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1College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, China, 2Institute of
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Depending on specific environmental conditions, Robinia pseudoacacia

plantations can have a positive or negative impact on ecosystem function.

Numerous studies have demonstrated that R. pseudoacacia plantations on the

Loess Plateau has decreased the water levels in this area, increasing the risks of

water resource security. Understanding the ecosystem function of the

R. pseudoacacia plantations is thought to be critical to vegetation restoration

in the Loess Plateau. However, no consensus exists on the mechanism by which

afforestation affects moisture regulation under varying environmental conditions

nor on how to manage R. pseudoacacia plantations to maintain the ecosystem

function. In this study, we used the response–effect trait approach to examine

the evolving relationship between community functional composition and water

regulation by collecting community samples from R. pseudoacacia plantations

and natural ecosystems across three vegetation zones (steppe, forest–steppe,

and forest). Our goal was to clarify how the afforestation of R. pseudoacacia

impacts functional composition and, consequently, moisture regulation. The

findings indicated that R. pseudoacacia negatively impacts community structure

and moisture regulation in the drier steppe and forest-steppe (P<0.05).

Afforestation of R. pseudoacacia increases specific leaf area (SLA), leaf nitrogen

content (LNC), and plant height (H), while weakening the trait correlations within

the community, which is the main cause of the negative effect. Furthermore,

we discovered that response and effect traits overlapped (leaf tissue density, LTD)

in natural ecosystems but not in afforested ecosystems within the response–

effect traits framework. In conclusion, our findings indicated that the functional

structure of communities and moisture regulation are impacted R. pseudoacacia

plantations in drier habitats. Additionally, because response–effect traits do not

overlap and trait coordination declines, afforestation increases instability in the

moisture regulation maintenance. The introduction of R. pseudoacacia weakens

the coordination and coupling relationships between traits. We advise giving
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preference to native species over R. pseudoacacia for restoration in the dry

steppe and forest-steppe zones. Trait-based restoration approaches can

enhance the efficacy of restoration measure in achieving desired

ecosystem functions.
KEYWORDS

response-effect trait framework, degraded ecosystem, moisture regulation, diversity,
afforestation, forest management
1 Introduction

Afforestation has emerged as a key nature-based solution for

restoring degraded(1) ecosystems worldwide (Yu et al., 2019; Lu

et al., 2020; Yan et al., 2023). Since 1999, China has completed 7.07

million hectares of afforestation, with the Loess Plateau accounting

for 40% of the new green area (Han et al., 2020). This large-scale

afforestation has significantly altered the material and energy

balance of land surface, as evidenced by decreased erosion and

sedimentation, increased vegetation coverage, and regional climate

change (Liu et al., 2016; Wang et al., 2016; Fang et al., 2019).

However, the rapid increase in the vegetation coverage on the Loess

Plateau consumed substantial water resources, and water

availability is approaching its upper limit (Feng et al., 2016; Jin

et al., 2019). The excessive depletion of water resources from

afforestation not only jeopardizes its sustainability (Vallejo et al.,

2012; Lu et al., 2018; Liu et al., 2022) but also poses great risks to

social and economic development (Cao et al., 2009). As a result,

understanding community structure and moisture regulation has

become critical in afforestation management and ecosystem

function enhancement (Benayas et al., 2009).

Robinia pseudoacacia was introduced to the Loess Plateau in the

1950s and quickly became a pioneer tree species for vegetation

restoration due to its rapid growth and high drought tolerance

(Shangguan, 2007; Wang et al., 2020). Robinia pseudoacacia is

widely planted as a plantation species around the world.

