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Seeds will display different germination states during the germination process, and

their good or bad state directly influences the subsequent growth and yield of the

crop. This study aimed to address the difficulties of obtaining the images of seed

germination process in all time series and studying the dynamic evolution law of

seed germination state under stress conditions. A licorice sprouting experiment

was performed using a seed sprouting phenotype acquisition system to obtain

images of the sprouting process of licorice in full-time sequence. A labeled dataset

of licorice full-time sequence sprouting process images was constructed based on

the four states of unsprouted, sprouted, cracked, and shelled in the sprouting

process. An optimized model, YOLOv8-Licorice, was developed based on the

YOLOv8-n model and its effectiveness was demonstrated by comparative and

ablation tests. Different salt stress environments were simulated via NaCl aqueous

solution concentration, and germination experiments of licorice seeds were

performed under different salt stresses. The germination state of licorice under

different salt stress environments was detected using the YOLOv8-Licorice

detection model. Percentage curve of licorice seeds in an unsprouted state

displayed a continuous decreasing trend. For the percentage curve of licorice

seeds in the sprouted state, an increasing and then decreasing trend was observed

under the condition of 0-200 mmol/L NaCl solution, and a continuous increasing

trend was observed under the condition of 240-300 mmol/L NaCl solution.

Licorice seeds in the cracked state demonstrated percentage curves with an

increasing and then decreasing trend under the condition of 0-140 mmol/L

NaCl solution and a continuous increasing trend under the condition of 160-

300 mmol/L NaCl solution. The percentage curve of licorice seeds in shelled state

displayed a continuous increasing trend in 0-200 mmol/L NaCl solution condition

and remained horizontal in 220-300 mmol/L NaCl solution condition. Overall, this

study provides a valuable method involving the seed sprouting phenotype

acquisition system and the proposed method for detecting the germination state

of licorice seeds. This method serves as a valuable reference to comprehensively

understand the seed sprouting process under triggering treatment.
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1 Introduction

Licorice is one of the most frequently used Chinese medicines and

is often included in traditional Chinese medicine formulations due to

its significant medicinal value and sweet taste (Zhanget al.,2024). In

clinic, raw licorice and honey-fried licorice are used in medicines, with

the main effects in clearing away heat and detoxifying, moistening

lungs and removing phlegm (Zhou et al., 2020). With the

intensification of climate change, salt stress due to drought and soil

salinization has currently become a global problem and has seriously

influenced licorice seed germination (Zhang et al., 2011). Screening

and breeding of new salt-tolerant licorice varieties make a great

contribution to ensuring sustainable agricultural production and

promoting the development of the traditional Chinese medicine

field. The vast majority of traditional seed testing methods are only

limited to detecting their germination rate and germination index,

which is a labor-intensive, time-consuming, and slightly inaccurate

process (Wang et al., 2011). Therefore, it is of great significance to

study the dynamic evolution law of licorice seeds under salt stress by

using automated detection model.

With the rising development of machine learning (ML),

mechatronics, and image processing technologies, many scholars

started to explore the nondestructive testing (NDT) of agricultural

seed viability (Tang et al., 2020). Duc et al. (2023) developed a

model to predict the weight of soybean seeds based on new features

derived from red, green, and blue (RGB)/visual images through

seven ML algorithms. Kini and Bhandarkar (2023) classified the

quality of wheat seeds based on their texture and morphology by

applying image processing and ML techniques. Batista et al. (2022)

investigated the physical parameters of seeds in different states of

maturity based on support vector machine (SVM), neural network

(NN), and random forest (RF) to classify the maturity status of

soybean seeds using natural fluorescence spectroscopy. Larios et al.

(2020) used the SVM and the K-nearest neighbor ML model to

introduce a new method for soybean seed vigor identification by

combining Fourier transform infrared (FTIR) spectroscopy and

chemometrics. Aasim et al. (2022) used ML algorithm to study the

possible effects of different concentrations of hydrogen peroxide

(H2O2) on the germination and morphological characteristics of

cannabis seedlings cultured in vitro, and found significant effects.

However, traditional machine learning models are difficult to

extract deep semantic information, resulting in low efficiency,

insufficient generalization, and poor robustness of detection

results (Yu et al., 2021). Therefore, high-precision sprouting

detection methods are urgently needed in the seed industry.

Different from the traditional ML approaches, the emergence of

deep learning (DL) target detection technology effectively supports

and guides seed sprouting detection. DL, which is the most crucial

algorithm in ML, can learn and automatically extract features for

accurate classification and prediction (Xu et al., 2021). Therefore,

DL can accurately perform seed germination detection and improve

the quality and effectiveness of seed germination detection.

As a powerful data analysis and image processing technique, DL

shows remarkable promise in agricultural fields such as crop yield

prediction, plant target detection, weed and pest detection, and

disease monitoring, and is crucial in improving agricultural
Frontiers in Plant Science 02
productivity and promoting economic growth (Attri et al., 2023).

Terliksiz and Altilar (2024) introduced a cost-effective DL

architecture tailored for corn yield prediction, considering

computational efficiency in processing time, data size, and NN

architecture complexity. Saini and Nagpal (2024) proposed a hybrid

DL method based on Conv-1D and LSTM layers using the

classification-derived phenological with meteorological parameters

for paddy crop yield prediction. Meng et al. (2023) proposed a

spatio-temporal convolutional NN model that leverages the shifted

window Transformer fusion region convolutional NNmodel for the

purpose of detecting pineapple fruits. Guo et al. (2024) proposed an

ATT-MRCNN target detection model that seamlessly integrates

channel attention and spatial attention mechanisms for discerning

and identifying citrus images. Hussain and Srikaanth (2024)

proposed a novel farmland fertility algorithm with a DL-based

automated rice pest detection and classification (FFADL-ARPDC)

technique. Zahra et al. (2024) proposed a new automated method

for classifying apple and grapefruit leaf disease recognition utilizing

two-stream DL architecture. Zekrifa et al. (2024) proposed an

advanced DL model, namely the AE-GAN, for enhancing crop

disease detection using hyperspectral imaging. In particular, after

years of development and refinement, the You Only Look Once

(YOLO) algorithm demonstrates satisfactory performance for real-

time detection and classification of multiple targets (Chen et al.,

2023). In recent years, several scholars have improved and refined

the YOLO model to characterize and quantify the high-throughput

phenotypes of different crops effectively (Wang and Su, 2022). Babu

and Venkatram. (2024) applied the YOLOv4 model for detection

and localization of weeds in soybean fields. Li et al. (2024) proposed

a lightweight improved YOLOv5s model to detect pitaya fruits in

daytime and nighttime light supplement environments, and made it

successfully deploy in an Android device. Yang et al. (2024)

proposed an improved algorithm for the YOLOv7 model to

detect the small lesions on grape leaves and the average accuracy

reached 93.5%. Schneider et al. (2024) presented the applicability of

MV technology with DL modelling to detect the growth stages of

chilli plants using YOLOv8 networks.

