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The precise determination of tobacco leaf maturity is pivotal for safeguarding the

taste and quality of tobacco products, augmenting the financial gains of tobacco

growers, and propelling the industry’s sustainable progression. This research

addresses the inherent subjectivity and variability in conventional maturity

evaluation techniques reliant on human expertise by introducing an innovative

YOLOv10-based method for tobacco leaf maturity detection. This technique

facilitates a rapid and non-invasive assessment of leaf maturity, significantly

elevating the accuracy and efficiency of tobacco leaf quality evaluation. In our

study, we have advanced the YOLOv10 framework by integrating DCNv3 with C2f

to construct an enhanced neck network, designated as C2f-DCNv3. This

integration is designed to augment the model’s capability for feature integration,

particularly concerning the morphological and edge characteristics of tobacco

leaves. Furthermore, the incorporation of the Efficient Local Attention (ELA)

mechanism at multiple stages of the model has substantially enhanced the

efficiency and fidelity of feature extraction. The empirical results underscore the

model’s pronounced enhancement in performance across all maturity

classifications. Notably, the overall precision (P) has been elevated from 0.939 to

0.973, the recall rate (R) has improved from 0.968 to 0.984, the mean average

precision at 50% intersection over union (mAP50) has advanced from 0.984 to

0.994, and the mean average precision across the 50% to 95% intersection over

union range (mAP50-95) has risen from 0.962 to 0.973. This research presents the

tobacco industry with a novel rapid detection instrument for tobacco leaf maturity,

endowed with substantial practical utility and broad prospects for application.

Future research endeavors will be directed towards further optimization of the

model’s architecture to bolster its generalizability and to explore its implementation

within the realm of actual tobacco cultivation and processing.
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1 Introduction

The maturity of tobacco leaves is a critical factor that directly

influences their quality and, consequently, the taste and value of

tobacco products (Cai et al., 2005; Yin et al., 2019). This is of

paramount importance for the sustainability of the tobacco industry

and the economic well-being of tobacco farmers (Kays, 2011).

Achieving consistent and accurate assessments of tobacco leaf

maturity is vital, as it enables more precise harvesting and curing

methods that optimize both the aromatic profile and minimize

harmful chemicals in the leaves (Cakir and Cebi, 2010).

Traditionally, farmers have relied on subjective experience to

assess leaf maturity, which can lead to inconsistent outcomes and

missed opportunities for optimal harvest timing (Chen et al., 2023;

Sun et al., 2023b).

Despite the progress in tobacco classification techniques,

including the use of hyperspectral imaging and machine learning

models, the practical adoption of these methods has been limited

due to high equipment costs, complexity, and the need for

specialized skills (Chen et al., 2021). These factors highlight a

significant technical gap: the need for an accessible, non-

destructive method for assessing tobacco leaf maturity in the field.

The advantage of object detection methods in maturity

recognition lies in their ability to accurately localize and

categorize each target within images, thereby enabling rapid and

efficient identification and classification of agricultural products at

various stages of ripeness. To meet the practical needs of farmers,

our research proposes an innovative solution by leveraging

advances in machine vision and object detection for real-time,

accurate, and affordable field-based maturity detection of tobacco

leaves. Specifically, we develop a lightweight YOLOv10-based

algorithm integrated with Deformable Convolutional Networks

(DCNv3) and an Enhanced Lightweight Attention (ELA)

mechanism. Our approach emphasizes real-time processing,

affordability, and accuracy, addressing the challenges in field

conditions. The primary contributions of this study are as follows:
Fron
1. We propose an advanced network structure combining

YOLOv10 and DCNv3, enhancing feature aggregation

and detection accuracy.

2. We introduce the ELA attention mechanism to replace the

PSA module in the YOLOv10 backbone, improving

feature representation.

3. We incorporate the ELA attention mechanism between the

backbone and neck networks, further boosting overall

model performance.

4. We conduct comprehensive experiments analyzing the

influence of various network architectures and attention

mechanisms on detection efficacy, aiming to optimize the

lightweight performance of the model.
The remainder of this paper is organized as follows: Section 2

presents a detailed literature review of recent advancements in

tobacco leaf classification and detection technologies. Section 3

describes our proposed method, including the YOLOv10

architecture and the ELA attention mechanism. Section 4
tiers in Plant Science 02
provides the experimental setup and results. Finally, Section 5

concludes the paper and outlines potential directions for

future work.
2 Related work

In recent years, significant advances have been made in the use

of spectral data and machine learning for the detection and

classification of tobacco leaves. These technologies have proven

effective in determining the maturity and quality of leaves, though

challenges such as high costs and complex implementations remain.

