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Addressing the issues with insufficient multi-scale feature perception and

incomplete understanding of global information in traditional convolutional

neural networks for image classification of wheat leaf disease, this paper

proposes a global local feature network, i.e. GLNet, which adopts a unique

global-local convolutional neural network architecture, realizes the

comprehensive capturing of multi-scale features in an image by processing

the global feature block and local feature block in parallel and integrating the

information of both of themwith the help of a feature fusion block. By processing

global and local feature blocks in parallel and integrating the information of both

effectively with the help of feature fusion blocks, the model realizes the

comprehensive capture of multi-scale features in images. This innovative

design significantly enhances the model ability to understand the features of

wheat leaf disease images, and thus demonstrates excellent performance and

accuracy in the task of classifying wheat leaf disease images in real-world

scenarios. The successful application of GLNet provides new ideas and

effective tools for solving complex image classification problems.
KEYWORDS

convolutional neural network, wheat leaf disease, image classification, multiscale
features, GLNet model
Introduction

Wheat is among the most extensively cultivated food crops worldwide, supplying vital

sustenance and nutrition to billions of people globally (Erenstein et al., 2022). As reported

by the Food and Agriculture Organization of the United Nations, wheat constitutes over

one-third of the world’s cereal production and is a crucial component of the human food

supply (Dadrasi et al., 2023). However, wheat is subject to a variety of diseases during its

growth, including wheat leaf rust, powdery mildew, red mold and stripe rust (Singh et al.,

2023). These diseases substantially diminish both the yield and quality of wheat, leading to

significant losses in the agricultural economy (Rebouh et al., 2023). For instance, in the case
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of wheat blast disease, this condition not only impacts yield but also

results in elevated levels of toxins in the grains, thereby posing a

serious threat to both human and animal health.

Hence, timely and accurate diagnosis and management of wheat

diseases are crucial for ensuring food security and sustainable

agricultural development (John et al., 2023). Traditional methods

of wheat disease diagnosis rely on field observation and empirical

judgment of agronomists, which is not only time-consuming and

laborious, but also involves a certain degree of subjectivity and risk

of misjudgment. In modern large-scale agricultural production,

there is an urgent need for an efficient and reliable automated

disease diagnostic tool to improve the diagnostic efficiency and

accuracy, to realize early warning and precise prevention and

control (Edan et al., 2023).

Traditional methods of wheat disease diagnosis mainly include

visual inspection and laboratory testing. The visual inspection

method relies on the experience and knowledge of agricultural

experts, and although it can be carried out in the field in real time, it

is inefficient and highly dependent on experts (Guerrero et al.,

2013). In addition, visual inspection is difficult to cover and detect

quickly when dealing with large planting environments and is prone

to missing early disease symptoms. Traditional laboratory testing

methods, while accurate, are hindered by their cumbersome, time-

consuming, and costly nature, making them impractical for large-

scale monitoring and real-time diagnosis. In response to these

challenges, automated and intelligent methods for diagnosing

wheat diseases have emerged as key areas of research focus.

Recent advancements in information technology and agricultural

techniques have fostered the adoption of image processing

technology for identifying and classifying crop diseases, marking

it as a burgeoning diagnostic tool. However, traditional image

processing methods rely on artificially designed features, which

are difficult to adapt to the complex and changing field environment

and diverse disease symptoms, and the classification effect

is limited.

Deep learning, a leading technology in artificial intelligence,

excels particularly in tasks involving image recognition and

classification (Khasim et al., 2024). Convolutional Neural

Network, as an important model of deep learning, mimics the

processing of the human brain’s visual system through a

hierarchical architecture, and is able to automatically extract

multi-level features from image data, thus realizing efficient image

classification and recognition (Ketkar and Moolayil, 2021). Deep

learning methods have already achieved remarkable results in the

fields of medical image analysis, automatic driving, security

monitoring, etc., and have brought new hope for agricultural

image processing. In the field of agriculture, image analysis

techniques based on deep learning are gradually applied to crop

pest detection and classification. By constructing large-scale image

datasets and training deep learning models, automated and

intelligent diagnosis of crop diseases can be realized. Deep

learning methods exhibit superior accuracy and robustness

compared to traditional methods, adeptly adapting to complex

and dynamic field environments.
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There have been some research attempts to apply deep learning

