AUTHOR=Duan Yifan , Lv Bingyang , Zhang Chunlong , Shi Lisha , Li Jingting , Liu Yanjun , Chen Qibing
TITLE=Antibacterial activity of the biogenic volatile organic compounds from three species of bamboo
JOURNAL=Frontiers in Plant Science
VOLUME=15
YEAR=2024
URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1474401
DOI=10.3389/fpls.2024.1474401
ISSN=1664-462X
ABSTRACT=
Plant biogenic volatile organic compounds (BVOCs) possess ecological functions in antimicrobial benefits and air purification. The objectives of the study were to determine the differences in antimicrobial capacity of bamboo forests at different sampling sites. Three common bamboo species—Phyllostachys edulis, Bambusa emeiensis, and Phyllostachys violascens—were selected to determinate the antimicrobial activity of bamboo forests as well as under ex vivo conditions. Natural sedimentation method was used to determine the microbe counts in bamboo forests, and the microbe counts in grassland in the same area was measured as control treatment. The results showed that except for the P. violascens in Ya’an, the airborne microbial content of the sampling sites in bamboo forests was significantly lower relative to that of grassland in the same area, and inhibition rate reached 74.14% in the P. violascens forest in Dujiangyan. P. edulis forest and P. violascens forest in Ya'an had significantly lower inhibition rates than the other sampling sites, and there was no significant difference in the inhibition rates among the rest of the bamboo forest. The bacterial inhibition rate of bamboo leaves under ex vivo conditions varied with bamboo species and bacterial strains, with higher antibacterial activity against Gram-negative bacteria overall. Escherichia coli was sensitive to B. emeiensis leaves, while Staphylococcus aureus and Bacillus subtilis were sensitive to P. violascens leaves. Moreover, Candida albicans, S. cremoris, and Shigella Castellani were sensitive to P. edulis leaves. An analysis of the BVOCs composition from P. edulis collected in Changning by SPME-GC/MS revealed that the relative content of ocimene was obviously higher than other components. This study showed that P. edulis BVOCs have strong inhibitory ability to the tested microorganisms, and its main constituent, ocimene, has health benefit. P. edulis has the potential to become a forest recreation bamboo species.