Spectral imaging has emerged as a powerful tool for the

classification of agricultural products, including tobacco leaves.

Early efforts, such as those by Long et al. (2019), utilized

hyperspectral imaging combined with Savitzky-Golay smoothing

filters and multiplicative scatter correction, achieving an impressive

99% classification accuracy of tobacco leaves and impurities.

Similarly, Lu et al. (2023) refined the maturity assessment of flue-

cured tobacco using Partial Least Squares Discriminant Analysis

(PLS-DA), obtaining 99.32% accuracy on the validation set.

However, despite their high accuracy, these hyperspectral

approaches face notable barriers, including the cost of

spectrometers and their limited portability, making them less

accessible to the average tobacco farmer. The reliance on

specialized technical skills further complicates the wide adoption

of such methods in practical farming scenarios (Beć et al., 2021;

Hussain et al., 2018).

In response to the limitations of hyperspectral imaging,

machine learning models have been increasingly applied to

tobacco leaf classification and detection (Zhang et al., 2024). Li

et al. (2021) designed a lightweight network based on MobileNetV2

for assessing tobacco leaf maturity. This model balanced accuracy

with computational efficiency, making it more practical for real-

world deployment. Similarly, Jia et al. (2023) proposed a model

based on YOLOv7 and the LWC algorithm for detecting mixed

tobacco strands. This model achieved a high detection accuracy

(mAP@0.5 = 0.932) and fast processing speed, demonstrating the

viability of real-time detection in agriculture. Xiong et al. (2024)

introduced the DiffuCNN model, designed for detecting tobacco

diseases in complex, low-resolution environments. This model

incorporated a diffusion enhancement module and achieved a

precision of 0.98 with a processing speed of 62 FPS,

outperforming other models in accuracy and efficiency.

Meanwhile, He et al. (2023) developed the FSWPNet model,

combining pyramid feature fusion with shifted window self-

attention for improved classification of tobacco leaves, achieving

an average classification precision of 75.8%.

Deep learning models, particularly those based on

convolutional neural networks (CNNs), have played a significant

role in advancing agricultural object detection (Biradar and Hosalli,

2024; Kang and Chen, 2020; LeCun et al., 2015; Zhao et al., 2022).

The You Only Look Once (YOLO) series (Hussain, 2023) and SSD

(Liu et al., 2016) exemplify single-stage algorithms, which swiftly

localize and classify objects in a unified forward pass, aligning with

the needs of real-time detection tasks (Soviany and Ionescu, 2018).
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Conversely, two-stage algorithms, such as Faster R-CNN (Ren et al.,

2016) and Sparse R-CNN (Sun et al., 2023a), initiate with a Region

Proposal Network (RPN) to delineate potential object regions,

proceeding with classifiers for nuanced classification and

localization (Du et al., 2020; Zhang et al., 2023a, 2021). Single-

stage algorithms excel in their rapid and efficient processing, well-

suited for high-speed application contexts (He et al., 2024). The

YOLO series of models, such as YOLOv5, YOLOv6, and YOLOv7,

have demonstrated their suitability for real-time detection tasks due

to their single-stage nature, which allows for rapid localization and

classification (Hussain, 2023). Although two-stage algorithms like

Faster R-CNN offer higher precision, single-stage models are better

suited for real-time applications due to their speed and reduced

computational requirements (Bacea and Oniga, 2023).

Despite these advances, most research has focused on post-

harvest tobacco leaf classification, a destructive process that may

lead to waste. Few studies have explored non-destructive, field-

based methods for detecting tobacco leaf maturity. This represents a

critical gap in the literature, as non-destructive methods would

allow for more accurate and timely harvesting decisions, ultimately

benefiting both the quality of the tobacco and the economic returns

for farmers (Zhang et al., 2023b).

Furthermore, the integration of attention mechanisms and

deformable convolutions has been limited in the context of

tobacco leaf detection. Recent studies have demonstrated the

potential of these techniques to improve feature extraction and

enhance model performance (Cheng et al., 2024; Du et al., 2025;

Qing et al., 2024), suggesting that their incorporation into

lightweight models like YOLOv10 could address both the

accuracy and efficiency needs of practical agricultural applications.

The existing literature highlights several successful applications

of spectral imaging and deep learning in tobacco leaf classification.

