize using proximal scale digital images. Neural
Comput. Appl. 36, 1899–1913. doi: 10.1007/s00521-023-09219-z

Gupta, A., Kaur, L., and Kaur, G. (2023). Drought stress detection technique for
wheat crop using machine learning. PeerJ Comput. Sci. 9, e1268. doi: 10.7717/peerj-
cs.1268
Frontiers in Plant Science 14
Jiang, Y., and Li, C. (2020). Convolutional neural networks for image-based high-
throughput plant phenotyping: A review. Plant Phenom. 2020, 1–20. doi: 10.34133/
2020/4152816

Legendre, R., Basinger, N. T., and van Iersel, M. W. (2021). Low-cost chlorophyll
fluorescence imaging for stress detection. Sensors (Basel Switzerland) 21, 2055.
doi: 10.3390/s21062055

Li, Z., Guo, R., Li, M., Chen, Y., and Li, G. (2020). A review of computer vision
technologies for plant phenotyping. Comput. Electron. Agric. 176, 105672. doi: 10.1016/
j.compag.2020.105672

Nagasubramanian, K., Singh, A. K., Singh, A., Sarkar, S., and Ganapathysubramanian,
B. (2020). Usefulness of interpretability methods to explain deep learning based plant
stress phenotyping. arXiv:2007.05729. 1-15. doi: 10.48550/arXiv.2007.05729

Pineda, M., Baron, M., and Perez-Bueno, M.-L. (2021). Thermal imaging for plant
stress detection and phenotyping. Remote Sens. 13, 68. doi: 10.3390/rs13010068

Ramos-Giraldo, P., Reberg-Horton, C., Locke, A. M., Mirsky, S., and Lobaton, E.
(2020). Drought stress detection using low-cost computer vision systems and machine
learning techniques. IT Prof. 22, 27–29. doi: 10.1109/MITP.2020.2986103

Sankararao, A. U. G., Rajalakshmi, P., and Choudhary, S. (2023). Machine learning-
based ensemble band selection for early water stress identification in groundnut canopy
using UAV-based hyperspectral imaging. IEEE Geosci. Remote Sens. Lett. 20, 1–5.
doi: 10.1109/LGRS.2023.3284675
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