
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Andrés J. Cortés,
Colombian Corporation for Agricultural
Research (AGROSAVIA), Colombia

REVIEWED BY

Sherif El-Areed,
Beni-Suef University, Egypt
Joaquin Guillermo Ramirez Gil,
National University of Colombia, Colombia

*CORRESPONDENCE

James C. Schnable

schnable@unl.edu; Baskar

Ganapathysubramanian

baskarg@iastate.edu

RECEIVED 05 August 2024

ACCEPTED 18 November 2024
PUBLISHED 16 December 2024

CITATION

Powadi A, Jubery TZ, Tross MC,
Schnable JC and Ganapathysubramanian B
(2024) Disentangling genotype and
environment specific latent features for
improved trait prediction using a
compositional autoencoder.
Front. Plant Sci. 15:1476070.
doi: 10.3389/fpls.2024.1476070

COPYRIGHT

© 2024 Powadi, Jubery, Tross, Schnable and
Ganapathysubramanian. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 December 2024

DOI 10.3389/fpls.2024.1476070
Disentangling genotype
and environment specific
latent features for improved
trait prediction using a
compositional autoencoder
Anirudha Powadi1, Talukder Zaki Jubery2, Michael C. Tross3,4,
James C. Schnable3,4* and Baskar Ganapathysubramanian1,2,5,6*

1Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States,
2Translational AI Research and Education Center, Iowa State University, Ames, IA, United States,
3Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States,
4Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States,
5Department of Mechanical Engineering, Iowa State University, Ames, IA, United States, 6Plant Science
Institute, Iowa State University, Ames, IA, United States
In plant breeding and genetics, predictive models traditionally rely on compact

representations of high-dimensional data, often using methods like Principal

Component Analysis (PCA) and, more recently, Autoencoders (AE). However,

these methods do not separate genotype-specific and environment-specific

features, limiting their ability to accurately predict traits influenced by both

genetic and environmental factors. We hypothesize that disentangling these

representations into genotype-specific and environment-specific components

can enhance predictive models. To test this, we developed a compositional

autoencoder (CAE) that decomposes high-dimensional data into distinct

genotype-specific and environment-specific latent features. Our CAE

framework employed a hierarchical architecture within an autoencoder to

effectively separate these entangled latent features. Applied to a maize diversity

panel dataset, the CAE demonstrated superior modeling of environmental

influences and out-performs PCA (principal component analysis), PLSR (Partial

Least square regression) and vanilla autoencoders by 7 times for ‘Days to Pollen’

trait and 10 times improved predictive performance for ‘Yield’. By disentangling

latent features, the CAE provided a powerful tool for precision breeding and

genetic research. This work has significantly enhanced trait prediction models,

advancing agricultural and biological sciences.
KEYWORDS

hierarchical disentanglement, latent disentanglement, plant phenotyping, days to
pollen, yield, GxE
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1 Introduction

Advances in imaging and robotic technologies are making both

high-resolution images and sensor data increasingly accessible to

plant biologists and breeders as tools to capture measurements of

plant traits. These data types can be used to measure or predict traits

that are labor-intensive or costly to measure directly, including

variation in plant architectural and biochemical traits as well as

resistance or susceptibility to specific biotic stresses. A growing

body of evidence suggests high dimensional trait datasets can also

be useful to predict crop productivity (e.g. grain yield) (Adak et al.,

2023; Jin et al., 2024). However, like the plant traits plant biologists

and breeders seek to predict, sensor data and the high dimensional

traits extracted from that data reflect the impact of both genetic and

environmental factors.

Traditionally, such data are analyzed in raw form or by using

handcrafted features without explicitly separating genotype (G) and

environment (E) factors. Handcrafting features for high-

dimensional data can be challenging due to the ‘curse of

dimensionality, ’ where increasing complexity hinders

interpretability, accuracy, and generalizability of models across

environments and genotypes. In contrast, latent features derived

from unsupervised learning methods capture underlying patterns

without the biases of human assumptions, providing more

generalizable models for predicting complex traits (Feldmann

et al., 2021; Aguate et al., 2017).

Latent phenotyping has emerged as a promising approach to

minimize human bias by reducing data dimensionality via

unsupervised or self-supervised approaches (Gage et al., 2019;

Ubbens et al., 2020; Feldmann et al., 2021; Tross et al., 2023).