The above research results have fully demonstrated that DL,

represented by the YOLO algorithm, can realize image processing

and data analysis in the agricultural field and can perform well in

different application scenarios. The recently popular DL network,

YOLOv8, is a remarkable advancement in the YOLO series, which

integrates cutting-edge technologies and innovative design

principles. This network has the advantages of high detection

efficiency, high accuracy, and high scalability and is widely used

in object detection and image segmentation tasks (Ma et al., 2024;

Xiao and Feng, 2023; Ni et al., 2024).

Overall, in order to address the difficulties of obtaining the

images of seed germination process in all time series and studying

the dynamic evolution law of seed germination state under stress

conditions, we carried out the following work. A seed sprouting

phenotype acquisition system was used to realize full-time dynamic

monitoring and continuous image acquisition of the seed sprouting

process of licorice. Various simple and effective data enhancement

techniques were used to expand the image and label data. The

commonalities of the licorice seed germination process are collected
frontiersin.org
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to classify them into the following four states: unsprouted, sprouted,

cracked, and shelled states, which are labeled in accordance with

their unique identifying features. The optimized YOLO model,

YOLOv8-Licorice, was established to detect licorice seed

germination states successfully. The germination test of licorice

seeds under salt stress was conducted to analyze the transformation

law of the percentage of the four states with time under different salt

stresses based on the YOLOv8-Licorice detection model, which

provides practical application value for scientific breeding.
2 Materials and methods

2.1 Data acquisition equipment

Figure 1 shows the high-throughput, full-time sequence seed

sprouting phenotype acquisition system, which mainly includes

germination cultivation, acquisition, image processing, and human-

machine interaction interface modules.

The integrated experimental apparatus can realize the real-time

adjustment of temperature (range: 10°C-75 °C, error 0.1 °C), humidity

(range: 30%-70%, no condensation), as well as the timing switch of the

LED light source. The germination cultivation module is based on the

seed germination petri dish manufactured via 3D printing, which can

realize the germination test of licorice seeds in 16 subareas and lay the

foundation for carrying the stress under different conditions. The

acquisition module is based on the PLC (Programmable Automation

Controller) program to control the motor timing drive, carrying the

RGB imaging sensor (resolution: 5472 × 3648. pixels: 20 million) to

realize the full-time sequence of image acquisition of the germination

process of licorice seeds in the 16 zones (JPG, PNG). The acquired
Frontiers in Plant Science 03
images of the germination process will be transmitted to the image

processing module through the high-speed GigE Gigabit network

interface. The image processing module preprocesses the acquired

image data for subsequent model training. The human-machine

interaction interface module conveniently realizes the control and

display of environmental, image acquisition, and RGB sensor

parameters based on the touch screen.
2.2 Image acquisition and
dataset construction

Before the formal image acquisition, we conducted a pre-image

acquisition experiment, mainly to determine the optimal number of

seeds for a zone. Through observation, we found that: if the number of

licorice seeds in one zone is too small, it will lead to fewer samples and

reduce the persuasiveness of subsequent experiments; If the number

of licorice seeds in zone is too large, the seeds will block each other in

the later stage of germination, which is not conducive to detection.

After comprehensive consideration, we believe that the 4×5 placement

mode is the most appropriate for each zone. Therefore, in the formal

stage, a total of 320 uniform and comparable-sized licorice seeds were

selected to train the dataset detection model for images of the licorice

seed germination process. The full-time sequential germination test of

licorice seeds was performed in a deionized water environment for

120 h according to the process shown in Figure 2A.

Using the seed sprouting phenotype acquisition system shown

in Figure 1, 16 images of licorice seed full-time sequence of

sprouting process in 16 stations were set to be collected cyclically

every 15 min and totally 7696 images were collected within 120 h.

The acquired seed sprouting images are shown in Figure 2B. A total
FIGURE 1

Seed sprouting phenotype acquisition system.
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of 2820 licorice seed germination images were obtained as the

original dataset after screening, and all images were saved in.jpg

format with a resolution of 5472 × 3648 pixels.

The images of the licorice seed germination process were labeled

using LabelImg software and then classified into a total of four

categories based on the state of licorice seed germination. The

classifications are as follows: (1) unsprouted, (2) sprouted, (3)

cracked, and (4) shelled. The four types of states were ambiguous

during the transition period, which may cause difficulties in labeling.

Therefore, three strategies were adopted to minimize the errors

caused by labeling: (1) develop strict identification criteria for each

state and compare them individually to facilitate decision making

when labeling. (2) Continuously annotate only one seed at a

workstation at a time throughout the entire germination process of

a seed until the image annotation of this seed is complete, and then

continuously annotate the next seed at that workstation. (3) With the

continuation of time, the state labeled at the back does not precede

that labeled at the front, which is a highly effective provision based

entirely on the actual germination process of the seed, and the specific

examples of the four states are shown in Figure 2C.

The main factors affecting the accuracy of licorice seed

germination detection are picture brightness, picture scale,

outside interference and blurred environment, etc, and we can

expand the dataset without increasing data collection costs by using

data enhancement. Therefore, we consider using the following

simple and effective enhancement methods to enhance the

corresponding image and label data: (1) Adding Gaussian noise

to simulate the random interference signals caused by factors such

as electronic components and transmission media in the real
Frontiers in Plant Science 04
situation to improve the resistance of the model to noise

interference. (2) Adding mean blurring processing to simulate the

blurring of pictures due to the defects of the data acquisition camera

itself and different environmental influences in real situations and

improve the accuracy capability of the model in detecting blurred

images. (3) Randomly scaling pictures to improve the capability of

the model to accurately recognize targets at different scales. (4)

