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Response of the photosynthetic
characteristics and antioxidant
system of Suaeda salsa to
the changes of underground
brine depth
Ping Wang, Wenjing Xu, Zehao Zhang, Zhanyong Fu*, Tian Li
and Jingkuan Sun

Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University
of Aeronautics, Binzhou, China
Introduction: Water and salt conditions are key factors influencing vegetation

growth on shell island in the Yellow River Delta. However, the effects of the depth

of underground brine on the photosynthetic characteristics and antioxidant

system of halophytes remain unclear.

Methods: The laboratory simulation experiment was carried out to investigate

the effect of the changes of underground brine depth on Suaeda salsa using four

levels of groundwater: 0 cm, 15 cm, 30 cm and 45 cm.

Results: The results showed that different underground brine depths had significant

impacts on the photosynthetic characteristics and antioxidant systemof S. salsa, and

0-30 cm underground brine depth was suitable for S. salsa growth. The net

photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), light

utilization efficiency (LUE) and carboxylation efficiency (CE) of S. salsa increased first

and then decreased with increasing depth of underground brine. The stomatal

limitation value (Ls) and WUE of S. salsa reached the peak value at the groundwater

depth of 0 cm, and water use efficiency was reduced by 19.4%, 8.0% and 8.6% at 15

cm, 30 cm, and 45 cm, respectively, compared to the 0 cm treatment. With the

deepening of underground brine depth, the value of LUE and CE firstly increased

and then decreased, and reached the peak value when the depth was 30 cm. The

antioxidant enzyme (SOD, POD and CAT) activities of S. salsa decreased and then

increasedwith the increase of underground brine depth. The enzyme activities were

the lowest when the underground brine depth was 30 cm. As the groundwater

depth increased, MDA content decreased and then increased. The highest degree of

membrane peroxidation in S. salsa leaves was observed at the depth of 45 cm.

Discussion:Our study reveals that the antioxidant capacity of S. salsawasweakened

at the underground brine depth of 45 cm and the growth of S. salsa was inhibited.
KEYWORDS

underground brine depth, shell island, photosynthetic characteristics, antioxidant
system, Suaeda salsa
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1 Introduction

The shell island of the Yellow River Delta is themost typical coastal

estuarine wetland in the world, with unique ecosystems and important

ecological functions, which plays an essential role in materials

production and biodiversity conservation (Zhang et al., 2023).

In recent years, natural and anthropogenic disturbances, such as

agricultural cultivation, coastal erosion, and oil pollution, have

increased complexity of water and salt transport processes and

seriously impaired the health and function of coastal wetland

ecosystems (Li et al., 2021; Wang et al., 2022; Xia et al., 2019).

Due to the simultaneous interaction of the river, sea and land,

and the superimposed influence of human activities, the

groundwater dynamics of the Yellow River Delta are very

complex (Hou et al., 2022; Lv et al., 2017). Underground brine

depth is a critical factor affecting vegetation growth and

development in the shell island ecosystem (Guan et al., 2012; Ren

et al., 2019). Plants have evolved various ways to adapt to different

underground brine depths during their long-term growth and

development, thus allowing them to survive and reproduce under

stressful conditions. Previous studies showed that the mechanism of

groundwater affecting the photosynthesis of plants is complex (Xia

et al., 2017). When plants are stressed by water, their physiological

processes and internal structures will change, including the closure

of stomata and the reduction of enzyme activities related to

photosynthetic processes, which eventually cause a lower rate

of photosynthetic (Chen et al., 2011; Law and Finch, 2011;

Liu et al., 2022). Therefore, when considering the photosynthetic

characteristics of plants, a series of physiological and biochemical

indicators should be taken into consideration, including antioxidant

enzyme activities, during photosynthesis, to have a more accurate

understanding of the photosynthetic characteristics response

of S. salsa on underground brine depth (Zhang et al., 2011).

SOD, POD, and CAT can scavenge excess reactive oxygen of

plants in water-stressed adversity and increase plant resistance

(Dong et al., 2013). Plant organs also undergo membrane lipid

peroxidation under adversity, which leads to the accumulation of

MDA (Dong et al., 2013; Maevskaya and Nikolaeva, 2013). The

underground brine depth serves as an important factor limiting

plant recovery in the shell island, and S. salsa growth is severely

inhibited by frequent inundation due to seawater intrusion.