Traditionally, machine learning methods like PCA (Principal

component analysis), Linear Discriminant Analysis (LDA), T-

distributed Stochastic Neighbor Embedding (t-SNE), and

autoencoders have been used to extract the ‘latent representation’

from high-dimensional data (Alexander et al., 2022; Zhong et al.,

2016; Kopf and Claassen, 2021; Song et al., 2023; Gomari et al.,

2022; Iwasaki et al., 2023). Autoencoders, in particular, offer

advantages in capturing non-linear relationships. By compressing

data into a latent space and reconstructing the original input,

autoencoders learn a compact yet informative representation

crucial for phenotyping (Gage et al., 2019; Ubbens et al., 2020;

Tross et al., 2023). Autoencoder-derived representations, though
Frontiers in Plant Science 02
informative, often fail to separate genotype and environment

influences, leading to ‘entangled’ latent spaces where distinct

plant attributes, such as ‘leaf number,’ ‘height,’ and ‘chlorophyll

concentration,’ are intermixed rather than independently

represented. Disentangling these attributes within the latent space

can improve latent factors’ interpretability.

Our hypothesis is that disentangling genotype and environment

effects within the latent space can improve prediction accuracy and

enhance model generalizability to new genotypes and

environments. Specifically, we aim to separate environmental

factors (e.g., soil conditions, weather, treatment) and genetic

influences in high-dimensional hyperspectral data representing

maize phenotypes. We believe that disentangling the latent space

into environment and gene effects should help improve the

predictive performance of the learned representation on many

downstream tasks, as shown in Figure 1.

Several disentanglement methods have been proposed, though

they often compromise reconstruction accuracy. A common

strategy involves regularization techniques, where additional

terms in the loss function, as seen in variational autoencoders

(VAEs) (Kingma and Welling, 2019), encourage independence

among latent variables. For example, b-VAE (Higgins et al., 2017)

balances reconstruction and disentanglement, while FactorVAE

(Kim and Mnih, 2019) uses total correlation penalties to promote

variable independence. Mutual information-based approaches, such

as InfoGAN and StyleGAN, enhance disentanglement by

maximizing the distinctiveness of latent factors in the output, and

supervised or semi-supervised techniques leverage labeled data to

guide disentangled representation learning (Kulkarni et al., 2015;

Kingma et al., 2014; Kingma and Welling, 2022).

Disentanglement approaches fall broadly into hierarchical and

latent space methods. Hierarchical disentanglement organizes the

latent space into levels, where higher layers capture abstract features

and lower layers focus on specific details. Latent space

disentanglement, in contrast, promotes independent variation by

assigning each latent dimension to a distinct feature (Burgess et al.,

2018; Zheng and Sun, 2019; Watters et al., 2019; Cha and

Thiyagalingam, 2023). StyleGAN (Liu et al., 2022; Niu et al., 2023;

Wei et al., 2023) achieves this by associating unique features with

specific components of a Gaussian latent vector, while hierarchical

disentanglement has been applied across domains, including speech

(Sun et al., 2020), video sequences (Comas et al., 2021), and multi-
FIGURE 1

Trait prediction workflow of a Vanilla Autoencoder vs Compositional Autonencoder.
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modal data (Chen and Zhang, 2023) using attention (Cui et al., 2024),

context addition (Li et al., 2021), graph convolution (Bai et al., 2022),

and contrastive learning (Xie et al., 2023).

Orthogonal denoising autoencoders (Ye et al., 2016) and

factorized latent space models (Jia et al., 2010) enhance

disentanglement by learning features from multiple perspectives

within a dataset, enabling the integration of diverse data sources.

Additionally, correlation loss has been applied to effectively separate

identity and expression in facial representations (Sun et al., 2019).

Latent feature disentanglement has found applications across

various fields, including music (Banar et al., 2023), text (Wang

et al., 2022), facial generation (Karras et al., 2019), and protein

structure variation (Tatro et al., 2021), though its use in plant

phenotyping remains limited.

In this paper, we propose a compositional autoencoder (CAE),

inspired by orthogonal denoising autoencoders (Ye et al., 2016) and

factorized latent spacemodels (Jia et al., 2010), to disentangle genotype

and environment effects within the latent space. Figure 2 illustrates the

problem definition of the disentangled latent space representation,

where environmental factors can include a range of variables such as

weather, soil conditions, and treatments applied toplants inafield.Our

objectives in this work are as follows:
Fron
• Develop a compositional autoencoder (CAE) to separate

genotype-specific, macro-, and microenvironmental effects

in hyperspectral data.

• Assess whether CAE-generated latent representations

improve predictive accuracy for traits like Days to Pollen

and Yield.