Adjusting the brightness of the picture to simulate the changes in

the brightness of the shot due to different lighting conditions to

improve the capability of the model to recognize the target under

different brightness conditions. The above four data enhancement

methods are applied to the original dataset in a 1:1:1:1 manner, and

the specific data enhancement results are shown in Figure 2D. This

data enhancement strategy aims to enhance the model’s recognition

performance in complex environments and reduce the interference

of external factors on detection, thus enhancing the model’s

generalization and effectively preventing overfitting phenomena

(Jiang et al., 2023). In addition, data enhancement can also train

models to focus on changes in intrinsic characteristics of different

licorice seed stages rather than external environmental changes. The

final dataset has a total of 5640 images, including 2820 original

images and 2820 images after data enhancement. And the images in

this dataset are only used to train the model. Next, the dataset is

divided into training set, validation set and testing set in the ratio of

3:1:1. Both the original image and the data-enhanced image account

for half of the training set, validation set and testing set. Among

them, the four different enhancement methods in the data-

enhanced images account for basically the same proportion,

which helps to ensure the randomness and scientificity of the data.
FIGURE 2

Image acquisition and dataset construction. (A) Experimental preprocessing and data acquisition. (B) Acquired images of licorice seed germination.
(C) Example of classification. (D) Example of data enhancement.
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When the YOLOv8-Licorice model is constructed, we conducted

a preliminary experiment to determine the optimal range and

gradient of NaCl solution in formal licorice seed germination

under different salt stress experiments. After preliminary

experiments, we found that licorice seeds hardly grew under NaCl

solution above 300mmol/L, and the germination state of licorice

seeds was similar under NaCl solution gradient of 10mmol/L.

Therefore, we selected 16 kinds of NaCl solutions with a gradient

of 20mmol/L and a concentration range of 0-300mmol/L as the stress

environment for the formal licorice seed germination experiment.

And the experimental parameters are shown in Table 1. The data

from this experiment will be used for the detection of licorice seed

germination state in section 3.4, and a total of 7696 pictures were

obtained. Because the amount of data used for the specific detection

of the situation is too huge, and found that every 15 minutes of

pictures in the machine detection of both almost no change, so after a

comprehensive consideration, we extracted from the interval of 4h

pictures for the specific detection of the analysis, a total of 496

pictures were obtained in the analysis sets. The transformation law of

the germination process of licorice seeds under different salt stress

conditions will be analyzed through the collected images of the full-

time sequence of the germination process and the DL model. The

analysis results aim to provide a basis for a comprehensive

understanding of the germination process of the seeds under the

triggering treatment, among other aspects.
2.3 YOLOv8-licorice design

This paper introduces a high-accuracy lightweight detection

model, YOLOv8-Licorice, to improve the accuracy of licorice seed

germination detection and realize the lightweight model to reduce

the deployment cost. Figure 3 presents the detailed structure.
Frontiers in Plant Science 05
Compared with YOLOv8-n, YOLOv8-Licorice has the following

optimized parts: (1) using EfficientNet to replace the backbone

structure, which substantially reduces the number of parameters of

the model and minimizes the model complexity; (2) reducing the

number of target detection heads to minimize the computation of

the model with the number of parameters; (3) introducing

C2f_ECA to replace C2f to improve the detection accuracy of the

model by adding the ECA attention mechanism to the C2f module;

(4) designing the Detect_SE detection head using the SE module to

extract the key features of different states of licorice seeds and

improve the detection accuracy. The improved model is optimized

in terms of the number of parameters, computational speed, and

computational accuracy.
2.3.1 EfficientNet
The EfficientNet network was used to replace the original

backbone network to reduce the number of parameters and

operations of the model and increase its lightweight property,

substantially reducing the parameters and computation of the

model. EfficientNet is an effective convolutional NN specialized for

image classification and recognition tasks. This network achieves

efficient modeling by uniformly scaling the depth, width, and

resolution of the network, thereby reducing the number of

computation and parameters while maintaining accuracy. Thus,

EfficientNet is a solution for high performance with limited

computational resources.

The network framework of EfficientNet is divided into nine

stages. Stage 1 is an ordinary convolutional layer with a

convolutional kernel size of 3 × 3 and a step size of 2 (containing

BN and the activation function Swish). Stages 2 to 8 involve

repeated stacking of the MBConv structure, while Stage 9

comprises an ordinary 1 × 1 convolutional layer (containing BN

and the activation function Swish), an average pooling layer, and a

fully connected layer. The MBConv structure is shown in Figure 4A,

which mainly comprises a 1 × 1 ordinary convolution (raising

dimensions, containing BN and Swish), a k × k depthwise

convolution (containing BN and Swish), an SE module, a 1 × 1

ordinary convolution (reducing dimensions, containing BN), and a

dropout layer composition.

In EfficientNet, MBConvBlock is used instead of ordinary

concolution as the basic module. The MBConvBlock module

enables EfficientNet to be scalable in depth, width and resolution

by raising and reducing dimensions. By changing the scale factor,

the model is scaled to achieve a large degree of lightweight. After

testing, it was found that the number of parameters, computation,

and weight file size of the model are substantially reduced by 36.5%,

30.5%, and 34.3%, respectively, by replacing the backbone structure

with EfficientNet.
2.3.2 Reduction in the number of target
detection heads

YOLO has three inspection heads by default, facilitating the

inspection of targets at multiple scales, and their inspection sizes are

as follows: (1) P3/8 corresponds to an inspection feature map size of

80 × 80, which is used to inspect targets above 8 × 8. (2) P4/16
TABLE 1 Test parameters.

Reagent NaCl

Concentration

0 mmol/L 20 mmol/L 40 mmol/L
60

mmol/L

80 mmol/L
100

mmol/L
120

mmol/L
140

mmol/L

160
mmol/L

180
mmol/L

200
mmol/L

220
mmol/L

240
mmol/L

260
mmol/L

280
mmol/L

300
mmol/L

Number of seeds
per plate

20

Soaking time 24h

Incubation time 120h

Incubation temperature 28 ± 1 °C

Shooting interval 15 min

Image resolution 5472 × 3648

Picture format JPG
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corresponds to a detection feature map size of 40 × 40, which is used

to detect targets above 16 × 16. (3) P5/32 corresponds to a detection

feature map size of 20 × 20 for detecting targets above 32 × 32.

The number of detection heads considerably influences the

number of parameters and computation of the model to achieve the

goal of lightweight models. The detection of licorice seed germination

states mainly depends on the detection heads of small targets.

Therefore, YOLOv8-Licorice optimizes the number of detection

heads: the original three detection heads are reduced to two, that is,

the P5 detection head that predicts the large targets is eliminated.

Experimental results revealed that this optimization not only yields a

lightweight model but also slightly improves detection accuracy.