Nevertheless, there is an ongoing debate concerning the ecological

value of R. pseudoacacia plantations (Wu et al., 2015; Zhao et al.,

2017; Ho et al., 2023). On the Loess Plateau, R. pseudoacacia

plantations frequently exbibit degraded growth during the late-

successional recovery stage, such as low biomass accumulation and

small tree diameters. These plantations frequently become stunted

and aged, producing trees with low ecological and economic

benefits (Deng et al., 2016), thus failing to meet expected

ecological functions. The primary reason for the low afforestation

effectiveness and high water consumption is that afforestation often

fails to consider site conditions (Tölgyesi et al., 2020). Mismatching

the species with site may lead to significant soil drying due to its

strong water absorption capacity (Liang et al., 2018; Yang et al.,

2022). A thorough understanding of the structure and function of

afforested ecosystems under various site conditions is critical for
02
reversing the negative impact of R. pseudoacacia afforestation and

improving afforestation management practices.

The introduction of R. pseudoacacia alters the original

community structure and site conditions, influencing moisture

regulation (Sitzia et al., 2012; Slabejova et al., 2019). The effects of

R. pseudoacacia on plant diversity and composition have attracted

significant interest from ecologists and conservationists (Sitzia et al.,

2012; Piwczynski et al., 2016). However, species-based studies are

often too slow to detect environmental changes and fail to provide

real-time insights into afforestation’s impact on the ecosystem

structure. In contrast to species composition, plant functional

traits are more responsive to environmental changes (Koide et al.,

2014; Swenson, 2016). Functional traits link individual plants to

their environment (Chai et al., 2015; Funk et al., 2017). Correlations

between plant functional traits have been used to identify functional

constraints and trade-offs that underpin key plant ecological

strategies in vegetation (Reich, 2014; Li et al., 2015). These

functional traits are individual adaptations to change in in local

or regional environmental gradients (Ackerly, 2004; Violle et al.,

2007). Plant functional traits have been shown to be closely linked

to soil moisture (Gross et al., 2008). To adapt to environmental

spatial heterogeneity, individuals must adjust specific leaf area, leaf

thickness, leaf dry matter content, and other traits in response to

varying soil moisture conditions (Herberich et al., 2017; Li et al.,

2021). Functional trait-based approaches, which focus on ecological

processes and species’ quick responses to environmental changes,

can transcend species classifications and thus the species status in

restoration ecology (Laughlin, 2014; Rosenfield and Muller, 2017).

In fact, there are still very few case studies that use functional traits

to guide restoration efforts in restoration ecology.

Functional traits are divided into response traits and effect traits

(Violle et al., 2007). Response traits are biological characteristics

related to environmental factors, such as disturbances and

resources, whereas effect traits determine the impact of a species

on one or more ecosystem functions (Lavorel and Garnier, 2002;

Suding and Goldstein, 2008). The response–effect trait framework

uses this trait classification to determine how environmental change

affects plant community traits, which, in turn, may impact

ecosystem functioning (Klumpp and Soussana, 2009; Solé-Senan

et al., 2017; Hu et al., 2021).The response–effect trait framework is

used to quantify species interactions and ecosystem functions
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(Lindo, 2015; Refsland and Fraterrigo, 2017). The relationships

between response and effect traits may overlap, be correlated, or be

independent, depending on the context, traits, and ecosystem

functions selected (Suding et al., 2008; Zirbel et al., 2017). Trait

associations at the community level reveal community assembly

processes, which are important for understanding community

structure and functional processes (Silvertown, 2004; Kooyman

et al., 2010; Gotzenberger et al., 2012). For instance, Lasky et al.

(2014) found that stable niche differences related to specific leaf area

and leaf dry matter content mediate competition. As a result, we

present a theoretical framework based on response–effect traits,

which includes both direct effects of environmental changes and the

indirect effects mediated by functional traits on ecosystem functions

(Figure 1). By comparing the response–effect model of

R. pseudoacacia plantations and natural ecosystems along the

same vegetation gradient, we explored the mechanisms by which

R. pseudoacacia plantations affect moisture regulation and provided

recommendations for vegetation restoration practices.

Water resource security is a primary concern in arid and semi-

arid regions worldwide (Jia et al., 2017; Zhang et al., 2021). Issues

caused by afforestation on the Loess Plateau have drawn widespread

attention (Deng et al., 2016; Liu et al., 2018; Han et al., 2020).