• Examine the consistency of the CAE’s performance across

different model initializations and hyperparameters for

potential applications in trait prediction.
tiers in Plant Science 03
2 Materials and methods

2.1 Equipment and dataset

Hyperspectral data is being increasingly adopted by plant

scientists as a method to measure or predict plant traits in field

and greenhouse settings (Kaleita et al., 2006; Zhang et al., 2023;

Yendrek et al., 2016; Tross et al., 2023). For the purposes of this

study, we employed data from 578 inbreds, which represent a subset

of the Wisconsin Diversity panel (Mazaheri et al., 2019), grown and

phenotyped in 2020 and 2021 at the Havelock Farm research facility

at the University of Nebraska-Lincoln. In each year, measurements

were collected on two replicated plots of each inbred grown in

different parts of the field, for a total 2×2×578 = 2312 observed

plots. Each plot consisted of two rows of genetically identical plants

with approximately 20 plants per row, as previously described in

Mural et al. (2022). Hyperspectral data was collected using

FieldSpec4 spectroradiometers (Malvern Panalytical Ltd.,

Formerly Analytical Spectral Devices) with a contact probe. This

equipment captures 2151 wavelengths of electromagnetic radiation

ranging from 350 nm to 2500 nm. Hyperspectral data was collected

from a single fully expanded leaf per plot, selected from a

representative plant, avoiding edge plants whenever possible.

Three spectral measurements were taken at each of the three

points located at the tip, middle, and base of the adaxial side of

each leaf. Values were averaged across the nine wavelength scans to

generate a final composite spectrum for each plot sampled (Tross

et al., 2023). Figure 3 illustrates the distribution and variability of

mean reflectance among the genotypes across two years, which in

this paper are referred to as two different environments. We divide

the environment into field-level (or macro-environment) and plot-

level (or micro-environment) Guil et al. (2009). For the latent
FIGURE 2

Problem definition: Disentangling genotype-specific, environment-specific, and plant-specific information from hyperspectral data. The goal is to
separate features associated with genotype, field-level environmental conditions, and individual plant variations across multiple environments and
replicates. This achieved by the method of composition.
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features extraction, the data was then normalized using min-max

normalization. This normalization is given as:

xnormalized =
x −mindataset

maxdataset −mindataset
(1)

From the Equation 1, ‘mindataset ’ and ‘maxdataset ’ are the

minimum and maximum values in the entire dataset respectively.
2.2 Vanilla autoencoder

We implemented a standard autoencoder (see Figure 4) as a

baseline for comparison which we refer to below as the ‘vanilla

autoencoder’ (AE). Both the encoder and decoder portions of our

vanilla autoencoder implementation are made up of multiple fully

connected layers stacked together with the non-linear activation

function ‘SeLu.’ The encoder encodes the input data (2151

wavelengths) into smaller dimensions (latent space) and decoder

works to reconstruct back the original input from this latent space.

The Tables 1, 2 show the details of each of the layers that constitute

the encoder and decoder. For training the vanilla autoencoder, data
Frontiers in Plant Science 04
from each plot in each year is considered as one sample, resulting in

a total of 2312 input samples.
2.3 Compositional autoencoder

2.3.1 Architecture
The compositional autoencoder extends the vanilla autoencoder

architecture in a way that aims to disentangle the latent space,

partitioning the impact of different factors that influence the data

into different variables. It consists of an encoder, decoder, and a

fusion block. The network operates as follows:
1. Encode Individual Plant Data: The encoder processes data

from four plants of the same genotype, compressing it into

latent features.

2. Fuse Encoded Data: These encoded representations from

all the plants are then fused into a single latent feature.
FIGURE 4

A vanilla autoencoder works to learn a compressed yet highly
informative representation of the input data.
TABLE 1 Encoder: Configuration details.

Layer Type Dimensions Activation

Linear input_shape → 2150 SELU

Linear 2150 → 1024 SELU

Linear 1024 → 512 SELU

Linear 512 → zg + ze + zp None
‘input_shape’ = 1 x 2151, ‘zg’ = dimensions allocated to capture genotype features, ‘ze’ =
dimensions allocated to capture macro-environment features, ‘zp’ = dimensions allocated to
micro-environment features.
FIGURE 3

Hyperspectral leaf reflectance data was collected using a FieldSpec4 (Malvern Panalytical Ltd., Formerly Analytical Spectral Devices) with a contact
probe. A total of 2151 wavelengths were collected, ranging from 350 nm to 2500 nm. The dataset consists of measurements for a set of 578
different maize inbred genotypes that were grown and phenotyped in two different environments with 2 replicates per environment.
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Fron
3. Disentangle Latent Factors: This fused latent feature is then

partitioned into three distinct parts: genotype-specific

features (common across all plants), macro-environment-

specific features (shared by plants from the same

environment), and micro-environment-specific features

(unique to each plant).

4. Reconstruct Individual Plants: Finally, for each plant, the

genotype, macro-environment, and micro-environment

features are assembled. This assembled disentangled

representation is then decoded to reconstruct the original

plant data.
Here, genotype refers to groups of plants with identical genetic

makeups, macro-environment refers to common environmental

factors experienced by all plants growing in the same field in the

same year (e.g. rainfall, temperature), and micro-environment

refers to features of the individual replicate growing in the same

field within the same environment/year. The table (refer to Table 3)

illustrates the disentangled latent representation for each plant. A

more detailed network architecture can be found in the figure (refer

to Figure 5). The encoder and decoder used here are the same as

vanilla autoencoder with the addition of ‘Fusion’ layer. The layer

details are provided in the Table 4.