However, the technical challenges associated with hyperspectral

imaging and the lack of non-destructive methods for assessing

tobacco leaf maturity underscore the need for new approaches. Our

research builds upon these prior studies by introducing a

YOLOv10-based lightweight model that incorporates DCNv3 and

the ELA attention mechanism, addressing both the accuracy and

computational constraints of field-based tobacco leaf

maturity detection.
3 Materials and methods

3.1 Data collection and
dataset construction

The research utilized a dataset of tobacco leaf maturity images,

which was established from the collection of leaves in the tobacco

cultivation region of Luoning County, Luoyang City, within Henan

Province. For the acquisition of field data, the study employed the

rear camera of a Huawei Honor 20 smartphone, featuring a 32-

megapixel high-resolution sensor. To minimize the impact of

lighting conditions on the leaf maturity recognition, the data was

collected exclusively during daylight and under clear skies. To

further augment the complexity of the dataset and enhance the
Frontiers in Plant Science 03
robustness of our model, we employed data augmentation

techniques such as rotation, scaling, flipping, and the addition of

noise. The tobacco leaves were classified into three distinct maturity

stages: immature, mature, and over-mature. Immature leaves,

characterized by their green color, are not harvest-ready. Mature

leaves are identified as the optimal stage for harvesting without

compromising the final product’s quality. Over-mature leaves,

indicative of an excessive degree of maturity, are prone to

significant losses during the harvesting and subsequent processing

stages. In this study, the dataset was randomly partitioned following

an 8:1:1 ratio into training, validation, and test sets, respectively.

The training set consists of 1,752 images, the validation set contains

370 images, and the test set comprises 373 images. Representative

images from the developed tobacco leaf maturity dataset are

depicted in Figure 1.
3.2 Constructing the tobacco maturity
detection model

3.2.1 The basic network structure of YOLOv10n
YOLOv10, the state-of-the-art real-time, end-to-end object

detection model from the research team at Tsinghua University

(Wang et al., 2024), stands as the pinnacle of the YOLO series. It

preserves the real-time detection performance while substantially

increasing the accuracy and efficiency of detection through a series

of innovative advancements. The principal network framework is

elegantly portrayed in Figure 2.

YOLOv10 has discarded the traditional Non-Maximum

Suppression (NMS), facilitating an end-to-end training paradigm

that forgoes NMS through a coherent dual-task assignment

strategy, which in turn minimizes inference latency and expedites

detection rates. The architecture of YOLOv10 is distinguished by its

refined Backbone, Neck, and Head structures. The Backbone

benefits from an advanced Cross Stage Partial Network that

amplifies feature extraction prowess, while the Neck adeptly

merges multi-scale features via the Path Aggregation Network

layer. YOLOv10 introduces the pioneering One-to-Many Head to

generate a spectrum of predictions during training, and the One-to-

One Head to yield the most refined prediction during inference, all

of which contribute to the model’s enhanced performance. In

pursuit of superior mobile deployment, YOLOv10n has been

designated as the foundational detection model for our endeavors.

3.2.2 C2f-DCNv3
DCNv3 is a sophisticated convolutional core operator that

enriches the standard convolutional process with the introduction

of learnable offsets, enabling the kernels to adjust their sampling

positions and conform to the intricacies of the input feature maps.

This adaptive capability significantly improves the network’s ability

to discern the contours and shapes of targets within an image

(Wang et al., 2023). Evolving from its predecessors, DCNv3 has

undergone substantial refinements, offering enhanced performance

and efficiency (Zhu et al., 2019). The procedural flow of the DCNv3

module is illustrated in Figure 3. The input feature map is

partitioned into g groups, each subjected to a convolutional
frontiersin.org
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operation to generate a corresponding set of offsets and modulation

factors for the kernels. The final output feature map is then

meticulously constructed from these predictive elements. The

mathematical expression defining the deformable convolution v3

is articulated in Equation 1.

y(p0) = o
G

g=1
o
K

k=1

wgmgxg(p0 + pk + Dpgk) (1)

Where, p0 is the pixel under consideration, G represents the

number of groups, and K is the overall count of sampling points.

The matrix wg is defined over RC×C′, where the group dimension is

given by C0 = C=G. The modulation scalar mgk for the k-th

sampling point in the g-th group is subjected to normalization via

a softmax function. The input feature map is denoted by xg in the

space RC×H×W. The term pk corresponds to the k-th position

sampled by the network, and Dpgk is the displacement related to the

k-th grid sampling location.
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In this study, the DCNv3 module is employed to replace the

convolutions within the C2f module, capturing spatial and channel

information of the targets more effectively during the feature

extraction phase, thereby enhancing the performance of the C2f

module. The structure of the improved C2f-DCNv3 module is

shown in Figure 4.
3.2.3 Efficient local attention
The Efficient Local Attention (ELA) mechanism represents a

cutting-edge innovation in attention mechanisms, crafted to escalate

the efficacy and exactitude of feature extraction within the purview of

deep learning models (Xu and Wan, 2024). Across the disciplines of

Natural Language Processing and Computer Vision, attention

mechanisms have become instrumental in advancing model

capabilities. Despite the substantial computational demands and

memory footprints of conventional global attention mechanisms,

especially with extensive datasets, ELA offers a sophisticated
FIGURE 1

The sample image of the tobacco maturity dataset.
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solution. It harnesses self-attention on localized features, targeting

discrete regions within the input feature maps, thereby substantially

curtailing the computational and storage requisites.