to wheat disease image classification. Studies (Lin et al., 2019) have

shown that deep learning-based methods for wheat disease

classification have achieved better results to some extent. For

example, some studies have used convolutional neural networks

to classify wheat leaf diseases and achieved high classification

accuracy. However, these methods based on convolutional neural

networks often neglect the extraction of global features from wheat

leaf disease images. Global features play an important role in wheat

leaf disease images because they not only contain information about

the overall distribution and morphology of the disease, but also

capture important information about the environmental

background, lighting conditions, and overall leaf morphology.

Therefore, to address this issue, we propose the Global Local

Feature Network (GLNet) for classifying wheat leaf disease images.

GLNet initially employs a bottleneck block, comprised of small

convolutional kernels, to extract features from wheat leaf disease

images. Subsequently, an inverted bottleneck block utilizes a large

convolutional kernel to capture global features from the images,

while another inverted bottleneck block, employing a similar

architecture but with small convolutional kernels, extracts local

features. Furthermore, a feature fusion block effectively enhances

the interaction between these global and local features. The main

contributions of this paper include:
1. a convolutional neural network-based wheat leaf disease

image classification network, namely GLNet, is designed

and implemented. GLNet improves its global feature

sensing ability by introducing a large kernel convolution

because of traditional convolutional neural network, which

improves the accuracy of classification.

2. an effective feature fusion block is designed, which can

effectively enhance the interaction between global and

local features.

3. the effectiveness of the model is verified through

experiments on a public dataset, and compared and

analyzed with existing methods, demonstrating its

potential in practical applications and proving the

advantages of GLNet in image classification of wheat

leaf disease.
Related work

Convolutional neural networks for
image classification

Alexnet (Krizhevsky et al., 2012) with its unique network

architecture and technological innovations such as ReLU

activation function, Dropout regularization, data augmentation,

and local response normalization, which opens up new paths in

the field of deep learning. At the same time, by introducing deeper

network layers, it is able to extract more levels of abstract features
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compared to the previous shallow networks, and thus performs well

in dealing with complex image recognition tasks. The core design

idea of VGGNet (Simonyan and Zisserman, 2014) is relatively

simple and intuitive, which reduces the number of parameters of

the model while increasing the depth of the network by connecting

multiple smaller-sized convolutional kernels (usually 3x3) in series

instead of larger-sized convolutional kernels. This design strategy

not only improves the accuracy of the model, but also enhances the

model’s ability to extract image features. ResNet (He et al., 2016)

addresses the issues of gradient vanishing and model degradation in

deep neural networks during training by incorporating residual

connections. This innovation enables the successful training of

deeper neural networks compared to previous models, resulting

in significant improvements in performance across various tasks.

InceptionNet (Szegedy et al., 2015) enhances model accuracy and

performance through the introduction of the Inception block. This

block facilitates simultaneous utilization of convolutional kernels of

varying sizes and pooling operations at the same network level,

enabling the capture of image features across multiple scales. By

reducing computational demands and parameter count, this

network architecture efficiently extracts features while managing

resource consumption. It finds extensive application in computer

vision tasks such as image classification and target detection. ACNet

(Ding et al., 2019) improves model accuracy and efficiency by

introducing asymmetric convolutional strategies. These

enhancements strengthen feature extraction capabilities during

training while maintaining consistent computation through

convolution kernel fusion during inference. The fundamental

concept involves allowing convolution kernels to dynamically

adjust their size or shape based on input data, or combining

kernels of different sizes to capture multi-scale features. This

approach enhances the model’s understanding and generalization

of complex scenes. EfficientNet (Tan and Le, 2019) achieves a

unified scaling of the network depth, width and resolution through

composite scaling techniques, thus significantly reducing the

number of parameters and computation of the model while

maintaining high performance. MobileNet (Howard et al., 2017)

is a compact convolutional neural network architecture developed

by the Google team. Its primary objective is to substantially reduce

model size and computational complexity while preserving model

accuracy. This design makes it particularly well-suited for

deployment on mobile devices and embedded systems. DenseNet

(Huang et al., 2017) greatly facilitates feature reuse and gradient

propagation by using the output of each layer directly as the input of

all subsequent layers through a dense connectivity mechanism,

effectively mitigating the problem of gradient vanishing and

improving the training efficiency and performance of the model.