The training process involves dividing the hyperspectral data

into groups of four plants (sharing the same genotype). There are a

total of 578 such groups (corresponding to the number of

genotypes). Each group is fed sequentially through the encoder,

resulting in four latent representations. These representations are

then fused together. The resulting fused latent space captures three

factors: genotype, field-level environment (with two sub-parts for

the two environments), and plant-level environment (with four

sub-parts for the four plants).
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2.3.2 Loss function
We trained the CAE network using a two-part loss function

consisting of a reconstruction loss and a correlation loss.

Reconstruction Loss: The mean squared error (MSE), was used

as the reconstruction loss for the compositional autoencoder. This

loss function encourages the network to learn a meaningful

disentangled latent space that can be accurately decoded back to

the original hyperspectral data.

Correlation Loss: A correlation loss was employed to ensure that

all parts in the disentangled latent space remain uncorrelated

throughout the training process. This loss is defined in Equation 2.

Correlation Loss =o
N

i=1
o
N

j=i
CorrMatij
�� �� − Iij (2)

where:
• CorrMatij represents the correlation coefficient between

dimensions i and j in the latent space.

• N is the dimension of the square correlation matrix, which

corresponds to the number of dimensions in the

latent space.

• Iij is the identity matrix, ensuring that the diagonal elements

(where i = j) contribute zero to the loss.
The correlation coefficient used here is the Pearson correlation

coefficient (r), a measure of the linear correlation between two

variables. It is calculated using Equation 3.

r = on
i=1(pi − �p)(ki − �k)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(pi − �p)2on

i=1(ki − �k)2
q (3)

where:
• n is the number of data points.

• pi and ki are the elements of the latent space.

• �p and �k are the means of the pth dimension and kth

dimension, respectively.
In our case, we aim to achieve zero correlation between the

latent space features representing genotype, environment, and

individual plant variations. This is enforced by the correlation

loss function (Equation 2). This ensures that the disentangled

latent space captures these factors independently.

We trained the vanilla autoencoder network using MSE

reconstruction loss only.
2.3.3 Training parameters
The data was divided into training and validation with a 85%-

15% split. Furthermore, we trained these networks with SGD,

Adam, and LBFGS optimizers and found that LBFGS gave us

faster convergence (10x). Therefore, all the experiments were

carried out using the LBFGS optimizer. The training setup

included early stopping criteria, which monitored validation loss

and stopped training after it observed no improvements in the

metric for 15 epochs.
TABLE 2 Decoder: Configuration details.

Layer Type Dimensions Activation

Linear zg + ze + zp → 512 SELU

Linear 512 → 1024 SELU

Linear 1024 → 2150 SELU

Linear 2150 → input_shape Sigmoid
‘input_shape’ = 1 x 2151, ‘zg’ = dimensions allocated to capture genotype features, ‘ze’ =
dimensions allocated to capture macro-environment features, ‘zp’ = dimensions allocated to
micro-environment features.
TABLE 3 Disentangled latent-space representation of each plant.

Plant Representation

Plant 1 {(Zg) genotype, (Ze) macro-environment [1], (Zp) micro-
environment [1]}

Plant 2 {(Zg) genotype, (Ze) macro-environment [1], (Zp) micro-
environment [2]}

Plant 3 {(Zg) genotype, (Ze) macro-environment [2], (Zp) micro-
environment [3]}

Plant 4 {(Zg) genotype, (Ze) macro-environment [2], (Zp) micro-
environment [4]}
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2.3.4 Parameter tuning for downstream tasks
To improve the performance of latent representations for

downstream tasks, we investigated several tuning techniques for

both the network and its inputs.
Fron
• a) We explored masking a portion of the input data. This

technique encourages the model to focus on reconstructing

the missing parts, potentially leading to increased

robustness and reduced overfitting (Bachmann et al.,

2022). We performed a search for the optimal

masking percentage.

• b) Considering our dataset size, we conducted a basic

architecture search to strike a balance between model

complexity and data availability. This helps to mitigate

overfitting and improve generalization. We evaluated

different network architectures with varying numbers of

layers and dimensions in the encoder and decoder.
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• c) To ensure the latent representations captured the

necessary data complexity, we experimented with different

latent space dimensions and their composition of genotype,

field-level, and plant-level environmental features.
2.4 Downstream tasks
performance metrics