2.3.3 C2f_ECA
The bottleneck inside the C2f module in the model neck was

replaced with ECA_Bottleneck to improve the accuracy of model

detection, which, in turn, forms the C2f_ECA module. The structure

diagrams of the C2f_ECA and ECA_Bottleneck are shown in

Figures 4B, C, respectively, where c is the number of channels, and

act is equal to true when using the activation function. The only

difference between the ECA_Bottleneck and Bottleneck lies in the
Frontiers in Plant Science 06
inclusion of the ECA module after the two convolutional structures

(Conv), as shown by the dashed-circled part in Figure 4C.

The ECA module is also known as the ECA attention

mechanism module, and its specific architecture is shown in

Figure 4D (Wang et al., 2019). The input to this module is a

feature map (Feature Map), which is pooled by global averaging to

obtain a global average for each channel. A set of fully connected

layers are then used to generate channel attention weights. These

weights are applied to each channel of the input feature map,

resulting in a weighted combination of the different channels in the

feature map. Finally, the adjusted features are normalized by a

scaling factor to maintain the range of the features.

In this way, ECA module adaptively adjusts the weight of

channel features to improve the model’s ability to recognize small

features. Traditional Bottleneck module mainly selects features

through two Conv convolution, and has a weak recognition

ability for key information. However, ECA_Bottleneck identifies

overall information and enhances its recognition of key information

through ECA module, which can fully identify subtle differences

between licorice seed germination states and realize more

accurate detection.
FIGURE 3

YOLOv8-Licorice model network structure.
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The ECA attention mechanism module can adaptively adjust

the weights of the channel features, which substantially improves

the capability of the model to recognize the fine features. This

module can also adequately identify the subtle differences between

the germination states of licorice seeds and can thus be effectively

applied to the detection of licorice seed germination states.

2.3.4 Detect_SE detection header
The SE module was used to change the original Detect detection

header to the Detect_SE detection header to further improve the

detection accuracy of the model. The structure of Detect_SE is

shown in Figure 4E, and the difference between Detect_SE and

Detect has been circled with a dotted line in the figure. The original

Detect module performs two Conv convolutions of the input data

and then one Conv2d 2D convolution output. The improved

Detect_SE module performs the first Conv convolution of the

input data, passes it through the SE module, and then performs

the second Conv convolution, finally achieving the Conv2d 2D

convolution output.

The SE module mainly contains two parts, namely squeeze and

excitation, and the specific architecture is shown in Figure 4F (Hu
Frontiers in Plant Science 07
et al., 2018). First, the squeeze operation is performed on the input,

which compresses the input from a feature map of W × H × C

(where W, H denote the width and height of the feature map,

respectively; C denotes the number of channels) to a 1 × 1 × C

vector. This operation is immediately followed by the excitation

operation, which first downsizes and then expands the C channels

to C channels, reducing the computational effort of the network and

simultaneously increasing its nonlinear capability. The last step is

the scale operation, where the excitation output is regarded as the

importance of each channel after feature selection and is multiplied

by the previous features by multiplicative weighting. This operation

enhances the recognition of important features and suppresses

unimportant features.
2.4 Adamax optimizer

Adam (adaptive moment estimation) is an algorithm that

combines momentum and Adadelta, or RMSprop. Adamax is an

infinite-paradigm based variant of Adam, where the treatment of the

gradient squared is changed from exponentially decaying averaging
FIGURE 4

Improvement principle. (A) MBConv structure, (B) C2f_ECA structure, (C) ECA_Bottleneck structure, (D) ECA structure, (E) Detect_SE structure, and
(F) SE structure.
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to exponentially decaying to maximize the value of the gradient,

which is given by the following formula (Kingma and Ba, 2014):

mt = b1mt−1 + (1 − b1)gt (1)

ut = max(b2ut−1, gtj j) (2)

where mt represents the exponential moving average; gt
represents the gradient value; b1 and b2 represent the decay rate

of the exponential moving average; and b1 = 0.9 and b2 = 0.999 are

taken in this experiment.

The parameter update process during each iteration is shown as

follows, where h is the learning rate, which is taken as 0.002 in this

experiment.

Q t+1 = Q t −
h
ut

mt (3)

Comparative test results revealed that Adamax had higher

accuracy in detecting the licorice seed germination state

compared to all other optimizers (e.g., Adam, SGD, and

AdamW), facilitating the complete development of the

optimization process of improving the model and enhancing the

performance of target detection.
2.5 Evaluation indicators

2.5.1 Indicators for model evaluation
In order to comprehensively evaluate the effectiveness of the

model in testing the germination state of licorice seeds and its

satisfaction of the lightweight requirements on low cost and high

efficiency, the precision rate (P), recall rate (R), average precision

(AP), and mean average precision (mAP0.5) were used as indicators

to evaluate the accuracy of the model. P is the proportion of the

correct prediction in all results predicted by the model. R is the

proportion of the correct prediction in all positive samples. AP can

be obtained by calculating the area under the precision-recall (P-R)

curve, and the average AP of all categories is taken as mAP.

mAP0.5represents the average precision when the Intersection

over Union (IoU) threshold is 0.5.The algorithmic formulas are

shown below:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP =
Z 1

0
P(R)dR (6)

mAP0:5 =
1
nc

Z 1

0
P(R)dR (7)

where True Positive (TP) denotes the number of germination

states of licorice seeds correctly detected by the model. False
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Positive (FP) denotes the number of germination states of licorice

seeds incorrectly detected by the model. False Negative (FN)

denotes the number of germination states of licorice seeds that

were not recognized or missed.

The number of floating-point operations Per Second (FLOPs)

and the number of parameters (Params) were used as indicators to

evaluate the complexity of the model, and the formulas are shown

below:

FLOPs = 2�H �W(CinK
2 + 1)Cout (8)

Params = Cin � K2 � Cout (9)

where Cin denotes the number of input channels, K represents

the convolution kernel size, H and W are the output feature map

space sizes, and Cout denotes the number of output channels.

This study aims to achieve maximum lightweight and easy

integration while ensuring model accuracy to accomplish the task of

licorice seed germination state detection.