However, while macro-environmental changes affect water resource

distribution, it remains uncertain how changes in community

structure due to afforestation influence water resource

distribution. There is no consensus on how to manage existing

plantations to ensure long-term moisture regulation. Using the

response–effect trait framework, this study compared

R. pseudoacacia plantations and natural ecosystems (steppe,
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forest-steppe, and forest according to environmental gradients) in

the Yanhe River Basin (YRB) of the Loess Plateau. We investigated

soil moisture and community samples and relationship between the

community structure and soil moisture of the R. pseudoacacia

plantations and natural ecosystems, aiming to clarify three key

issues: (1) to investigate the impact of the introduction of

R. pseudoacacia on the vegetation community structure and

moisture regulation under different vegetation zones, (2) to reveal

the mechanisms by which afforestation affects moisture regulation

by comparing trait associations, and (3) to use the response–effect

trait framework to compare ecosystem function maintenance

processes in R. pseudoacacia plantations and natural ecosystems.
2 Materials and methods

2.1 Study area and sampling sites

The study was conducted across the loess hilly-gullied

landscape of Yanhe River Basin (YRB), which is located in the

middle area of the Loess Plateau of China (latitude, 36°21′–37°19′N;
longitude, 108°38′–110°29′E). It covers an area of 7,725 km2

(Figure 2), with annual temperature ranging from 8.8°C to 10.2°C

and annual precipitation ranging from 450 mm to 500 mm over the

last decade. The spatial and temporal variation of precipitation and

temperature in YRB is obvious, which affects regional vegetation

distribution. The dominant vegetation types are forest, forest–

steppe, and steppe. The forest zone is dominated by Quercus

mongolica, the forest–steppe zone by Periloca sepium and
FIGURE 1

Conceptual framework of response effect traits: (A) environmental influence on traits. (B) Relationship between response traits and effect traits.
(C) Effects traits on ecosystem function. (D) Independent effects of environment on ecosystem functions.
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Buddleja alternifolia, and the steppe zone by Stipa bungeana,

Bothriochloa ischaemum, Poa sphondylodes, and Cleistogenes

caespitosa. YRB is one of the areas with the highest rate of soil

and water loss on the Loess Plateau, with the soil and water loss area

accounting for 80% of the basin area. The most commonly planted

tree is R. pseudoacacia.

We selected 40 sites within the basin that had both natural

ecosystems and R. pseudoacacia plantations in close proximity to

ensure that biotic and abiotic conditions are comparable. We make

sure that these natural ecosystems are far away from roads and

settlements, minimizing human disturbance as much as possible.

Robinia pseudoacacia plantations were planted more than 20 years

ago and are adjacent to the natural ecosystem. Of these sites, 13

were from the 2016 field survey and 27 were from the 2022 survey.

Figure 2 shows the distribution of the study sites.
2.2 Sampling design

For each site, we created two 10 m × 10 m plots for investigation

and sampling: one for R. pseudoacacia plantations and the other for

natural vegetation. For sampling, three 1 m ×1 m subplots were used

for the herbaceous layers (arranged diagonally in the large plot) and a 5

m×5 m subplot for shrubs (positioned in the middle of the large plot).

We investigated the height, abundance, coverage, and biomass

of each species in each subplot. A total of 10 leaves of each species

were collected and packed into plastic bags at the plot. They were

then brought to the laboratory in an icebox to be measured for the

leaf area and thickness. We collected at least 20 g of leaves from the

plants and put them into plastic bags. All the samples were dried at

65°C for 48 h until they reached a constant weight, after which they

were crushed. Finally, the carbon, nitrogen, and phosphorus

content of the leaves was measured.