To confirm our hypothesis that the disentangled latent

representations enhance the latent feature’s ability to predict

useful traits, we generated disentangled latent features

(disentangled encoded output from the encoder) for all 2312 data

points. We then used these features to train models to predict two

traits, namely, ‘Days to Pollen’ and ‘Yield (grams)’. We trained

several regression models — Random Forests, XGBoost, Ridge

Regressions, and PLSR (Partial-Least Square Regression) — to

identify a high performing model. We compare the performance

of the models trained on the disentangled latent representations

from the CAE against the performance of models trained on the

latent representations from a vanilla autoencder. The resulting

prediction performance was evaluated using an R2 metric

representing the coefficient of determination. The coefficient of

determination, R2, is defined as:
FIGURE 5

The encoder encodes the hyperspectral data for 4 plants, accounting for a single genotype across two environments (E1, and E2) and 2 replicated
per environment (P1E1, P2E1, P1E2, P2E2). The resulting 4 latent vectors are fused using a linear layer. The resulting fused vector contains 3 parts.
(1) Genotype representation part. (2) Macro or field-level environment representation part (2 parts to represent E1 and E2 effects). (3) Micro or
replicate-specific environment representation component [4 parts to represent each of the plants (P1E1, P2E1, P1E2, P2E2)]. To get the composed
encoded form, genotype representation is combined with the field-level environment part and plant-level environment part. These composed
encoded vectors are then fed into the decoder to regenerate the original hyperspectral reflectance.
TABLE 4 Fusion layer details.

Layer Type Dimensions Activation

Linear N(zg + ze + zp) → zg + E(ze) + N(zp) None
‘N’ = number of replicates per genotype (2), ‘E’ = number of environments. (2), ‘zg’ =
dimensions allocated to capture genotype features, ‘ze’ = dimensions allocated to capture
macro-environment features, ‘zp’ = dimensions allocated to micro-environment features.
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R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(4)

where:
Fron
• yi is the observed value,

• ŷ is the predicted value, and

• �y is the mean of the observed data.
3 Results and discussion

3.1 Disentangled representation from CAE

The compositional autoencoder (CAE) successfully

disentangled the latent space into genotype, macro-and micro-

environmental effects. The Figure 6 shows a comparison of the

original reflectance versus factor-specific (genotype and

environments) reflectance. Here, factor-specific reflectance is

obtained by modifying the latent space to only keep the effects of

either the genotype, or the environments; and subsequently

reconstructing the reflectance from them. Therefore, genotype-
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specific is obtained by replacing the environment components in

the latent space with an average of all the environments, and

similarly, genotype components are replaced by their average to

reconstruct the environment-specific reflectance. Figure 6B shows

genotype-specific reflectance. As we are focusing on just 1 genotype

in this figure, all the replicates will have the same latent space and

therefore, the same reflectance. Figure 6C shows macro

environment-specific reflectance. The distinction between the two

macro-environments is visualized by calculating the difference

between macro-environment-specific reflectance and genotype-

specific reflectance for the two macro-environments. Similarly,

Figure 6D shows micro-environment-specific reflectance. The

visualization shows the difference between genotype-specific

reflectance, macro-environment-specific reflectance, and micro-

environment-specific reflectance.

To further verify the degree of environment disentanglement,

we calculated the distribution of the two macro environments for

the original reflectance (Figure 7A) and disentangled environments’

reflectance (Figure 7B). A successful disentanglement should yield

completely separated distributions. We use KL-divergence to

measure the difference between the distributions. We can clearly

see that KL-divergence of distributions representing two

environments generated from the sensor data is quite low (0.62)
FIGURE 6

Reflectance Measurements and Disentangled Influences: (A) the original measured reflectance spectra for multiple samples of a particular genotype,
and the disentangled reflectance components attributed to (B) genotype, (C) macro-environmental influence, and (D) micro-environmental
influence. Note the significant variation in the original reflectance due to the combined effects of genotype and environment. Disentanglement
enables the visualization of distinct spectral patterns associated with each factor, highlighting the CAE’s ability to separate these influences.
frontiersin.org
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while the same for the disentangled reflectance is quite large (2.79).

This strongly indicates that the latent representation is, in fact, able

to represent the two environments distinctly.
3.2 Performance of latent representations
on downstream tasks

We first report on the performance of our baseline model – the

vanilla autoencoder. The latent representation from the vanilla AE
Frontiers in Plant Science 08
was used to train a multiple machine learning models to predict the

two traits. We present the Ridge regression model performance here

as it yielded the best results among all the models (Random Forests,

PLSR, and XgBoost). Figure 8 shows this performance. We see that

the performance for both the traits in question is quite low (r2 = 0.01).