The essence of ELA’s superiority is its localized approach, as

illustrated in Figure 5. By partitioning the input feature map into an

array of compact windows and meticulously applying self-attention

within the confines of each, ELAnarrows its focus to local interactions,

considerably attenuating the computational load. Moreover, ELA

refines the computational expenditure by leveraging sparse sampling

points to approximate the interrelatedness of local features, all without

a detrimental impact on performance.

This research has implemented the ELA attention mechanism

in place of the PSA attention mechanism within the YOLOv10n

framework, aiming to bolster the model’s efficacy. Additionally, the

integration of the ELA attention mechanism at the nexus of the

backbone and neck network is intended to augment the model’s

overall performance.

3.2.4 Tobacco leaf detection
network architecture

In this research, we have engineered a tobacco leaf maturity

detection model predicated on the YOLOv10n framework. To
Frontiers in Plant Science 05
amplify the model’s efficacy, we have innovatively combined the

DCNv3 with the C2f module, resulting in an enhanced C2f_DCNv3

module. Moreover, we have introduced the ELA attention

mechanism as a substitute for the PSA attention mechanism

originally present in YOLOv10n. In addition to these

modifications, we have strategically integrated the ELA attention

mechanism at the interface between the backbone and the neck

networks to further augment the model’s performance. The

schematic representation of the tobacco leaf maturity detection

network crafted in this study is illustrated in Figure 6.
3.3 Evaluation indicator

The present investigation applies Precision (P), Recall (R),

mAP50, and mAP50-95 as the evaluative metrics for the tobacco

leaf maturity detection model. Precision delineates the proportion

of tobacco leaves that are accurately classified by the model into a

specific maturity stage, signifying the model’s trustworthiness in

predicting particular maturity levels. Recall measures the model’s

effectiveness in identifying all instances of a given maturity stage,

representing the ratio of correctly detected leaves to the total actual
FIGURE 2

The structure of YOLOv10.
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instances. mAP50 emerges as a holistic benchmark in the evaluation

of tobacco leaf maturity, encapsulating the model’s aggregate

proficiency in distinguishing among various stages. It is calculated

by averaging the AP values across stages, thereby assessing the

model’s comprehensive accuracy in classifying tobacco leaf

maturity. mAP50-95 expands the IoU threshold scope, pivotal for

nuanced visual feature differentiation across maturity stages. This

metric furnishes an encompassing view of the model’s efficacy

across a spectrum of matching stringencies. The respective

computational formulas are articulated in Equations 2-5.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
Frontiers in Plant Science 06
mAP50 =
1
No

N

i=1
APi (4)

mAP50−95 =
1
No

N

i=1

1
91o

91

j=1
APi,j (5)

Where, TP is the tally of veracious positive instances, FP the

tally of fallacious positive instances, and FN the tally of fallacious

negative instances. N encapsulates the aggregate number of

categories. APi is the mean precision for the i-th category at an

IoU threshold of precisely 0.5. APi,j pertains to the mean precision

for the i-th category at an IoU threshold incrementing from 0.5 by

increments of 0.05 for each successive j, ranging up to 0.95. The

term ‘91’ embodies the methodical computation of AP across this

continuum, spaced into 91 uniform intervals for a meticulous

assessment of AP.
FIGURE 4

The structure of the C2f-DCNv3 module.
FIGURE 3

The structure of the DCNv3 module.
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4 Results and discussion

4.1 Experimental environment

The experimental procedures described herein were undertaken

within a Windows 11 environment, leveraging the PyTorch deep

learning framework at version 2.0.1, with Python 3.9 serving as the

programming language of choice and PyCharm acting as the IDE

for coding endeavors. The computational experiments were
Frontiers in Plant Science 07
powered by an Intel Core i5-13500h CPU, complemented by 16