2.5.2 Indicators for evaluation of seed
germination state

With a large number of datasets, licorice seeds experienced four

key states during the germination process: unsprouted, sprouted,

cracked, and shelled, which were represented by “Unsprouted,”

“Sprouted,” “Cracked,” and “Shelled,” respectively. The proportion

of licorice seeds in different states was determined based on

calculations of the ratio of the number of seeds reaching a certain

state to the number of all tested seeds. The specific formula is as

follows, where i represents the four states, which are unsprouted,

sprouted, cracked, and shelled. ratioi represents the proportion

corresponding to state i. Ni represents the number of seeds in

state i, and N represents the number of all tested seeds.

ratioi =
Ni

N
� 100% (10)

The curves reflecting the proportional change of licorice seed

germination states with time were plotted under different salt stress

environments, which can be used for subsequent processing

and analysis.
3 Results and discussion

3.1 Training environment and
hyperparameter settings

In this experiment, the experimental environment is configured

as follows: an Intel (R) Core (TM) i9-14900KF @ 3.20 GHz processor

with an NVIDIA GeForce RTX 4090 D graphics card was used.

PyTorch 2.1.2 and Python 3.9.18 are the DL modeling frameworks,

the selected CUDA version is 11.8, and the operating system is

Windows 11. The dataset was randomly divided into training,

validation, and testing sets in the ratio of 3:1:1. Table 2 shows the

main hyperparameter settings during the training process.
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3.2 Ablation experiments

In order to verify the effectiveness of the above improvements,

we conducted an ablation experiment and presented the results in

Figure 5 and Tables 3, 4. Among them, the definitions of each model

acronym are as follows:(1)YOLOv8-E: Replacement of the

backbone network with EfficientNet based on the YOLOv8-n

model.(2) YOLOv8-EA: Adopt Adamax optimizer based on

YOLOv8-E model.(3) YOLOv8-EAL: Reduce the number of

target detection heads based on the YOLOv8-EA model.(4)

YOLOv8-EALE: Replace C2f with C2f_ECA on top of YOLOv8-

EAL model.(5) YOLOv8-Licorice: Replace Detect with Detect_SE

on top of YOLOv8-EALE model. Figure 5A shows the P-R curve of

each model in the ablation experiment, and Figure 5B shows the

training plot of the YOLOv8-Licorice model. Tables 3, 4 present the
TABLE 2 Main hyperparameters in image detection model training.

Parameters Setup

Epoch 100

Batch size 16

NMS IoU 0.65

Image size 640 × 640

Initial learning rate 1 × 10−2

Final learning rate 1 × 10−4

Momentum 0.937

Weight decay 5 × 10−4

Warmup epochs 3
FIGURE 5

Graph of ablation experiment results. (A) P-R curve of each model. (B) Training plot of the YOLOv8-Licorice model.
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specific results of ablation experiments and the role of each module

is evaluated in detail as follows. First, although the average accuracy

of YOLOv8-E is reduced, Params, FLOPs and Weight Size of the

model are substantially reduced by 36.5%, 30.5%, and 34.3%,

respectively, by replacing the backbone structure with

EfficientNet, which is conducive to the improvement of the

lightweight degree of the model. The accuracy of YOLOv8-EA

increased a little by replacing the optimizer with Adamax, which is

also conducive to the subsequent optimization of the structure. By

reducing the detection header to form the YOLOv8-EAL model,

Params, FLOPs and Weight Size of the model are reduced again by

50.8%, 14.0%, and 48.1%, respectively, to the lowest lever while

maintaining the average accuracy. The results revealed that

replacing C2f with C2f_ECA to form the YOLOv8-EALE model

alone, or replacing Detect with Detect_SE alone, does not improve

the average accuracy of the model. However, by combining the two

aforementioned strategies to form the YOLOv8-Licorice, which has

the highest average accuracy by recognizing small features, Params,

FLOPs and Weight Size remain almost unchanged, but the FPS

reaches the highest at 408.8. Compared with the YOLOv8-n,

Params, FLOPs and Weight Size of the designed YOLOv8-

Licorice decreased by 68.8%, 40.2%, and 65.7%, respectively. In

addition, the FPS is 6.1% higher than that of the original model, and

the average accuracy is also slightly increased.

Figure 6 shows the Grad-CAM technique for heat map

generation to observe the role of ECA and SE attention

mechanisms in detection and assess whether YOLOv8-Licorice

successfully learned the key feature information of the four states

of the licorice seed germination process. In the early stage of seed

germination, it is necessary to judge the fine characteristics of
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liquorice seeds. With the introduction of ECA and SE attention

mechanisms, the model shows a higher heat response in key areas.

In the middle and late stage of seed germination, it is necessary to

make a comprehensive judgment according to all the characteristics

of licorice seeds. With the introduction of ECA and SE attention

mechanisms, the overall heat of the model is roughly the same, and

the identified areas are more accurate. This finding demonstrates

that the model learns the key feature information of the licorice seed

germination process and further proves the effectiveness of the

introduction of the ECA and SE attention mechanisms to improve

the structure.

The ablation experiments demonstrate the superiority and

effectiveness of the model building module in terms of accuracy

and lightweightness, proving that the designed detection model is

advantageous when applied to licorice seed sprouting detection and

is highly suitable for deployment on hardware devices.
3.3 Comparison experiments

To demonstrate the superior performance of our model in

licorice seed sprouting detection, we carried out the comparison

experiments. Figure 7 shows the P-R curve of similar YOLOmodel in

licorice seed sprouting detection. Table 5 shows the comparison of

YOLOv8-Licorice with some of the versions of YOLOv3 to YOLOv8,

focusing on the mAP0.5 of the model, the recognition accuracies of

each state (APUnsprouted, APSprouted, APCracked, and APShelled), Params,

FLOPs and Weight Size. In terms of model lightweightness,

YOLOv8-Licorice is substantially lower than all other models in

terms of Params, FLOPs and Weight Size, which are only 0.94 M, 4.9
TABLE 3 Results of ablation experiments in terms of model complexity.

Model mAP0.5(%) Params (M) FLOPs (G) Weight Size(MB) FPS

YOLOv8-n 99.5 3.01 8.2 5.95 385.3

YOLOv8-E 99.4 1.91 5.7 3.91 378.3

YOLOv8-EA 99.5 1.91 5.7 3.91 401.1

YOLOv8-EAL 99.5 0.94 4.9 2.03 384.3

YOLOv8-EALE 99.5 0.94 4.9 2.04 401.1

YOLOv8-Licorice 99.5 0.94 4.9 2.04 408.8
TABLE 4 Results of ablation experiments in terms of detection accuracy.