To measure soil moisture, we used the S-type route to select 5

points in the plot and collected the soil samples with a soil drill at

three depths (0–10 cm, 10–20 cm, and 20–40 cm). The soil samples
Frontiers in Plant Science 04
from the same depth were then mixed, placed in plastic bags, and

brought back to the laboratory.
2.3 Functional traits and
functional diversity

To estimate the functional structure of plant communities, we

focused on six growth-related functional traits: plant height

(H, cm), which is associated with a plant’s ability to compete for

light, and specific leaf area (SLA, mm2/g), leaf tissue density (LTD,

mg/mm3), leaf nitrogen content (LNC), leaf carbon content (LCC),

and leaf phosphorus content (LPC), which indicate a species’

resource-use strategy. Plant functional trait data were collected

from field sampling to avoid potential confounding effects arising

from within-species trait variation. Species were derived from plot-

scale species, which included nearly all local dominant species and

rare species.

We calculated community-weighted means [CWMs, Garnier

et al. (2004)], which are the average trait values of plant

communities, and reflect the importance of species. The formulas

for calculating CWMs are as follows:

Pi =
Ra+Rb+Rc

3 (1)

CWMij =o
n

i=1
pij � traitij (2)

where pij is the importance value of species i in plot j, Ra is the

relative abundance, Rb is the relative biomass, and Rc is the relative

coverage in plot j (Zheng et al., 2010). Traitij is the mean trait value

of species i in plot j and n is the number of species in the plot.

Functional diversity was assessed using the quadratic entropy index

and functional diversity (FRic), which quantifies the species

dissimilarity based on functional trait values (Luo et al., 2019).

FRic of different traits was calculated by the functional range index

proposed by Mason et al. (2005). Its calculation formula is:
FIGURE 2

The spatial distribution map of the study sampling sites.
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FRic = SFci
Rc (3)

SFci is the niche space filled by the species within the

community; Rc is the absolute range of the trait.

The Rao Quadratic Entropy (RaoQ) index is calculated using a

distance matrix of functional traits and the relative importance

value of species, where dij represents the difference in functional

traits between species i and j, and Pi and Pj represent the relative

abundance of species i and j, respectively.

RaoQ =o
S

i=1
o
S

j=1
dijpipj (4)
2.4 Statistical analysis

To assess the impact of introduction of R. pseudoacacia on plant

community structure and soil moisture, we compared the soil

moisture, functional traits, and diversity between R. pseudoacacia

plantations and natural ecosystems, within each vegetation zone

separately, using t-test. To assess the effect of major environmental

gradients, we compared the soil moisture, functional traits, and

diversity among the three vegetation zones (steppe vs. forest–steppe

vs. forest), for both the R. pseudoacacia plantations and natural

ecosystems separately, using homogeneity test of variance and

ANOVA. The Pearson correlation coefficient was used to analyze

trait association. The response–effects framework is built using

mixed-effects models that look at both response and effect traits.

To detect response traits, the change of vegetation zone was used as

a fixed effect, and different years were used as a random effect to

explain the non-independence of time effects, and various traits

were tested. We estimated the parameters using restricted

maximum likelihood estimation to, and we tested the model’s

significance with the chi-square test. In the effect trait test, we

used the MuMIn package to build a complete model including all of

the traits tested. The lme4 package was used to complete the mixed

effect model, and the optimal model is chosen using the Akaike

Information Criterion (AIC) (Zuur et al., 2010). All statistical

analyses were conducted using R.
3 Results

3.1 Functional composition and soil
moisture distribution

In comparison to natural ecosystems, R. pseudoacacia

plantations had significantly lower soil moisture in all vegetation

zones (p<0.05) (Figure 3A). In terms of functional diversity, we

found that FRic of natural ecosystems are higher than that of

R. pseudoacacia plantations in all zones, and RaoQ of natural

ecosystems are higher in the steppe. Moreover, CWM.SLA and

CWM.LNC are smaller in natural ecosystems than in

R. pseudoacacia plantations in all zones; CWM.LCC is higher in

natural ecosystems than in R. pseudoacacia plantations in the
Frontiers in Plant Science 05
forest–steppe, CWM.LPC is smaller in natural ecosystems than in