GB of system memory. The GPU designated for this research is the

NVIDIA GeForce RTX 4050, endowed with 6 GB of graphics

memory and 2560 CUDA cores for parallel processing

capabilities. To ensure the reliability of our model, we adopted a

consistent set of hyperparameters for all training runs. The

hyperparameters for model training were sourced from https://

github.com/THU-MIG/yolov10/blob/main/ultralytics/cfg/

default.yaml. The specific values are summarized in the Table 1.
FIGURE 6

The structure of tobacco maturity network detection.
FIGURE 5

The structure of the ELA attention mechanism.
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4.2 Evaluation of the C2f-DCNv3
integration at distinct phases

In order to better evaluate the impact of C2f-DCNv3 on

different parts of the model, this study utilizes C2f-DCNv3 to

replace the C2f module in the backbone network and necking

network, respectively, in order to enhance the performance of the

model. The outcomes from integrating C2f-DCNv3 at these distinct

phases are delineated in Table 2.

As indicated in Table 2, the overall model accuracy improved

from 0.939 to 0.970, marking a 3.3% increase, when the C2f module

in the backbone network was replaced in isolation. The mAP50

metric also saw a slight rise from 0.984 to 0.991, amounting to a

0.7% increase. Notably, within the “Immature” category, there was a
significant leap in accuracy, with mAP50 and mAP50-95
Frontiers in Plant Science 08
experiencing boosts of 1.5% and 3.3%, respectively. Following the

replacement of the neck network, the overall precision was further

enhanced to 0.973, a 3.7% increase. The mAP50 metric mirrored

the initial rise, while the mAP50-95 improved from 0.962 to 0.972,

reflecting a 1.0% increase. Conversely, replacing the C2f modules in

both the backbone and neck networks concurrently resulted in an

overall precision of 0.971, yet the mAP50-95 dipped slightly

to 0.958.

The incorporation of the C2f-DCNv3 module has notably

enhanced the YOLOv10 model’s performance, particularly within

the neck network structure. The C2f-DCNv3’s design amalgamates

the profound feature extraction capabilities of Convolutional

Neural Networks (CNNs) with the adaptability of Deformable

Convolutional Networks (DCNs), thus enabling the model to

adeptly adjust to the variability in target shapes and spatial

configurations. Acting as a conduit between the backbone and

detection head, the neck network’s efficacy is pivotal to the

detection precision. Replacing the C2f module with C2f-DCNv3

in the neck network has bolstered the model’s target recognition by

enriching feature representation. However, the decline in mAP50-

95 when both networks are updated with C2f-DCNv3 could be

attributed to potential issues. It may stem from overfitting due to

heightened model complexity, especially with limited data.

Alternatively, suboptimal feature integration strategies between

the backbone and neck networks could lead to information loss

or redundancy.

In this research, the strategy of replacing the C2f module in the

neck network with C2f-DCNv3 has been selected from the
outcomes of employing C2f-DCNv3 at various stages, as it
TABLE 1 Model training hyperparameter values.

Hyperparameter Value Description

lr0 0.01 Initial learning rate

lrf 0.01 Final learning rate (lr0 * lrf)

momentum 0.937 SGD momentum/Adam beta1

weight_decay 0.0005 Optimizer weight decay

warmup_epochs 3 Warmup epochs (fractions ok)

warmup_momentum 0.8 Warmup initial momentum

warmup_bias_lr 0.1 Warmup initial bias lr
TABLE 2 The accuracy of the model for different stages of applying C2f-DCnv3.

Model P R mAP50 mAP50-95

YOLOv10n

All 0.939 0.968 0.984 0.962

Over-Mature 0.905 0.949 0.975 0.946

Mature 0.923 0.966 0.984 0.972

Immature 0.991 0.989 0.995 0.968

YOLOv10n+C2f-DCNv3(backbone)

All 0.97 0.974 0.991 0.962

Over-Mature 0.952 0.96 0.989 0.956

Mature 0.959 0.971 0.989 0.968

Immature 0.999 0.991 0.995 0.961

YOLOv10n+C2f-DCNv3(head)

All 0.973 0.968 0.991 0.972

Over-Mature 0.96 0.933 0.987 0.963

Mature 0.967 0.972 0.991 0.979

Immature 0.991 1 0.995 0.974

YOLOv10n+C2f-DCNv3

All 0.971 0.967 0.987 0.958

Over-Mature 0.952 0.934 0.98 0.949

Mature 0.962 0.966 0.987 0.969

Immature 0.998 1 0.995 0.957
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demonstrated the most substantial benefit in enhancing model

performance. Consequently, the C2f-DCNv3 module is chosen to

replace the C2f module in the neck network to augment the

model’s capabilities.
4.3 Model results with attention
mechanisms added at different stages

In this research, we have made significant improvements to the

YOLOv10n object detection model by incorporating the ELA

(Efficient Layer-wise Attention) module to enhance the precision

and efficiency of tobacco leaf maturation identification. Initially, we

substituted the PSA (Pointwise Spatial Attention) mechanism in

YOLOv10n with the ELA, creating the YOLOv10n+ELA1 model.