Therefore, the study of photosynthetic characteristics and

antioxidant enzyme activities of plants under water and salt stress

is more conducive to the in-depth understanding of the

physiological and ecological regulatory mechanisms of plants,

which is of great significance in revealing the salt-tolerant

characteristics of plants and improving the ecological

environment of the region.

The vegetation types on shell island are mainly dominated by

salt-tolerant shrubs and herbs, such as Tamarix chinensis, Periploca

sepium, Astragalus adsurgens, and Suaeda salsa (Chen et al., 2019).

Among them, S. salsa is the main primary producer and a typical

dominant herb in the coastal zone of the Yellow River Delta, with

multiple functions such as sand fixation and coastal erosion

resistance, which are essential for maintaining the ecosystem
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stability (Dong et al., 2024). Previous studies about S. salsa have

primarily concentrated on the influence for water and salt stress as

well as nitrogen and phosphorus addition on physiological

characteristics, growth and development, stoichiometric

relationships, and photosynthetic properties (Li et al., 2020; Ma

et al., 2013). However, few studies have been conducted on the

effects of the depth of underground brine on the photosynthetic

characteristics and antioxidant system of S. salsa. The effects of

underground brine stress on the physiological characteristics of S.

salsa in the coastal area and the synergistic change pattern of their

photosynthesis need to be further explored, which is of great

significance in elucidating the adaptive strategies of coastal plants

in response to changes in underground brine.

Therefore, the aim of this study is to increase the research on the

effects of underground brine depth on the photosynthetic

characteristics and antioxidant systems of S. salsa under water

and salt stress conditions and to reveal the adaptive mechanism

of plant photosynthetic characteristics and antioxidant system to

underground brine depth. Additionally, this study try to answer the

following questions: (1) What is the threshold of tolerance for S.

salsa to the depth of underground brine water on the shell island?

(2) What is the interaction relationship between plant

photosynthetic properties and antioxidant enzyme activity

parameters? (3) How does S. salsa adapt to changes in

underground brine depth through plant regulation?
2 Materials and methods

2.1 Experimental materials

The S. salsa seeds and shell sand for the experiment were

collected in shell island Binzhou City, Shandong Province (117°

56′20″E, 38°14′05″N). The collected seeds were air-dried and sealed
for storage at 4°C. Plastic pots (25 cm in diameter and 50 cm in

height) with holes punched on the side and filled with shell sand

were used for planting. Four plastic buckets were used to store

brine. The experiments were conducted in a greenhouse of 25°C

average temperature and 45% average relative humidity.
2.2 Experimental design

In May 2020, 30 seeds were sown in each pot and sprinkled with

a little water. Then, the plastic pots were moved separately to plastic

buckets, and different depths of 0.8% brine were added (simulated

groundwater salt concentration). According to the actual

groundwater burial depth of the shell islands in the Yellow River

Delta, four brine depth treatments were set: 50 cm, 35 cm, 20 cm,

and 5 cm, respectively (Figure 1). Underground brine depths were 0

cm, 15 cm, 30 cm, and 45 cm, respectively. Set up three repetitions

in each bucket. Seeds started to germinate after 3 days of sowing,

and, then, 12 plantings were set in each pot after 14 days. The

distilled water was added to the plastic bucket daily to compensate

for the evaporation of water.
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2.3 Photosynthetic
characteristics determination

CID-340 photosynthesis system was applied to determine the

net photosynthetic rate (Pn), transpiration rate (Tr), intercellular

CO2 concentration (Ci), and stomatal conductance (Gs) in the third

leaf below the apical growth point of the S. salsa. Photosynthetic

characteristics were measured with the photosynthetically active

radiation (PAR) of 1,000 mmol m−2 s−1 and a CO2 concentration of

390 mmol mol−1. Measurement time is about 40 days after

germination. Stomatal limitation value (Ls), WUE, light

utilization efficiency (LUE), and carboxylation efficiency (CE)

were calculated by the formula (Chen et al., 2024; Zhong et al.,

2019).