R. pseudoacacia plantations in the forest, and CWM.LTD is bigger

in natural ecosystems than in R. pseudoacacia plantations in

the steppe.
3.2 Trait association

We found varying degrees of correlation between CWM trait

values across our ecosystems (Figure 4). In R. pseudoacacia

plantations, CWM.LPC was negatively correlated with CWM.H

and CWM.LTD, positively correlated with CWM.SLA and

CWM.LNC, and CWM.LTD was negatively correlated with

CWM.SLA, while CWM.H and CWM.SLA were positively

correlated. In natural ecosystems, there is also a close correlation

between leaf stoichiometry (CWM.LCC is positively correlated with

CWM.LNC and CWM.LPC) and plant height (CWM.H was

positively correlated with CWM.LNC and CWM.LPC) (P<0.05).
3.3 Responses of soil moisture and
functional indicators to vegetation zones

Vegetation zones influence community functional structure of

natural ecosystems (from steppe to forest). We found that soil

moisture content and functional diversity metrics were lower in the

steppe zone than in the forest zone (Figure 3). The mixed effects

model shows that vegetation zone gradient was positively correlated

with FRic and RaoQ, while CWM.H and CWM.SLA are negatively

correlated with CWM.LTD and CWM.LPC. Other traits were not

significant in the full model (p < 0.05) (Table 1).

The relationship between functional traits of R. pseudoacacia

plantations along the vegetation zones is similar to that of natural

ecosystems, with the exception of CWM.LTD and CWM.LPC,

which were not significant in the full model test (p < 0.05) (Table 1).
3.4 Effect of functional diversity and
functional traits to soil moisture

A full mixed-effects model that integrated functional diversity

and functional traits revealed that higher CWM.LTD was associated

with lower soil moisture in natural ecosystems. Functional diversity

(FRic) had a positive effect on soil moisture in the R. pseudoacacia

plantations, while CWM.LNC had a negative effect (p < 0.05)

(Table 2).
4 Discussion

Understanding how community functional structure

determines ecosystem function is a major goal of restoration

ecology (Yang et al., 2019). Manipulating community structure to

achieve functional goals is a key aspect of restoring degraded

ecosystem (Laughlin, 2014). We present, to our knowledge, the
frontiersin.or
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FIGURE 3

Functional composition indices and soil moisture distribution of Robinia pseudoacacia plantations and natural ecosystems. *, **, and *** indicate
that the difference are significant at p < 0.05, p < 0.01 and p < 0.001. The same below. Lowercase and capital letters denote the variations among
the vegetation zones for both natural ecosystems and plantations, separately. Panels (A) Soil moisture, (B) FRic, (C) RaoQ, (D) CWM.H, (E) CWM.SLA,
(F) CWM.LNC, (G) CWM.LCC, (H) CWM.LPC and (I) CWM.LTD.
FIGURE 4

Correlogram of CWM metrics Pearson correlation. Correlation coefficients are shown in color and significance is marked. * and ** indicate the
difference are significant at P < 0.05 and P < 0.01. Panels (A, B) represent the natural ecosystems and the Robinia pseudoacacia plantations, respectively.
Frontiers in Plant Science frontiersin.org06
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first response–effect trait framework that integrates R. pseudoacacia

plantations and natural ecosystems. Using quantitative trait-based

approaches to explain community structure and ecosystem function

yields more generalizable predictable outcome (Cadotte, 2017).