Subsequently, we introduced an additional ELA module at the

juncture of the backbone and neck networks within the

YOLOv10n+ELA model to potentially elevate the model’s

performance further. The precision of models with attention

mechanisms modified at various stages is detailed in Table 3.

From Table 3, it is clear that the enhanced model has shown

significant performance improvements across all maturity

categories. Specifically, for the “Over-Mature” category, the

YOLOv10n+ELA1 model’s accuracy has increased from 0.905 to

0.95, and the mAP50 has improved from 0.975 to 0.983. In the

“Immature” category, both accuracy and mAP50 have reached

0.991 and 0.995, respectively, demonstrating an exceptionally high

recognition rate. Moreover, the YOLOv10n+ELA model has

achieved an overall precision and mAP50 of 0.972 and 0.992 for

the “All” categories, which is a 3.3% and 0.8% increase compared to

the original YOLOv10n model.

The incorporation of the ELA module has notably bolstered the

model’s capability to capture features indicative of tobacco leaf

maturity. The ELA’s design, leveraging inter-layer attention

mechanisms, effectively enhances the interconnectivity of feature

maps, thus improving the model’s differentiation between tobacco
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leaves of varying maturities. Additionally, by incorporating ELA at

the interface of the backbone and neck networks, we have further

strengthened the conveyance and integration of features, enabling

the model to sustain high recognition accuracy even when dealing

with images of tobacco leaves against complex backgrounds and

under diverse lighting conditions.

However, we have also noted a decrease in mAP50-95 for the

“Over-Mature” category in the YOLOv10n+ELA1 model compared

to the original model. This may indicate that the model’s ability to

recognize extreme cases of tobacco leaf maturity has been somewhat

compromised during the enhancement process. This could be

attributed to the introduction of the attention mechanism, which

may have altered the distribution of features, potentially

diminishing the model ’s generalization capabilities in

certain scenarios.
4.4 Enhanced YOLOv10 model results
through multi-stage fusion improvements

In this research, a comprehensive set of enhancements has been

strategically applied to substantially elevate the performance of the

YOLOv10 model. These improvements encompass the innovative

replacement of the C2f module with the C2f-DCNv3 within the

neck structure, alongside the sophisticated transition from the PSA

(Pointwise Spatial Attention) mechanism to the ELA (Efficient

Local Attention) mechanism within the backbone network. The

seamless integration of an additional ELA attention mechanism at

the interface of the backbone and neck networks has culminated in

the development of a model that excels in the sophisticated

recognition of tobacco leaf maturity. The model accuracy of the

multi-stage improved fusion is shown in Table 4.

As demonstrated in Table 4, the enhanced model from this

study surpasses the original YOLOv10n model in multiple

indicators. In general, the precision (P) of our model across all

categories has seen a rise from 0.939 to 0.973, which is a 3.4%
TABLE 3 Accuracy of the improved model for different stages of the attention mechanism.

Model P R mAP50 mAP50-95

YOLOv10n

All 0.939 0.968 0.984 0.962

Over-Mature 0.905 0.949 0.975 0.946

Mature 0.923 0.966 0.984 0.972

Immature 0.991 0.989 0.995 0.968

YOLOv10n+ELA1

All 0.964 0.971 0.986 0.965

Over-Mature 0.95 0.967 0.983 0.958

Mature 0.951 0.95 0.981 0.97

Immature 0.991 0.998 0.995 0.966

YOLOv10n+ELA

All 0.972 0.97 0.992 0.966

Over-Mature 0.95 0.96 0.989 0.96

Mature 0.975 0.965 0.992 0.976

Immature 0.991 0.986 0.995 0.961
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increase; the recall (R) has also seen an improvement, increasing

from 0.968 to 0.984, a 1.6% increase. The Mean Average Precision at

50% intersection over union (mAP50) has increased from 0.984 to

0.994, a 1.0% improvement; and the mAP50-95 has also shown an

increase, moving from 0.962 to 0.973, a 1.1% increase.