Model
mAP0.5

(%)
APUnsprouted

(%)
APSprouted

(%)
APCracked

(%)
APShelled

(%)
Precision Recall

YOLOv8-n 99.5 99.5 99.4 99.4 99.5 99.1 99.2

YOLOv8-E 99.4 99.5 99.4 99.5 99.4 98.8 98.9

YOLOv8-EA 99.5 99.5 99.5 99.5 99.5 99.0 99.0

YOLOv8-EAL 99.5 99.5 99.5 99.4 99.5 98.9 99.3

YOLOv8-EALE 99.5 99.5 99.4 99.5 99.5 99.0 99.1

YOLOv8-Licorice 99.5 99.5 99.5 99.5 99.5 99.0 99.1
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G, and 2.04 MB and have decreased by 92.25%, 74.21%, and 91.22%,

respectively, compared to YOLOv3-tiny, and 62.55%, 31.94%, and

59.36%, respectively, compared to YOLOv5-n. In terms of detection

accuracy, YOLOv8-Licorice reached 99.5% in mAP and all

recognition accuracy APs, thereby reaching the highest accuracy,

which is good for the accurate detection of licorice seed germination.

Comparison experiments revealed that YOLOv8-Licorice

achieves the highest level of lightweight and detection accuracy,

which is conducive to the deployment of this model in application

scenarios with limited computational space but requiring the

practical needs of high accuracy and speed.
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3.4 Performance prediction and
limitation discussion

The recognition effects of YOLOv8-Licorice were compared and

analyzed with four lightweight models, namely, YOLOv3-tiny,

YOLOv5-n, YOLOv6-n, and YOLOv8-n, in the licorice seed

germination process, and the detection results are shown in

Figure 8. Among them, the five images were carefully selected

along with the gradual progression of the licorice seed germination

process, combined with the introduction of data enhancement

techniques. These images are representative of judging the specific
FIGURE 6

Heat map.
FIGURE 7

P-R curve of similar YOLO model.
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recognition effect of the model. In the images, places with detection

problems have been circled with circles, where red, yellow, and

green circles represent false detection, missed detection, and

repeated detection, respectively. We found that in the early stage
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of seed germination, repeated detection and false detection occurred

in models YOLOv3-tiny, YOLOv5-n, and YOLOv8-n, while only a

small amount of repeated detection occurred in models YOLOv6-n

and YOLOv8-Licorice. In the middle stage of seed germination, the
TABLE 5 Comparative experimental results of different models.

Model
mAP0.5

(%)

APUnsprout-

ed

(%)

APSprouted

(%)
APCracked

(%)
APShelled

(%)
Params(M) FLOPs(G)

Weight
Size(MB)

Rtdetr-l 99.3 98.8 99.5 99.5 99.5 11.17 28.8 63.10

YOLOv3-tiny 99.5 99.5 99.4 99.4 99.5 12.13 19.0 23.24

YOLOv5-n 99.5 99.5 99.4 99.4 99.5 2.51 7.2 5.02

YOLOv6-n 99.5 99.5 99.4 99.5 99.5 4.24 11.9 8.28

YOLOv8-n 99.5 99.5 99.4 99.4 99.5 3.01 8.2 5.95

YOLOv8-s 99.5 99.5 99.5 99.5 99.5 11.14 28.7 21.47

YOLOv8-
Licorice

99.5 99.5 99.5 99.5 99.5 0.94 4.9 2.04
FIGURE 8

Comparison chart of detection results.
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detection results of each model were basically accurate, only the

models YOLOv3-tiny and YOLOv8-n showed a small amount of

false detection and repeated detection, respectively. In the later stage

of seed germination, the root interleaving state was serious, and the

false detection, repeated detection and missed detection were found

in the models YOLOv3-tiny, YOLOv6-n, YOLOv8-n, and

YOLOv8-Licorice, while the false detection and missed detection

were found in the model YOLOv5-n. However, the model YOLOv8-

Licorice has the lowest total detection errors compared with other

models. In general, the model YOLOv8-Licorice can complete the

detection task more effectively than other models.

However, the YOLOv8-Licorice model has its limitations,

which are manifested in the transition period and the later stage

of seed germination detection. During the transition period of seed

germination, the difference between adjacent states is very small,

which leads to a small amount of false detection in the model. In the

later stage of seed germination, the root is seriously interleaved and

the seeds overlap each other, which leads to a small amount of false

detection, missed detection and repeated detection in the model.

These limitations may cause some unscientific errors when

detecting the states of licorice seeds. For example, in the

transition period of seed germination, the germination state of

licorice seed shows a “reverse growth” change with the extension of

time; In the later stage of seed germination, the total number of
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licorice seeds detected may also change unexpectedly due to missed

detection. It is worth mentioning that in order to improve the

training accuracy when constructing the dataset, some pictures with

serious root interlacing and overlapping phenomenon were

screened out in this experiment, so most of the pictures selected

were suitable for machine learning. This may result in that although

the model YOLOv8-Licorice is 99.5% atmAP0.5, the detection effect

in the actual detection scenario is not so optimistic.
3.5 Detection of licorice seed
germination state

Salinization has been one of the problems plaguing agricultural

production in China, and excessive salinization can severely limit

plant productivity (Huang et al., 2021). The germination test of

licorice seeds under different salt stresses was conducted in

accordance with the experimental parameters in Table 1, 496

analysis sets were obtained, and the four states of the licorice seed

germination process were detected using YOLOv8-Licorice. The

change curves of the occupancy ratio of the four states with time are

plotted, as shown in Figures 9–12.

Figure 9 shows the percentage curves of unsprouted licorice

seeds over time. These curves reveal a decreasing trend, which
FIGURE 9

Percentage curves of unsprouted licorice seeds over time. (A) Percentage curves of unsprouted licorice seeds in 0-60mmol/L NaCl solution over
time. (B) Percentage curves of unsprouted licorice seeds in 80-140mmol/L NaCl solution over time. (C) Percentage curves of unsprouted licorice
seeds in 160-220mmol/L NaCl solution over time. (D) Percentage curves of unsprouted licorice seeds in 240-300mmol/L NaCl solution over time.
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represents the decreasing percentage of licorice seeds in the

unsprouted state with time. As shown in Figure 9A, the

percentage of unsprouted licorice seeds in 0-60 mmol/L NaCl

solution is below 20% within 48 h. Among them, the percentage

of unsprouted seeds in 0 mmol/L NaCl solution is below 20% within

24 h, and the curve starts the earliest decline with a steep slope.

Until 120 h, the percentage of unsprouted seeds in 0-60 mmol/L

NaCl solution is maintained at 5% and below. As shown in

Figure 9B, licorice seeds in 80-140 mmol/L NaCl solution reach a

percentage of unsprouted seeds below 20% within 72 h. Until 120 h,

the percentage of unsprouted seeds is maintained at 15% or below.