Ls = 1�Ci=Ca

WUE = Pn=Tr

LUE = Pn=PAR

CE = Pn=Ci
2.4 Antioxidant enzyme activity and
MDA determination

SOD, POD, CAT, and MDA were measured by the kit. The

procedure for the determination was performed according to the kit

instructions (Sun et al., 2019). Among them, SOD activity was

measured using Nitrotetrazolium Blue chloride (NBT) method

(Stewart and Bewley, 1980), POD activity was determined using

guaiacol methods (Frébort et al., 1992), CAT activity was determined

using ultraviolet absorption (Frébort et al., 1992), and MDA content

was measured using thiobarbituric acid method (Xia et al., 2023).
2.5 Statistical analysis

One-way ANOVA and the Duncan test were used to compare

the effects of underground brine depth on the photosynthetic

characteristics and antioxidant system of S. salsa. The Pearson

test was used for the correlation analysis.
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3 Results

3.1 Effect of underground brine depth on
photosynthetic characteristics

The effect of underground brine depth on the photosynthetic

characteristics of S. salsawas showed in Figure 2. It was found that Pn

tended to increase and then decrease with the increase of the

underground brine depth. At 30 cm, Pn reached the maximum. At

30 cm, Pn reached the maximum. Compared to that at 0 cm, Pn at 15

cm and 30 cm significantly increased by 26.1% and 76.4% (P < 0.05),

respectively. At 45 cm, Pn reached the minimum and was

significantly reduced by 30.9% compared to that at 0 cm. The trend

of Tr and Gs with underground brine depth was consistent with that

of Pn. At 30 cm, Tr and Gs were remarkably higher than those at 0 cm

(P < 0.05), whereas, at 45 cm, both reached the minimum and were

remarkably lower than those at 0 cm (P < 0.05). At 15 cm, 30 cm, and

45 cm, Gs was remarkably higher than that at 0 cm (P < 0.05).
3.2 Effect of underground brine depth on
resource utilization efficiency

Different underground brine depths affected the resource use

efficiency of S. salsa significantly (Figure 3). Ls and WUE at 15 cm,

30 cm, and 45 cm treatments were significantly lower than that at 0

cm (P < 0.05). At 15 cm, 30 cm, and 45 cm, WUE was reduced by

19.4%, 8.0%, and 8.6%, respectively. As the depth of the

underground brine increases, CE and LUE tend to first increase

and then decrease. At 45 cm treatment, LUE and CE were

significantly suppressed and decreased by 30.9% and 33.1%,

respectively (P < 0.05). At 15 cm and 30 cm treatments, LUE and

CE were significantly higher than those at 0 cm (P < 0.05).
3.3 Effect of underground brine depth on
antioxidant system

The SOD, POD, and CAT activities decreased and then

enhanced with increasing underground brine water level and

peaked at 45 cm treatment (Figure 4), and the activity of the

three enzymes was significantly higher at 45 cm than that of

other treatments (P < 0.05). The activity of the three enzymes at
FIGURE 1

Experimental design.
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30 cm treatment reached the minimum value and was significantly

lower than that at 0 cm (P < 0.05). The MDA content followed the

same trend as the three enzyme activities, with the lowest at 30 cm

treatment and the highest at 45 cm treatment.
3.4 Correlation analysis between
photosynthetic characteristics and
antioxidant system

There were significant correlations between the photosynthetic

characteristics of S. salsa (Figure 5). Pn was significantly and

positively correlated with Tr and Gs, respectively, and was

significant at the 0.01 level, whereas there was no significant

correlation between Ci and Pn, Tr, and Gs, respectively. There

were significant positive correlations between MDA content, SOD,

POD, and CAT activities (P < 0.01). The SOD, POD, and CAT

activities and MDA content were negatively correlated with Pn, Tr,

and Gs, respectively (P < 0.01). The negative correlation between Ci

and CAT activity was found (P < 0.01).