In the granularity of specific categories, our model exhibits

considerable improvement within the “Over-Mature” classification,

with accuracy escalating from 0.905 to 0.973, reflecting a 6.8%

enhancement; the recall rate has also witnessed an uptick from

0.949 to 0.969, a 2.0% gain; mAP50 has seen a boost from 0.975 to

0.991, a 1.6% advancement; and mAP50-95 has climbed from 0.946

to 0.970, a 2.4% escalation. Within the “Mature” classification,

accuracy has surged from 0.923 to 0.970, amounting to a 4.7%

enhancement; the recall rate has spiked from 0.966 to 0.992, a 2.6%

augmentation; mAP50 has risen from 0.984 to 0.995, a 1.1%

increment; and mAP50-95 has inched up from 0.972 to 0.981, a

0.9% increase. For the “Immature” classification, accuracy has

slightly edged from 0.991 to 0.975; the recall rate has marginally

improved from 0.989 to 0.991, a 0.2% increment; mAP50 has

sustained its level at 0.995; and mAP50-95 has maintained its

steadiness at 0.968.

The ELA demonstrates excellent performance in terms of

computational efficiency and the enhancement of model

capabilities. By adeptly capturing local features and providing

advanced feature representation, ELA markedly boosts the

model’s precision and generalization ability. Its primary strengths

are the efficient capture of local features, optimization of channel

dimensions, and a simplified structure, circumventing the

redundancy and increased computational complexity inherent in

global feature extraction. These attributes render ELA especially

fitting for compact models and real-time applications, thus

augmenting overall computational efficiency.

The C2f-DCNv3 module, a fusion of DCNv3 and the C2f

module, strengthens the model’s adaptability to varied shape

changes and spatial configurations. It leverages the adaptability of

DCNv3 and the profound feature extraction capabilities of

convolutional neural networks to further refine the model’s

detection precision and robustness. The integration of the C2f-

DCNv3 module into the neck network facilitates superior

integration of multi-scale features, enhancing the accuracy of

target recognition. Additionally, employing the ELA attention
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mechanism in conjunction with the C2f-DCNv3 module not only

enhances detection precision but also bolsters the model’s

robustness and generalization capabilities.
4.5 The results of the model
comparison experiment

To better demonstrate the capabilities of our model, this study

compared it against four existing YOLO series models (specifically,

YOLOv5n, YOLOv6n, YOLOv8n, and YOLOv10n). The

comparative accuracy of these models is detailed in Table 5. The

results of tobacco maturity detection for different models are shown

in Figure 7.

As depicted in Table 5, our model exhibited superior

performance in the task of recognizing the maturity of tobacco

leaves. Specifically, it achieved a P of 0.973, a R of 0.984, and mAP50

and mAP50-95 of 0.994 and 0.973, respectively, indicating

exceptionally high detection accuracy. Within the subcategories

representing different stages of maturity, our model continued to

excel, maintaining mAP50-95 values above 0.968 for Over-Mature,

Mature, and Immature categories, thereby highlighting the model’s

high accuracy and robustness in identifying tobacco leaves at

various stages of maturity.
TABLE 4 Model accuracy for multi-stage improved fusion.

Model P R mAP50 mAP50-95

YOLOv10n

All 0.939 0.968 0.984 0.962

Over-Mature 0.905 0.949 0.975 0.946

Mature 0.923 0.966 0.984 0.972

Immature 0.991 0.989 0.995 0.968

ours

All 0.973 0.984 0.994 0.973

Over-Mature 0.973 0.969 0.991 0.97

Mature 0.97 0.992 0.995 0.981

Immature 0.975 0.991 0.995 0.968
TABLE 5 The experimental results of different models.

Model P R mAP50 mAP50-95

YOLOv5n

All 0.919 0.966 0.983 0.933

Over-Mature 0.871 0.948 0.978 0.932

Mature 0.898 0.95 0.975 0.934

Immature 0.988 1 0.995 0.934

YOLOv6n

All 0.928 0.909 0.962 0.931

Over-Mature 0.904 0.867 0.942 0.92

Mature 0.887 0.861 0.948 0.924

Immature 0.993 1 0.995 0.95

YOLOv8n

All 0.949 0.948 0.984 0.951

Over-Mature 0.951 0.903 0.978 0.945

Mature 0.903 0.942 0.978 0.951

Immature 0.992 1 0.995 0.958

YOLOv10n

All 0.939 0.968 0.984 0.962

Over-Mature 0.905 0.949 0.975 0.946

Mature 0.923 0.966 0.984 0.972

Immature 0.991 0.989 0.995 0.968

ours

All 0.973 0.984 0.994 0.973

Over-Mature 0.973 0.969 0.991 0.97

Mature 0.97 0.992 0.995 0.981

Immature 0.975 0.991 0.995 0.968
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FIGURE 7