First, we used natural ecosystems as a reference to investigate the

effects of afforestation on community structure and moisture

regulation in different vegetation zones. Afforestation alters the

relationship between community structure and soil moisture,

indicating that it has an impact on ecosystem. Second, we

detected differences in trait correlations between natural

ecosystems and R. pseudoacacia plantations, indicating that

afforestation affects the community assembly and, consequently,

ecosystem function. This finding provides important implications

for understanding the relationship between community structure

and ecosystem function. Finally, we used a mixed effects model to

construct a response–effect trait framework for both ecosystems,

which can support ecosystem management and restoration efforts,

ultimately resulting in the desired ecosystem functions.
4.1 Effects of afforestation on community
structure and soil moisture

Soil moisture varied significantly between vegetation zones. In

most cases, we found the highest soil moisture in the forest zone and

the lowest soil moisture in the steppe zone, indicating the spatial

heterogeneity of regional precipitation (Yuan et al., 2023). Additionally,

soil moisture in R. pseudoacacia plantations was significantly lower

than in natural ecosystems across three vegetation zones, which is

consistent with reports by Deng et al. (2016) and Dang et al. (2022).

Afforestation is likely to coincide with the desiccation of deeper soil

layers, leading to insufficient ground water recharge (Tölgyesi et al.,

2020). One explanation is that R. pseudoacacia has larger roots and

absorb more water for growth (Perez-Harguindeguy et al., 2013).

Another explanation is that R. pseudoacacia has a larger canopy and

broader leaves than native species, trapping rainfall and increasing
Frontiers in Plant Science 07
evapotranspiration (Yang et al., 2014). We found that the

overconsumption of water due to afforestation was more

pronounced in arid steppe zone than in forest zone.

Robinia pseudoacacia plantations reduced functional diversity

(FRic) in the relatively arid steppe and forest–steppe zones. Robinia

pseudoacacia is an alien species that competes for resources and

absorbs more water than native species (Weiher et al., 1999; Su and

Shangguan, 2019). Ho et al. (2023) found that the R. pseudoacacia

plantations had lower Shannon diversity and functional diversity

than near-natural forests. The introduction of R. pseudoacacia

altered resource allocation within the community, leading to

changes in its functional structure (Cierjacks et al., 2013). In the

arid loess hilly areas, water resource competition largely determines

community composition. On the other hand, the introduction of

R. pseudoacacia alters both biological and abiotic habitat

environment, affecting factors such as soil microbial communities

and microclimates (Zhou et al., 2022; Zhang et al., 2023). The

functional diversity in afforested ecosystems is lower than in natural

ecosystems, indicating that the R. pseudoacacia exerts a strong

filtering effect on community structure (Pysek et al., 2012). In the

forest zones, however, the impact of R. pseudoacacia plantations on

functional diversity is comparable to that of natural ecosystems.

This is consistent with the findings of Hu et al. (2021), indicating

that R. pseudoacacia is expected to have less negative effect in

environments with better hydrothermal conditions. To avoid

depletion of water resource, we advocate for reducing the area of

R. pseudoacacia plantations in arid areas.

The effects of afforestation on plant community structure and

moisture regulation are closely related to plant functional traits

(Qin et al., 2016). Non-native species have functional traits that

differ from native species (Dyderski and Jagodzinski, 2019). Our

findings showed that R. pseudoacacia plantations had higher

CWM.SLA, CWM.H, CWM.LNC, and CWM.LPC than natural

ecosystems. The values of these functional traits indicate how

adaptable a species is to its surroundings (Cornelissen et al.,

2003). Significant differences in functional traits were also noted
TABLE 1 Linear mixed effect models testing the response of functional traits and functional diversity of (a) natural ecosystems and (b) Robinia
pseudoacacia plantations to vegetation zones.

Response variable RaoQ FRic CWM.H CWM.SLA CWM.LTD CWM.LCC CWM.LNC CWM.LPC

(a) Natural ecosystems
1.28
(<0.01)

1.43
(<0.01)

167.79
(<0.01)

1.81(<0.01) −0.04 (0.01) −2.98(0.30) −0.81(0.16) −0.11 (<0.01)

(b) Robinia
pseudoacacia plantations

2.82
(<0.01)

1.96
(<0.01)

87.08(<0.01) 8.72(<0.01) −0.01(0.29) 3.29(0.15) 0.82(0.24) −0.01(0.90)
Estimates of coefficients, their 95% intervals (in parentheses), with bold indicating statistical significance (p < 0.05).
TABLE 2 Linear mixed effect models testing the response of functional diversity and functional traits of (a) natural ecosystems and (b) Robinia
pseudoacacia plantations to soil moisture (log-transformed).