The two axes of the principal component analysis (PCA)

explained 74.93% and 21.21% of the variation in photosynthetic

characteristics and antioxidant systems of S. salsa, respectively
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(Figure 6). PCA showed that the four underground brine depths

of burial were located in different quadrants, indicating that there

were large effects of underground brine depth on the photosynthetic

characteristics and the antioxidant system of S. salsa .

PERMANOVA further showed that the underground brine depth

of burial explained 40.44% of the variation in photosynthetic

characteristics and antioxidant systems of S. salsa (P < 0.05).
4 Discussion

The spatial distribution of groundwater level and shallow

groundwater can influence the growth of natural vegetation in the

region (Xu and Su, 2019). There are different tolerance thresholds and

corresponding physiological adaptation strategies of various plants to

the underground brine depth. Investigating the response mechanisms

of plants to the underground brine depth is critical to the restoration

of degraded ecosystems (Jin et al., 2014; Zhang et al., 2013). In this

study, it was found that S. salsa could survive in the 0- to 45 cm range

of underground brine depth. However, the plant was significantly

suppressed at the 45 cm depth. The deeper underground brine depth

may have caused a water deficit of S. salsa, resulting in their growth

inhibition. The adaptation of different plants to the underground
FIGURE 2

Effect of underground brine depth on photosynthetic characteristics of S. salsa. Different lowercase letters indicate that the difference among
treatments is significant.
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brine depth is different. An et al. (2011) found that Tamarix chinensis

was mainly distributed in the supralittoral zone with deeper

underground water depths, Phragmites communis was widely

distributed in wetlands of estuaries and coastal marshes with

moderate underground water depths, whereas S. salsa was

distributed in coastal mudflats with shallow underground water

depths (Xing and Xing, 2019). This finding is similar to our study.

The shorter root system of S. salsa leads them to live in habitats with

shallow water depths. In addition, the underground brine depth is

directly related to whether the soil capillary water can reach the

surface and determines the soil salt content (Dou et al., 2019). It has

been found that, when the underground water depth is less than 0.5

m, the effect of underground water depth on soil salt content is larger

(Ma et al., 2013). The change in groundwater level causes a change in

soil salt content. This suggests that S. salsa is influenced by both the

underground water depth and soil salt content. The fact that S. salsa

can grow normally and maintain a high survival rate at different

gradients of groundwater depth indicates that they are highly

adaptable to changes in the water–salt environment of shallow

groundwater (He et al., 2021), which is the main reason that S.

salsa can become the dominant species on shell island.

For dominant plant species growing in tidelands, the ability to

adapt to different gradients of underground brine depth is essential
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for their survival. As the dominant plant on the shell island in the

Yellow River Delta, S. salsa has developed corresponding strategies

in plant physiology and morphology to adapt to the changing

groundwater level. To tolerate external stresses, plant leaves

optimize gas exchange efficiency via regulating stomatal size,

density, and opening (Xin et al., 2024). A study has shown that

being under salt stress conditions can increase the stomatal density

and decrease the stomatal opening of plant leaves (Zhang et al.,

2018a). In this study, it was found that the underground brine depth

changed the photosynthetic characteristics and resource use

efficiency of S. salsa. The Pn, Tr, Gs, LUE, and CE of S. salsa

increased with increasing depth when the underground water depth

was between 0 cm and 30 cm. This indicated that the S. salsa can

actively adapt to the changing underground brine depth by

regulating its photosynthetic characteristics and resource

utilization efficiency to ensure its normal growth. At the 45 cm

depth, photosynthesis decreased, indicating that the growth of S.

salsa was inhibited at this depth. The WUE peaked at 0 cm depth

and decreased significantly at 15–45 cm. This result indicates that S.

salsa has the highest water use efficiency when water is sufficient.

The reduced water use efficiency of S. salsa at 15 to 45 cm depth may

be related to water scarcity. Stomatal limitation theory suggested

that the factors limiting plant photosynthesis are divided into
FIGURE 3

Effects of underground brine depth on resources utilization efficiency of S. salsa. Different lowercase letters indicate that the difference among
treatments is significant.
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stomatal and non-stomatal factors. The change of Ci is the main

basis for judging stomatal restriction or non-stomatal restriction.