As shown in Figures 9C, D, these curves decline drastically later

than those shown in Figures 9A, B, and the slope of decline is slower

than that shown in Figures 9A, B. Until 120 h, the percentage of

unsprouted seeds in 160-220 mmol/L NaCl solution remained at

15% and above. The percentage of unsprouted seeds in 240-300

mmol/L NaCl solution reach 70% and above. Overall, more than

80% of licorice seeds in 0-140 mmol/L NaCl solution rapidly

transition from the unsprouted state to the sprouted state within

72 hours with good germination state. On the other hand, more

than 15% of licorice seeds in 160-220 mmol/L NaCl solution remain

unsprouted until 120 h. More than 70% of licorice seeds in 240-300

mmol/L NaCl solution remain unsprouted until 120 h with poor

germination state.
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Figure 10 shows the percentage curves of sprouted licorice seeds

over time, and the curves presented in Figures 10A–C all show a

trend of first rising and then falling trend. As shown in Figure 10A,

the curve representing the seeds in 0 mmol/L NaCl solution initially

starts to rise, which reflects the initial decrease of the curve

representing the seeds in 0 mmol/L NaCl solution in Figure 9A.

The curve then peaks at 24 h, until it gradually decreases to

approximately 5%. The other curves in Figures 10A–C follow the

same trend as the curve in 0 mmol/L NaCl solution. This finding

indicates that the percentage of licorice seeds in the sprouted state

increases and then decreases with time. At the beginning, the

licorice seeds in the sprouted state are transformed from the

unsprouted. However, these seeds do not undergo the cracked

state and remain in the sprouted state; therefore, the curve rises

at the beginning. With the passage of time, the licorice seeds in the

sprouted state gradually transform into the cracked state. However,

the transformation rate of the unsprouted state of licorice seeds to

the sprouted state of licorice seeds is quicker than that of the

sprouted state of licorice seeds transform to the cracked state of

licorice seeds, demonstrating a continuously increasing curve. As

the time continues to increase, the conversion rate of licorice seeds

from the unsprouted state to the sprouted state is slower than the

conversion rate of licorice seeds from the sprouted state to the

cracked state, revealing a decline in the curve. Moreover, the curves
FIGURE 10

Percentage curves of sprouted licorice seeds over time. (A) Percentage curves of sprouted licorice seeds in 0-60mmol/L NaCl solution over time.
(B) Percentage curves of sprouted licorice seeds in 80-140mmol/L NaCl solution over time. (C) Percentage curves of sprouted licorice seeds in 160-
220mmol/L NaCl solution over time. (D) Percentage curves of sprouted licorice seeds in 240-300mmol/L NaCl solution over time.
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which represent the low NaCl solution concentration can reach the

high point in a short time. As shown in Figure 10D, the curve

representing the seeds in 240-300 mmol/L NaCl solution continues

to rise within 120 h and do not reach a peak, and the percentage of

licorice seeds in the sprouted state remains at 30% and below.

Figure 11 shows the percentage curves of cracked licorice seeds

over time. As shown in Figures 11A, B, the curves representing the

seeds in 20-140 mmol/L NaCl solution continue to increase until 96

h and decrease at 96-120 h. The trend of the curve representing the

seeds in 0 mmol/L NaCl solution is slightly different because it

peaks around 24 h, fluctuates from 24 h to 96 h, and declines from

96 h to 120 h. As shown in Figure 11C, the curves representing the

seeds in 160-220 mmol/L NaCl solutions reveal an increasing trend

from 0 h to 120 h. Figures 11A–C show that the curves have a

tendency for prolonged time of onset of the rise as the

concentration of NaCl solution increases. As shown in

Figure 11D, only the licorice seeds in 240mmol/L NaCl solution

appear to be the cracked state at approximately 72 h, and the

percentage of cracked seeds is always maintained at 5% within 120

h. Overall, licorice seeds in 0-100 mmol/L NaCl solution begin to

crack within 24 h, and 35% or more within 72 h, reflecting the rapid

germination process. Licorice seeds in 120-220 mmol/L NaCl

solution appear to be the cracked state after about 48 h, and the

percentage of cracked state is 20% and above at 120 h. The
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proportion of cracked state of licorice seeds in 240-300 mmol/L

NaCl solution is never higher than 5% within 120 h.

Figure 12 shows the percentage curves of shelled licorice seeds

over time. The curves shown in Figures 12A–C (except for the

corresponding curve in 220 mmol/L NaCl solution) all

demonstrate an increasing trend. Among them, at 0-24 h, all the

curves are 0%, and only the curve representing the seeds in 0 mmol/L

NaCl solution shows a significant increase at 24-96 h and reaches

30% within 96 h, while the rest of the curves are 5% and below until

96 h. At 96-120 h, the curve representing the seeds in 0 mmol/L NaCl

solution still displays an increasing trend and finally reaches 40%. The

curves representing the seeds in 20-140 mmol/L NaCl solutions

rapidly increase, and all eventually reached 20% and above. The

curves representing the seeds in 160-200 mmol/L NaCl solutions

have a small increase but are all at 15% and below. The pattern of

change in some of the curves in Figure 11 can be attributed to this

phenomenon. For the curve representing the seeds in 0 mmol/L NaCl

solution in Figure 11, the percentage of licorice seeds in the shelled

state remains 0% at 0-24 h, while the sprouted state of licorice seeds

tend to shift to a cracked state. Therefore, the curve increased at 0-24

h. At 24-96 h, the conversion rate of licorice seeds from the cracked

state to the shelled state rapidly increase, which is comparable to the

rate of licorice seeds in the sprouted state that tend to transform to the

cracked state, demonstrating a fluctuating curve state. At 96-120 h,
FIGURE 11

Percentage curves of cracked licorice seeds over time. (A) Percentage curves of cracked licorice seeds in 0-60mmol/L NaCl solution over time. (B)
Percentage curves of cracked licorice seeds in 80-140mmol/L NaCl solution over time. (C) Percentage curves of cracked licorice seeds in 160-
220mmol/L NaCl solution over time. (D) Percentage curves of cracked licorice seeds in 240-300mmol/L NaCl solution over time.
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the conversion rate of licorice seeds from the cracked state to the