Response variable RaoQ Fric CWM.H CWM.SLA CWM.LTD CWM.LCC CWM.LNC CWM.LPC

natural ecosystems 0.003 (0.17) 0.005 (0.15) −0.0001(0.03) −0.004 (0.10) −0.17 (<0.01) −0.0005(0.27) −0.0003(0.92) −0.06 (0.18)

Robinia
pseudoacacia plantations

1.580e−03
(0. 30)

6.168e
−03(<0.01)

−2.867e
−05 (0.29)

5.615e
−04 (0.20)

6.461e
−02 (0.18)

−1.085e
−03 (<0.01)

1.781e
−03 (0.09)

−2.452e
−02 (0.18)
Estimates of coefficients, their 95% intervals (in parentheses), with bold indicating statistical significance (p < 0.05).
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across different vegetation zones, indicating that plant communities

in these zones use distinct functional trait strategies to adapt to

environmental variation (Luo et al., 2016; Ahrens et al., 2020). In

comparison to forest zone, R. pseudoacacia plantations usually had

a lower CWM.SLA in the arid steppe zone. Our hypothesis was that

by affecting the community resource allocation in the steppe zone,

R. pseudoacacia plantations may shifted the investment strategy of

leaves from conservative to economical one. In addition, the

environment conditions of different vegetation zones determine

how R. pseudoacacia plantations impact the structure of plant

communities. In the arid steppe zone with poor habitat
Frontiers in Plant Science 08
conditions, R. pseudoacacia plantations had the most significant

effect on soil moisture and functional diversity. In contrast, in the

forest zone, where water conditions were favorable, the effects of

R. pseudoacacia plantations were weak or even negligible. This

suggests that R. pseudoacacia’s strong water-competitive ability

under poor water conditions likely suppresses the native plant

growth and interferes with the functioning of ecosystem.

However, in the more resource-rich forest zone, the water scarcity

is reduced, reducing R. pseudoacacia’s competitive advantage. In

these conditions, R. pseudoacacia may even promote nutrient

cycling and enhance ecosystem functions. This study highlights
FIGURE 5

Summary of the effects of afforestation on changes in water resource availability, based on a response effect trait framework.
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the risks of afforestation without considering habitat conditions and

the traits of introduced species. It is essential to assess the ecological

impacts of introduced species under changing environmental

conditions to develop effective afforestation management

strategies that enhance ecosystem service value.
4.2 Effect of afforestation on
trait associations

Plant functional strategies are typically achieved through the

simultaneous expression of various traits, and their associations are

likely shaped by environmental filtering (Candeias and Fraterrigo,

2020). The coordinated expression of functional traits has an

adaptive value, particularly when it comes to optimizing traits to

water conservation. Numerous investigations have demonstrated

that resource-limited environments restrict the variation and

distribution of plant functional traits (Laliberté et al., 2014).

Plants often adopt traits combinations to cope with

environmental stresses (He et al., 2020). In arid hilly areas, stable

correlations between sets of traits are common (Yin et al., 2018). In

the natural ecosystems of the loess hilly region, the content of

nitrogen and phosphorus in leaves changes closely and

synergistically, which is consistent with the prediction of plant

ecological stoichiometric theory: to achieve functional balance

during plant growth, nitrogen and phosphorus must be coupled

to form a stable nitrogen and phosphorus ratio (Gusewell, 2004). In

addition, Burns and Beaumont (2009) discovered a coupling

relationship between the maximum plant height and the leaf

economic traits. The reason may be that the complex terrain in

hilly areas affects the distribution of water and heat factors, which in

turn affects plant photosynthesis and drought resistance adaptation

mechanisms. However, the relationships among functional traits in

R. pseudoacacia plantations were significantly weaker than those in

natural ecosystems. The reason is that R. pseudoacacia, a nitrogen-

fixing plant, disrupts ecosystem’s nutrient cycle, weakening the

coordination between leaf chemical traits, especially the decoupling

leaf nitrogen content with phosphorus content in R.

