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Investigating plant genomes offers crucial foundational resources for exploring

various aspects of plant biology and applications, such as functional genomics

and breeding practices. With the development in sequencing and assembly

technology, several Nicotiana tabacum genomes have been published. In this

paper, we reviewed the progress on N. tabacum genome assembly and quality,

from the initial draft genomes to the recent high-quality chromosome-level

assemblies. The application of long-read sequencing, optical mapping, and Hi-C

technologies has significantly improved the contiguity and completeness of N.

tabacum genome assemblies, with the latest assemblies having a contig N50 size

over 50 Mb. Despite these advancements, further improvements are still required

and possible, particularly on the development of pan-genome and telomere-to-

telomere (T2T) genomes. These new genomes will capture the genomic diversity

and variations among different N. tabacum cultivars and species, and provide a

comprehensive view of the N. tabacum genome structure and gene content, so

to deepen our understanding of the N. tabacum genome and facilitate precise

breeding and functional genomics.
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The genus Nicotiana, one of the six largest genera in the family

Solanaceae, contains more than 80 species, including 49 distributed

to America and 25 to Australia (Berbeć and Doroszewska, 2020;

Chase et al., 2003; Knapp et al., 2004). Among them, common

tobacco (Nicotiana tabacum L.) is acknowledged as one of the most

crucial non-food crops globally. The significant economic and

agricultural impact of N. tabacum is evident through its

cultivation across vast areas, with its primary producers being

China, Brazil, India, and the USA (Audrine, 2020; Battey et al.,

2020). In addition to its economic value, N. tabacum has also

become a model organism for the studies of plant biology and

genetics due to its relatively short growth cycle, biochemical

complexity, and ease of genetic manipulation (Gebhardt, 2016).

Thereby, deciphering N. tabacum genome would offer crucial

foundational resources for functional genomics studies and

molecular breeding of tobacco itself and for facilitating functional

genomics of other plants with N. tabacum as a model species.
N. tabacum is an allopolyploid (2n=4x=48) species and is

evolved from the interspecific hybridization event between N.

sylvestris (S-genome; 2n=2x=24) and N. tomentosiformis (T-

genome; 2n=2x=24) occurred about 200,000 years ago (Leitch

et al., 2008). Assembling a high quality N. tabacum genome

sequence is challenging due to the high proportion (>70%) of

repeat sequences and the closely related homologous sequences

derived from its two progenitor species (Renny-Byfield et al., 2011).

Owing to the rapid advancements in sequencing technology and the

refinement of assembly algorithms in the last two decades (Xie et al.,

2024), several N. tabacum genomes have been published since 2013.

These genomes have significantly facilitated comprehensive genetic

studies of N. tabacum, enabling researchers to have a better

understanding of the complexity of the N. tabacum genome and

its implications for agriculture and biotechnology.

Herein, we reviewed the assemblies and quality of the published

genomes of N. tabacum and its two progenitors and proposed the

strategies for further improvement and utilization of N. tabacum

genome (Figure 1). Although the first plant genome, i.e., that of

Arabidopsis thaliana, was published in 2000 (The Arabidopsis

Genome Initiative, 2000), no common tobacco genome was

available until 2013 when the draft genome sequences of two

tobacco-related progenitor species were published (Sierro et al.,

2013). Those two assemblies were generated using Illumina short

reads, covering 83.3% (N. sylvestris) and 71.7% (N. tomentosiformis)

of their estimated genome sizes (2.68 Gb and 2.36 Gb, respectively).

Both assemblies have an N50 size of approximately 80 kilobases (kb)

(Figure 1A). The availability of these two genome assemblies boosted

assembling of the allopolyploid N. tabacum genome, because the

same group published the first draft genomes of three N. tabacum

cultivars (K326, TN90, and BX) in 2014 (Sierro et al., 2014).

Compared to its progenitors, these three N. tabacum assemblies

had a significantly improved N50 size (345 kb, 351 kb, and 386 kb,

respectively) although the genome coverage was still around 82%

(Figure 1A). But the quality of this version of theN. tabacum genome

was still far behind that of other plant species generated at the same

period of time, likely due to the complexity of the N. tabacum

genome. By combining with BioNano optical mapping, the first

chromosome-level genome of N. tabacum was published in 2017
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(Edwards et al., 2017). However, only 64% of the genome assembly

could be anchored to chromosomal locations and the contig N50 size

was 335 kb that still needed to be improved. Assembling these

genomes have mainly relied on the next generation sequencing

(NGS) technology, the genomes contained many gaps which could

not be filled by the short reads alone produced by NGS. The

shortcoming of the short reads can be overcome by the long reads

and ultra-long reads, ranging from 200 kb to potentially unlimited

lengths, generated by the third-generation sequencing (TGS)

technology (including PacBio and Nanopore) (Van Dijk et al.,

2023). TGS together with other innovations, such as high-

throughput chromosome conformation capture (Hi-C) provided

platforms and tools for generation of high-quality and gap-less

genomes. As a result, several high-quality genomes of N. tabacum

and its two progenitors have been assembled in the last two years

(Figure 1A) (Sierro et al., 2024; Wang et al., 2024; Zan et al., 2023).