shelled state remains unchanged, while the conversion rate of licorice

seeds from the sprouted state to the cracked state decreases, revealing

a decline in the curve. For the curves representing the seeds in 20-140

mmol/L NaCl solutions in Figure 11, at 0-96 h, the conversion rate of

licorice seeds from the cracked state to the shelled state is

substantially lower than the conversion rate of licorice seeds from

the sprouted state to the cracked state, thus demonstrating a

substantial increase in the curves. At 96-120 h, the conversion rate

of licorice seeds from the cracked state to the shelled state

substantially rises and is already higher than the conversion rate of

licorice seeds from the sprouted state to the cracked state, thereby

revealing a decrease in curve. For the curves representing the seeds in

160-220 mmol/L NaCl solution in Figure 11, the curves display a

consistently increasing trend because the conversion rate of licorice

seeds from the cracked state to the shelled state is low and remains

lower than that of licorice seeds from the sprouted state to the cracked

state. As shown in Figures 12C, D, licorice seeds in the 220-300

mmol/L NaCl solution do not show a shelled phenomenon at 0-120

h, and their curves are horizontal. Overall, licorice seeds in 0-140

mmol/L NaCl solution maintain a proportion of 20% andmore in the

shelled state at 120 h- the final state of the germination process.
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Licorice seeds in 160-300 mmol/L NaCl solution have only 15% and

lower proportion of shelled state at 120 h, which demonstrates a

poorer germination state.

Based on Figures 9–12, we concluded that licorice seeds in 0-

140 mmol/L NaCl solution have a similar state of germination and

have a much higher germination rate than licorice seeds in 160-300

mmol/L NaCl solution.
4 Summary, limitations and
future work

In order to study the dynamic evolution law of licorice seed

germination under salt stress, we proposed to divide licorice seed

germination into four key states and established an improved

model, YOLOv8-Licorice.

First, various simple and effective data enhancement techniques

are adopted for the original labeled dataset for its expansion,

effectively reflecting the various disturbances and fluctuations in

the actual application scenarios. Second, this study focuses on the

YOLOv8-n model to satisfy the dual improvement of the model’s

lightweight degree and detection accuracy. The YOLOv8-n
FIGURE 12

Percentage curves of shelled licorice seeds over time. (A) Percentage curves of shelled licorice seeds in 0-60mmol/L NaCl solution over time.
(B) Percentage curves of shelled licorice seeds in 80-140mmol/L NaCl solution over time. (C) Percentage curves of shelled licorice seeds in 160-
220mmol/L NaCl solution over time. (D) Percentage curves of shelled licorice seeds in 240-300mmol/L NaCl solution over time.
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detection model is improved as follows: using EfficientNet to

replace the backbone network, introducing C2f_ECA to replace

C2f, reducing the target detection header, introducing Detect_SE

detection header to replace Detect, and adopting the

Adamax optimizer.

The test results show that YOLOv8-Licorice achieves 99.5% on

themAP0.5 index, Params, FLOPs and Weight Size are decreased by

68.8%, 40.2%, and 65.7%, respectively, compared with YOLOv8-n,

which are only 0.94 M, 4.9 G, and 2.04 MB, realizing the detection

speed of 408.8 FPS. Compared to other lightweight detection

models in the YOLO series, YOLOv8-Licorice has a smaller

model size and better detection performance, increasing its

suitability for deployment on low-cost devices and terminals.

In order to prove the practical application effect of the model

and further study the influence of licorice seed germination under

salt stress, this paper simulated different salt stress environments

with NaCl solution concentration, and used YOLOv8-Licorice

model to detect the germination state of licorice seeds under

different salt concentrations. The curves reflecting the percentage

of germination state of licorice seeds under different salt stress

environments with time were plotted to analyze the effect of these

environments on the germination of licorice seeds. The results show

that the percentage curve of licorice seeds in the unsprouted state

continues to decline. With the increase in concentration of NaCl

solution, the curve shows the following tendency: a later start in the

decline, a slow decline in slope and a high final value. For the

licorice seeds in 0-220mmol/L NaCl solution, the proportion curves

of the seeds in the sprouted state show a trend offirst increasing and

then decreasing trend and the time corresponding to the peak value

tend to increase with the increase in concentration. For the licorice

seeds in 240-300 mmol/L NaCl solution, the percentage curve of

licorice seeds in the sprouted state demonstrates a continuous

upward trend. The percentage curve of licorice seeds in the 0

mmol/L NaCl solution that appears in the cracked state continues

to increase from 0 h to 24 h, fluctuates from 24 h to 96 h, and

decreases from 96 h to 120 h. The percentage curves of licorice seeds

in the cracked state in 20-140 mmol/L NaCl solution show a

continuously increasing trend from 0 h to 96 h and a

continuously decreasing trend from 96 h to 120 h. The

percentage curve of licorice seeds in the cracked state in 160-220

mmol/L NaCl solution shows a continuously increasing trend from

0 h to 120 h. For the seeds in 240-300 mmol/L NaCl solutions, only

licorice seeds in 240 mmol/L NaCl show a 5% percentage of cracked

state around 72 h. For the seeds in 0 mmol/L NaCl solution, the

percentage curve of licorice seeds in the shelled state starts to

increase substantially at 24 h and reaches 40% at 120 h. For the

seeds in 20-200 mmol/L NaCl solutions, the percentage curves of

licorice seeds in shelled state are at 5% and below from 0 to 96 h and

show a significant increase from 96 h to 120 h, where the curves

representing the seeds in 20-140 mmol/L NaCl solution increase to

20%-40% at 120 h, while the curves representing the seeds in 160-

200 mmol/L NaCl solution rise to 5%-15%. Licorice seeds in 200-
Frontiers in Plant Science 17
300 mmol/L NaCl solution do not show the shelled state from 0 to

120 h, and their curves are horizontal. This finding provides a useful

method and valuable reference for comprehensively understanding

the seed germination process under initiation treatment, rapid crop

breeding, and growth management.

However, there are some limitations to this approach. False

detection occurs during the transition period of seed germination.

False detection, missed detection and repeated detection occur

in the later stage of seed germination. This may be due to

the insensitivity of the model to the information extraction in the

transitional stage of germination, and the deviation of the judgment

criteria in the later stage of seed germination.

In the future, we will update the dataset specifically for these

problems, including more pictures of the seeds in the transition

period and later stage of seed germination, to enhance the

perceptual ability of the training model. In addition, we will

combine key point detection technology with target detection

technology to further improve the detection effect of the model in

the actual scene. Finally, we will deploy our model and system on

embedded devices to further study the evolution of licorice seed

germination under other stress conditions and provide convenience

for other scholar’s work on licorice seeds.
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