Next, we compare this against the performance of the CAE

based disentangled representation (similarly trained with multiple

machine learning models out of which XgBoost yielded the best

results and its performance is reported here). Figure 9 shows the

performance of the structured latent representation generated by
FIGURE 8

Performance of AE on ‘Days to Pollen’ and ‘Yield’ using Ridge regression: (A) Days to Pollen: The x-axis represents ground truth days (60-90 days),
and the y-axis represents predicted days (55-90 days). The scatter plot shows points widely scattered, indicating poor prediction accuracy. The
model achieves an R of -0.01 (0.01), demonstrating negligible correlation between predicted and actual values. (B) Total Grain Mass: The x-axis
represents ground truth grain mass (200-1000 grams), and the y-axis represents predicted grain mass (200-1000 grams). The scatter plot shows
points widely scattered, indicating poor prediction accuracy. The model achieves an R of -0.01 (0.02), demonstrating negligible correlation between
predicted and actual values.
FIGURE 7

Two sets of visualizations are presented: (A) the original environmental effects (Env 1 and Env 2), and (B) the disentangled versions. The average KL-
divergence observed for the original input data is 0.62, while the disentangled KL-divergence is 2.79. The density distribution of reflectance values is
shown at selected wavelengths for clarity, illustrating the separation of environmental factors before and after applying the CAE.
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the CAE. The Compositional Autoencoder (CAE) performs

exceptionally well for the ‘Days to Pollen’ trait, achieving an r2

value of 0.74. While its performance in predicting ‘Yield’ is lower,

with an r2 value of 0.34, this is unsurprising given the complexity of

the genetic architecture governing yield. Accurate prediction of

yield is inherently challenging due to its intricate genetic influences.

Previous studies with these genotypes (Jin et al., 2024) involved

costly and labor-intensive genotyping and manual trait

measurements. These methods require significant time and effort.

Considering these factors, achieving such performance using leaf

hyperspectral reflectance collected only at a single time point

is significant.

It is worthwhile to compare these results against recent studies

based on collecting hyperspectral reflectance measurements of

whole canopies instead of the leaf reflectance used here. However,

we were unable to find studies reporting results on a diversity panel,

so direct comparison is very difficult. The closest was work by Fan

et al. (2022), who reported a r2 = 0.29 and r2 = 0.84 for predicting

‘yield’ and ‘Days to Pollen’, respectively, from hyperspectral

imagery of the Genomes2Field project, which consists of around

1000 hybrids. Baio et al. (2023) used hyperspectral images of the

canopy of a single commercial hybrid across multiple environments

to predict yield with r2 = 0.33 with a random forest model. We see

that using the CAE approach on leaf scale phenotyping produces

competitive results compared to state-of-the-art canopy scale

phenotyping. Recent work also suggests that using the

hyperspectral data to infer intermediate physiological parameters

that are subsequently used to predict yield is a promising approach.

For instance, Weber et al. (2012), used leaf reflectance and canopy

reflectance to get an r2 = 0.7 for leaf reflectance of 100 genotypes.

Our findings suggest that CAE-generated latent representations

hold promise for capturing relevant yield-related information.
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Further research is needed to explore the integration of these

latent representations with other data sources to potentially

improve yield prediction accuracy.

Finally, we compared the effectiveness of using latent

representations from (a) a Principal Component Analysis (PCA)

on raw data, (b) latent representations from a vanilla autoencoder

(AE), and (c) latent representations from a compositional

autoencoder (CAE) for predicting the traits of ‘Days to Pollen’

and ‘Yield’. Here, we aim to assess whether the learned latent

representations offer benefits compared to using the original

data directly.

Table 5 (yield) and 6 (days to pollen) summarize the

performance comparison using the R-squared metric (coefficient

of determination) using a 5-fold cross-validation process. The tables

showcase the average R-squared values (with standard deviation in

parenthesis) achieved by each method and the best-performing

machine learning model for that particular scenario. The

performances of all the models has been given in the

Supplementary Material section.

As observed in Table 5, the CAE achieves a significantly higher

average R-squared value (0.351) compared to both the AE (0.026)

and the baseline using PCA on raw data (0.034) for predicting

“Yield.” This suggests that the disentangled latent representations
FIGURE 9

Performance of CAE on ‘Days to Pollen’ and ‘Yield’ using Xg-Boost: (A) Days to Pollen: The x-axis indicates ground truth days (60-90 days), and the
y-axis indicates predicted days (55-90 days). Points near the line y = x indicate accurate predictions. The model achieves an R of 0.74 (0.03),
demonstrating strong prediction accuracy. (B) Yield: The x-axis indicates ground truth yield in grain mass (200-1000 grams), and the y-axis indicates
predicted grain mass (200-1000 grams). Points near the line y = x indicate accurate predictions. The model achieves an R of 0.34 (0.06),
demonstrating moderate prediction accuracy.
TABLE 5 A final comparison between baseline (PCA on raw data), vanilla
autoencoder, and compositional autoencoder for yield prediction.