When Pn, Gs, and Ci decreased, whereas Ls increased, it indicated

that plant photosynthesis was mainly limited by stomata (Chen

et al., 2024). Photosynthesis is the fundamental process that

provides the material and energy necessary for plant growth and

development. However, under salt stress, the photosynthetic

efficiency of plant leaves is reduced (Zhang et al., 2018b; Wei

et al., 2024). In this study, when the underground brine depth

varied from 30 cm to 45 cm, Pn decreased rapidly, and Ci decreased

with the decrease of Gs, whereas Ls increased, indicating that the

decrease of Pn was caused by stomatal factors (Li et al., 2012).

Shallow groundwater is usually considered to be the major

water source for plant growth in the Yellow River Delta region (An

et al., 2013). Recent research on the impact of underground brine

depth mainly focused on plant physiological characteristics,

functional traits, and changes in photosynthetic properties (Wei

et al., 2020). The response of plant antioxidant system to

underground brine depth was less studied. A previous study has

indicated that plants usually increase stress tolerance via adjusting

their SOD, POD, and CAT enzyme activities when they are stressed

(Li et al., 2013). Plant leaf protective enzyme systems are damaged

under salt stress, and plant oxidase activity is reduced (Wei et al.,
Frontiers in Plant Science 06
2024). Liu and Zhong (2016) discovered that Leymus chinensis

enhanced salinity tolerance via enhancing antioxidant enzymes

activity. S. salsa is subjected to gradually intensified drought stress

with the deepening of the underground brine level, thus enhancing

its stress resistance by increasing its antioxidant enzyme activities.

Li et al. (2010) showed that the inhibitory effects of POD and CAT

activities on MDA content in Periploca sepium leaves were

insignificant under drought stress, whereas the inhibitory effects

of SOD activity on MDA content were significant. In this study, the

inhibitory effect of the increased activities of the three antioxidant

enzymes on the MDA content in the S. salsa plants was

insignificant. Guan et al. (2011) found that the CAT activity of S.

salsa peaked at 30 cm underground water depth by water–salt stress

experiment, which is consistent with our result. Differently, Guan

et al. (2011) discovered that S. salsa’s MDA content was higher at 0-

cm underground water depth. This may be attributed to differences

in cultivation substrates. The weak water-holding capacity of shell

sand and the easy evaporation of water lead to an increase in soil salt

(Chen et al., 2022). These reasons may have aggravated the drought

stress and salt stress of S. salsa and increased the MDA content

(Shailani et al., 2021). Increased drought stress leads to an increased

membrane lipid peroxidation exceeding the antioxidant capacity of

the plant. This indicates that the resistance of S. salsa is weakened
FIGURE 4

Effects of underground brine depth on antioxidant system of S. salsa. Different lowercase letters indicate that the difference among treatments
is significant.
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FIGURE 5

Correlation analysis of between photosynthetic characteristics and antioxidant system. *, **, and *** indicate that the correlation is significant at
0.05, 0.01, and 0.001 level, respectively.
FIGURE 6

PCA of photosynthetic characteristics and antioxidant system.
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when the underground brine depth is deeper. At the same time, the

photosynthetic properties of S. salsa were also significantly

inhibited. Therefore, the underground brine depth should be

considered in vegetation restoration on shell islands.
5 Conclusion

S. salsa can grow normally in the underground brine depth

range of 0 cm to 45 cm and adapt to the changing stress of brine

depth by regulating its photosynthetic and antioxidant systems. S.

salsa had the greatest Pn and the lowest antioxidant enzyme activity

at 30 cm underground brine depth. SOD, POD, and CAT activities

and MDA content were negatively correlated with Pn, Tr, and Gs,

respectively. At 45 cm underground brine depth, the photosynthetic

properties of S. salsa were inhibited, antioxidant capacity was

reduced, MDA content was highest, and growth was significantly

inhibited. When the underground brine depth was 45 cm, the

growth of S. salsa was subjected to drought stress, which stimulated

an increase in antioxidant enzyme activity. The growth of S. salsa in

shell sands is more susceptible to the underground brine depth. The

underground brine depth must be taken into consideration when

conducting ecological restoration work on shell island.
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