Tobacco maturity detection results.
FIGURE 8

The confusion matrix of the detection results of different models.
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In the horizontal analysis of the tobacco leaf maturity

recognition models, our model demonstrated significant

superiority across all four key performance metrics for all

categories. For instance, when compared to the YOLOv10n

model, our model showed improvements of 3.4% in precision,

1.6% in recall, 0.10% in mAP50, and 1.1% in mAP50-95. The

performance gains were even more pronounced when compared to

the YOLOv5n model, with increases of 5.4%, 1.8%, 1.1%, and 4.0%

in these metrics, respectively. Similarly, when compared to the

YOLOv6n model, our model’s improvements were 4.5% in

precision, 7.5% in recall, 3.2% in mAP50, and 4.2% in mAP50-95.

Although the YOLOv5n and YOLOv6n models showed good

performance in certain metrics—YOLOv5n, for example, achieved

an mAP50 of 0.995 for the immature category—our model overall

exhibited a more outstanding comprehensive performance across

all categories. While the YOLOv8n model was comparable to ours

in some subcategories, such as a mAP50-95 of 0.945 for the Over-

Mature category, our model showed higher consistency and stability

across all maturity categories.

To visually represent the performance of the models, a

confusion matrix was employed to directly illustrate the detection

capabilities. As shown in Figure 8, our model had the fewest

misclassifications across the three maturity stages, followed by
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YOLOv10n, which had a lower total number of misclassifications.

The YOLOv6n model performed the poorest, with the highest total

number of misclassifications across all categories.

To provide a more comprehensive evaluation of the model, this

study employs the PR curve to assess the overall performance of the

model in terms of recall and precision. The PR curves for different

models are illustrated in Figure 9.

As shown in Figure 9, the ours model achieves a mAP50 of

0.994 at all categories, significantly surpassing other models.

Specifically, YOLOv10n reaches a mAP50 of 0.984, while

YOLOv5n and YOLOv8n achieve a mAP50 of 0.983 and 0.962,

respectively. This indicates that the ours model has a distinct

advantage in precision and recall, particularly maintaining a high

level of precision in the high-recall region. Furthermore, the ours

model also demonstrates outstanding performance in specific

categories, achieving a mAP of 0.942 in the Over-Mature

category, compared to YOLOv10n’s 0.975, suggesting that the

ours model is slightly less effective in this category. However, in

the immature and Over-Mature categories, the ours model achieves

an mAP of 0.995 at a threshold of 0.5, showcasing its robust

performance in these areas. Overall, the ours model exhibits

excellent performance across multiple evaluation metrics,

particularly with its overall performance of 0.994 mAP at 0.5,
FIGURE 9

Precision-Recall graphs for different models.
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which is markedly higher than that of other models, underscoring

its exceptional capabilities and potential in object detection tasks.

In conclusion, our model offers an efficient and precise solution

in the domain of tobacco leaf maturity recognition. Its exceptional

performance in key performance metrics, coupled with its clear

advantages over existing models, underscores its significant

potential for practical applications in agriculture. Future efforts

will focus on further optimizing the model to minimize

computational resource consumption and exploring its

applicability in a broader range of agricultural monitoring tasks.
5 Conclusion

This research successfully developed a lightweight and efficient

model for detecting the maturity of tobacco leaves by integrating

DCNv3 to enhance the neck network of the YOLOv10 algorithm.

We managed to optimize the model’s architecture without

sacrificing detection precision, resulting in a reduction of

parameter count and computational complexity. The experimental

outcomes indicate that the application of the C2f-DCNv3 module in

the backbone network elevated the overall precision from 0.939 to

0.970, and the mAP50 score from 0.984 to 0.991. Subsequent

integration of the C2f-DCNv3 in the neck network achieved an

overall precision of 0.973, with the mAP50 score sustained at 0.991,

and a notable improvement in mAP50-95 from 0.962 to 0.972.

Moreover, the incorporation of the ELA attention mechanism led to

a significant boost in precision and mAP50 for the “Over-Mature”

category, and an overall enhancement in the model’s performance

across “All” categories, with accuracy and mAP50 scores increasing

to 0.972 and 0.992, respectively. This study offers the tobacco

industry a potent detection tool that can enhance the precision

and efficiency of tobacco leaf harvesting, which is instrumental for

improving tobacco leaf quality and the economic returns of tobacco

farmers. Future endeavors will concentrate on further refining the

model’s architecture to bolster its generalization capabilities and on

investigating its practical application in field settings to ensure wider

real-world utility and contribute to the sustainable growth of the

tobacco industry.
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