Metric - Model Avg. Values ML Model

R2 − CAE 0.351 (0.058) Xg-Boost Regression

R2 − AE 0.026 (0.017) Ridge Regression

R2 − PCA 0.034 (0.016) Ridge Regression
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learned by the CAE capture more relevant information for

predicting yield compared to the other methods. The best

performing model for all three scenarios is Xg-Boost Regression,

highlighting its effectiveness for this particular regression task.

Similarly, Table 6 shows the results for predicting “Days to

Pollen.” Here, CAE again demonstrates a clear advantage with an

average R-squared value of 0.68, significantly higher than both AE

(0.106) and the baseline PCA approach (0.108). This reinforces the

notion that the disentangled representations from the CAE do a

better job of capturing the factors influencing the number of days to

pollen in the data.

Overall, these results suggest that leveraging the latent

representations learned by the CAE offers a substantial advantage

for predicting both “Yield” and “Days to Pollen” compared to using

the raw data directly or latent representations from the AE. This

highlights the effectiveness of disentangled representations in

capturing underlying factors that are relevant to these specific traits.
3.3 Consistency of latent representations

We evaluate the consistency of the disentangled latent

representations by training the model with multiple initial

conditions and evaluating its performance across different

regression models. This enhances confidence in the reliability and

generalizability of the learned latent representations.

The initialization of model parameters can impact the training

process and the final performance of the model. Different

initializations can lead to the model getting to different local

minima, resulting in variable performance. To check the

consistency of the performance, we trained both the networks

(CAE and vanilla AE) using 4 different initial conditions. By

training the model with multiple initial conditions, we can

evaluate its robustness and consistency in learning informative

latent representations. The Table 7 (Days to Pollen) and Table 8

(Yield) show a comparison of performance between a vanilla auto-
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encoder and compositional autoencoder for the traits of ‘Days to

Pollen’ and ‘Yield’ after performing a 5-fold cross-validation. We

clearly see the consistency of prediction accuracy across different

model initializations.

We finally report on varying various hyperparameters of the

CAE, and their sensitivity to the downstream performance:
• Masking: We evaluated the effect of input masking. Input

masking improves the robustness and generalization of

autoencoders by forcing them to reconstruct missing or

corrupted data, which helps the model learn more

significant features and patterns. This technique also acts

as a regularization method, preventing overfitting and

enhancing performance in various downstream tasks.

Table 9 shows the reconstruction accuracy as a function

of masking fraction and suggests that 20% masking is a

good choice. We also observed that performance on the

downstream task also improved by using masking while

training. Table 10 shows R2 observed for different

masking percentages.

• Network depth: Network depth is an important

hyperparameter to explore because it directly influences

the model’s capacity to learn complex patterns and

hierarchical representations within the data. Deeper

networks can capture more intricate features and

dependencies , potent ia l ly leading to improved

performance on complex tasks, but they also require

careful tuning to avoid issues such as vanishing gradients

and overfitting. We evaluated how performance varied

when the CAE network depth was varied. Table 11 shows

the performance observed for different-sized fully

connected networks. We can see that the downstream

performance is nearly independent of network depth.

• Size of the latent representation: We next evaluated how the

size/dimension of the latent space affected the downstream

trait prediction accuracy. Choosing a higher-dimensional

latent space can result in better reconstruction accuracy;

however, higher-dimensional latent spaces require larger

datasets to avoid overfitting of downstream traits. This

suggests a balanced approach in designing the

dimensionality of the latent space to balance reconstruction

accuracy (which improves with increasing latent space

dimensionality) with trait regression accuracy (which

improves with decreasing latent space dimensionality).
We remind the reader that our disentangled latent space is a

vector consisting of three sets of components — ‘Genotype

features.’ ‘field-level environment features,’ and ‘plant-level
TABLE 6 A final comparison between baseline (PCA on raw data), vanilla
autoencoder, and compositional autoencoder for Days to Pollen.

Metric - Model Avg. Values ML Model

R2 − CAE 0.68 (0.034) Xg-Boost Regression

R2 − AE -0.01 (0.025) Ridge Regression

R2 − RAW − PCA 0.108 (0.02) Ridge Regression

R2 − RAW 0.16 (0.00) Ridge Regression
TABLE 7 Table shows results obtained for Days to Pollen trait using a vanilla autoencoder (AE) and the compositional autoencoder (CAE).

Metric - Model Init. 1 Init. 2 Init. 3 Init. 4 ML Model

R2 - CAE 0.681 (0.04) 0.68 (0.035) 0.676 (0.033) 0.68 (0.034) Xg-Boost Regression

R2 - AE 0.08 (0.02) 0.127 (0.02) 0.108 (0.03) 0.110 (0.03) Ridge Regression
The latent vectors generated using these 2 models performed differently with different ML models and the table below shows the best results among all the models that we tested.
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environment features.’ As the genotype is a common characteristic,

we assign more dimensions to capture its effects. Field-level

environmental features are allocated fewer dimensions, and plant-

level environmental features are given the least. Table 12 shows how

the performance of the downstream regression accuracy varies as

the latent dimension is doubled from 10 to 20 to 40 to 80

dimensions. We see an asymptotic behavior after a latent space of

20 dimensions.
4 Conclusion

This study introduced a novel compositional autoencoder (CAE)

framework designed to disentangle genotype-specific and

environment-specific features from high-dimensional data, thereby

enhancing trait prediction in plant breeding and genetics programs.