pseudoacacia plantations.
4.3 Response–effect trait framework

In this study, we employed a response–effect trait framework to

identify which combinations of functional trait structures achieve

desired ecological benefits in R. pseudoacacia plantations ecosystems

and natural ecosystems. In natural ecosystems, most leaf morphological

traits responded significantly to environmental changes, as previously

reported (Guo et al., 2021; Zheng et al., 2024). This is not surprising

given that environment filtering is associated with functional

traits (Lebrija-Trejos et al., 2010). Leaf functional traits either

increased or decreased along the vegetation zone gradient. The

introduction of R. pseudoacacia altered the relationship between

some traits and the vegetation gradient. For instance, the significant

relationships involving CWM.LTD and CWM.LPC disappeared.
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Regarding the effect traits, only CWM.LTD was significantly

associated with soil moisture in the natural ecosystems, while no

significant association was found between any functional trait and

soil moisture in the R. pseudoacacia plantations.

In this study, the response–effect trait framework for natural

ecosystems revealed that CWM.LTD is a functional trait in which

response traits and effect traits overlap. To avoid excessive

consumption of water resources in natural ecosystems, a

combination of species with CWM.LTD as small as possible should

be selected. Furthermore, species with small LTD may be able to adapt

to environmental changes. Nevertheless, afforestation is more likely to

increase water resource consumption and impact moisture regulation

in the drier steppe and forest–steppe zones of the YRB (Figure 5). In R.

pseudoacacia plantations, we did not find any trait that would be a

response trait and an effect trait simultaneously. Currently, the

response–effect trait framework in R. pseudoacacia plantations is

more about the diversity of multiple functional traits rather than

single functional traits. This framework proposed a management

strategy for the existing problem of afforestation ecosystems in the

Loess Plateau, namely, selecting specific components with high

functional diversity to reduce the excessive consumption of water

resources or reducing the planting area of R. pseudoacacia plantations.

The correlation between response traits and effect traits is crucial

for understanding how community assembly processes indirectly

affect ecosystem functions (Zirbel et al., 2017). When response and

effect traits are identical or related, predictability can be established

based on the relationship between trait set and functions (Lavorel and

Garnier, 2002). In degraded ecosystems, restoration practitioners can

use management techniques to modify specific environmental

conditions to achieve targeted ecosystem services (Fu et al., 2023).

However, response and effect traits may not be correlated, limiting

the ability to predict ecosystem functions. For example, in R.

pseudoacacia plantations, we found no effect traits associated with

response traits. In such cases, predictingmoisture regulation based on

commonly measured functional traits or trait response mechanisms

may not be possible. Future work should consider additional traits

that may influence community assembly and ecosystem functions,

for example, root traits and taxonomic traits. Robinia pseudoacacia is

not the only tree species used for revegetation in YRB. One of the

urgent tasks in ecology research is comparing the ecological value of

afforestation with different species.
5 Conclusions

The introduction of R. pseudoacacia has a significant influence

on the functional structure and moisture regulation of the dry

steppe and forest–steppe zones. Our results showed that

R. pseudoacacia plantations affected the distribution of traits and

weakened the correlation between traits compared to the natural

ecosystems, affecting community structure and moisture regulation.

In addition, we propose a practical transformation scheme for forest

management to achieve ecosystem functional expectations by

introducing a trait response–effect framework for both natural

ecosystems and R. pseudoacacia plantations, despite the fact that
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our findings did not find response–effect traits in R. pseudoacacia

plantations. The afforestation area of R. pseudoacacia plantations in

the steppe and the forest–steppe zones must be reduced if soil

moisture balance is to be maintained during ecological restoration.
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