Compared to the previous draft genomes ofN. tabacum cv. K326, the

new K326 assembly had a contig N50 size of ~11.8 megabases (Mb),

a significant increase from previous ~350 kb (Edwards et al., 2017;

Sierro et al., 2024). Meanwhile, the contig N50 size of the two

progenitors of N. tabacum also reached 15.0 Mb (N. sylvestris) and

10.6 Mb (N. tomentosiformis) (Sierro et al., 2024). In addition, the

genomes of two more N. tabacum cultivars, ‘ZY300’ used for

producing flue-cured tobacco in China and ‘SR1’ typically used for

producing cigars, have also been recently published for the first time

(Wang et al., 2024).With the application of high-fidelity (HIFI) reads

generated by the PacBio circular consensus sequencing (CCS)

method, the contig N50 size of the cultivar ‘SR1’ reached 56.1 Mb

(Wang et al., 2024). By comparing the quality and the technologies

used in assembling of the N. tabacum genomes reported in 2023 and

2024, it is obvious that the genomes assembled with longer read

lengths have a higher level of completeness, for instance, 97.6% of the

total assembly of K326 could be anchored to chromosomes (Sierro

et al., 2024), and the genomes assembled with CCS have a longer

contig N50 size and a higher accuracy (Figure 1A). Generation of the

high-qualityN. tabacum genomes would greatly expand opportunities

in both breeding and functional genomics research of the crop.

Despite the tremendous progress on sequencing and assembling

N. tabacum genomes, there is still much to be done in order to fully

decipher N. tabacum genome. Learning the progress and experience

on genome assembling in other plant species, we propose two broad

directions for the further development of N. tabacum genome

(Figure 1B). The first is to build a tobacco pan-genome. The pan-

genome of a species represents the set of all DNA sequence diversity

within the species. Pan-genome studies in other plant species (e.g.,

Arabidopsis, rice, maize, barley, wheat, cotton, tomato, and potato)

have revealed high genomic variability and diversity among

different individuals and demonstrated the great capability of

using pan-genome in evolutionary and functional genomics

studies (Sherman and Salzberg, 2020; Shi et al., 2023). Several

distinct types of N. tabacum, including flue-cured, burley,

oriental, and cigar types, were domesticated and have been

systematically improved through extensive breeding programs (Lu

et al., 2013). Constructing a pan-genome of these types of tobacco

cultivars would discover their genomic variations and provide a

better reference for identifying the genetic components and their
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associated molecular mechanisms underlying critical agronomic

traits, such as yield, disease resistance, flavor profile, and nicotine

content, to guide the breeding practices of these traits. Besides, wild

relatives of tobacco would expand genetic diversity and confer a

plenty of genes to survive in tough conditions. Thus, incorporating

wild resources into N. tabacum materials has become one of

modern breeding strategies (Xu et al., 2017). Several wild species

in the genus Nicotiana have also published genomes, which can be

taken into consideration in the construction of pangenome for N.

tabacum. The most conspicuous one is N. benthamiana, a model

organism in plant research, and four groups have published five

versions of genomes with the contig N50 ranged from 89 kb to 54

Mb (Ko et al., 2024; Kurotani et al., 2023; Ranawaka et al., 2023; Wu

et al., 2023). Most of the remaining ones including N. attenuate, N.

knightiana, N. longiflora, N. obtusifolia, N. otophora, N. paniculate,

N. rustica and N. undulata were not at chromosome-level
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(Supplementary Figure S1) (Sierro et al., 2014, 2018; Xu et al.,

2017). Therefore, more efforts are needed to improve the quality of

related genomes in the future. The second is to generate a telomere-

to-telomere genome (T2T) N. tabacum genome, meaning a gapless

and highly accurate assembly of entire N. tabacum chromosomes

(Navrátilová et al., 2022; Nurk et al., 2022). The T2T genome is

essential to identify the genetic make-ups of important agronomic

traits, particularly the components in the dark matter regions, so to

have a comprehensively understanding of the biological processes

associated with the traits of interest and to finally promote precise

breeding (Deng et al., 2022; Li and Durbin, 2024). Achieving these

two goals will enable us to deepen understanding of the N. tabacum

genome and of the genetic and molecular basis contributing to the

distinct features observed in different types ofN. tabacum resources,

and finally to promote studies on the evolution of the species and

custom designed breeding.
FIGURE 1

Retrospect and prospect of N. tabacum genome sequencing. (A) The information of the published genomes of N. tabacum and its two progenitors.
The upper panel presents the log10 (contig N50 size) of the published N. tabacum and its two progenitors’ genomes. The lower panel denotes the
sequencing and scaffolding methods applied in assembling of each genome. The size of hexagons denotes the proportion of the estimated genome
size covered by the assembly. The size of circles denotes the proportion of the assembly anchored to chromosomes. The red and green vertical bar
denote the approaches adopted by the two studies (Wang et al., 2024 and Sierro et al., 2024). (B) The directions for the future development of N.
tabacum genome. The left panel presents the scope and focus for pan-genome research. The right panel presents the characteristics of T2T
research. The middle panel presents the expected outcomes of pan-genome and T2T genome.
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Prospects of telomere-to-telomere assembly in barley: Analysis of sequence gaps in the
MorexV3 reference genome. Plant Biotechnol. J. 20, 1373–1386. doi: 10.1111/pbi.13816

Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., et al.
(2022). The complete sequence of a human genome. Science (80-.) 376, 44–53.
doi: 10.1126/science.abj6987

Ranawaka, B., An, J., Lorenc, M. T., Jung, H., Sulli, M., Aprea, G., et al. (2023). A
multi-omic Nicotiana benthamiana resource for fundamental research and
biotechnology. Nat. Plants 9, 1558–1571. doi: 10.1038/s41477-023-01489-8
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