The CAE effectively separates these intertwined factors by leveraging a

hierarchical disentanglement of latent spaces, leading to superior

predictive performance for key agricultural traits such as “Days to

Pollen” and “Yield.” Our results demonstrate that the CAE

outperforms traditional methods, including Principal Component

Analysis (PCA) and vanilla autoencoders, in capturing relevant

information for trait prediction. The evaluation of various network

architectures, latent space dimensions, and hyperparameter tuning

further validated the robustness and generalizability of the CAE

model. Specifically, the CAE showed consistent performance

improvements across different initialization conditions and

regression models, underscoring its reliability in practical applications.
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By effectively disentangling genotype and environment-specific

features, the CAE offers a powerful tool for improving the accuracy

and reliability of predictive models in agriculture, ultimately

contributing to more informed decision-making in breeding

programs and agricultural management. Overal l , our

contributions in this paper are as follows: a) we report a

generalized architecture – compositional autoencoder (CAE) –

that can produce a disentangled, low-dimensional, latent

representation (that respects hierarchical relationships), given

high-dimensional data across a diverse set of plant genotypes. In

this case, the effects of genotype and environment on hyperspectral

data collected from plants. b) This architecture (CAE) shows an

improvement in predicting ‘Days to Pollen’, a measure of flowering

time which plays a key role in determining crop variety suitability to

different environments, when compared to standard vanilla

autoencoder or PCA. c) The CAE latent representation produces

models with improved accuracy in predicting the trait ‘Yield’ (i.e.

the amount of grain produced by a given crop variety grown on a

fixed amount of land), which is both critically important to farmers

and considered quite difficult to predict from mid-season sensor

measurements when compared to the current state-of-art methods

like classical autoencoders.

There are several avenues for future work. First, it will be

interesting to explore the viability of compositional autoencoders

for making trait predictions using the disentangled GXE features

using other sensing modalities Shrestha et al. (2024) like (a) UAV-

based hyperspectral imagery and (b) satellite-based multispectral
TABLE 8 Table shows the results obtained for yield prediction trait using a vanilla autoencoder (AE) and the compositional autoencoder (CAE).

Metric - Model Init. 1 Init. 2 Init. 3 Init. 4 ML Model

R2 - CAE 0.351 (0.058) 0.35 (0.054) 0.338 (0.058) 0.345 (0.06) Xg-Boost Regression

R2 - AE 0.026 (0.017) 0.027 (0.014) 0.029 (0.015) 0.028 (0.015) Ridge Regression
The latent vectors generated using these 2 models performed differently with different ML models and the table below shows the best results among all the models that we tested.
TABLE 9 CAE reconstruction accuracy for different masking %.

Percentage Masking Val. Loss

0% 0.08

20% 0.05

50% 0.05

70% 0.05
TABLE 12 Table shows the performance observed for ‘Days to Pollen’
for different latent configurations with 2.2 M training parameters.

Latent space dims (Geno-Env-Plant dims) CAE - R2

10 (6−2−2) 0.69

20 (12−4−4) 0.76

40 (24−8−8) 0.76

80 (48−16−16) 0.77
TABLE 11 Table shows the performance observed for ‘Days to Pollen’
for different sized networks.

No. Parameters No. Layers CAE - R2

14.7M 4 0.76

5.5M 3 0.76

2.2M 2 0.76

392K 1 0.76
TABLE 10 Downstream trait prediction accuracy (‘Days to Pollen’) for
different masking %.

Percentage Masking R2

0% 0.749

20% 0.757

50% 0.756

70% 0.763
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imagery. Second, applying CAE to time-series high-dimensional

data collected on diversity panels can produce disentangled low-

dimensional time trajectories that could provide biological insight.

Finally, integrating these disentangled latent representations with

other data (crop models, physiological measurements) may be a

promising approach for creating accurate end-of-season trait

prediction models using mid-season data.

We conclude by identifying the following limitations of our

work: (a) We evaluated the performance of the CAE on two specific

traits that were phenotyped in the field experiments. Our future

work will focus on evaluating the CAE on a broader range of traits;

(b) Our study is based on hyperspectral reflectance data from a

specific maize diversity panel. Our future work is focused on

extending this to other datasets and environments; (c) While we

demonstrate the technical advantages of disentanglement, it is not

immediately clear how to connect these disentangled features to

biological insights.
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