Meanwhile, DenseNet further reduces the number of parameters

and improves the computational efficiency of the model by

introducing Bottleneck and Transition layers to control the width

and depth of the network. ShuffleNet (Zhang et al., 2018) effectively

reduces the number of parameters and computational complexity of

the model by adopting innovative techniques such as Group

Convolution and Channel Shuffle.
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Image classification network for wheat
leaf disease

M-bCNN (Lin et al., 2019) uses a unique convolutional kernel

matrix arrangement, employing parallel convolutional layers.

Techniques like DropConnect, exponential linear units, and local

response normalization are integrated to combat overfitting and

gradient vanishing. Compared to traditional networks, M-bCNN

effectively boosts data streams, neurons, and connectivity channels

with a modest parameter increase, enhancing its nonlinear mapping

capabilities and data characterization. Feng et al (Xiao et al., 2021).

constructed a wheat leaf disease image recognition model based on

MobileNetV2 and used the training parameters on the ImageNet

dataset as the initial parameters of the model. Jiang et al (Jiang et al.,

2021). enhanced the VGG16 model through multi-task learning,

leveraging pre-trained weights from ImageNet for transfer learning

and fine-tuning to improve wheat leaf disease understanding. RFE-

CNN (Xu et al., 2023) combines RCAB, FB, EML, and CNN to

enhance Convolutional Neural Networks’ accuracy in classifying

wheat leaf disease images.WR-EL (Pan et al., 2022) integrates

multiple CNN models using bagging, snapshot ensembling, and

SGDR algorithms to boost accuracy in wheat leaf disease image

classification. Khan et al (Khan et al., 2022). developed an efficient

machine learning framework for identifying and categorizing

various wheat diseases, focusing on brown rust and yellow rust.

The method involves several stages: initially, gathering data from

diverse fields in Pakistan while accounting for illumination and

orientation parameters. Next, preprocessing the data using

segmentation and scaling techniques to distinguish healthy from

affected areas. Lastly, training the machine learning model on the

prepared dataset.Abdulaziz Alharbi et al (Alharbi et al., 2023).

proposed a wheat disease classification network using Few-Shot

Learning with EfficientNet as the backbone, capable of classifying 18

wheat diseases. Introduced an attention mechanism to enhance

feature selection effectiveness. Bansal et al (Bansal et al., 2023).

proposed a hybrid model for detecting and classifying wheat leaf

spot diseases, combining Faster R-CNN for regional convolutional

neural network-based detection with SVM for classification. Shafi

et al (Shafi et al., 2023). Utilized a pre-trained U2 Net model for

background removal and extraction of rust-affected wheat leaves.

Applied deep learning classifiers, specifically Xception and ResNet-

50, to assess the severity of stripe rust disease. Kukreja et al (Kukreja

and Kumar, 2021). proposed a deep learning based method called

Deep Convolutional Neural Network (DCNN) to automatically

classify wheat rust infestation without human intervention. In

addition, this DCNN training and testing process produced

definitive and high classification results for wheat rust disease.
GLNet

As shown in the Figure 1, GLNet mainly consists of the

following parts, which are feature extraction block, local feature

block, global feature block and multi-scale feature fusion block.
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Feature extraction block

As shown in the Figure 2, the feature extraction block consists of

two branches, the first branch consists of two 1x1 convolutional

layers and a 3x3 convolutional layer. Specifically, the first 1x1

convolutional layer is used to reduce the dimensionality of the

input features, thus reducing the computational complexity and the

number of parameters. The next 3x3 convolutional layer is used to

increase the sensory field, thus capturing more complex spatial

features. Finally, a second 1x1 convolutional layer further extracts

and combines the features.

The second branch is relatively simple and consists of a 1x1

convolutional layer. This 1x1 convolutional layer is mainly used to

directly extract and combine input features, providing additional

nonlinear transformations.
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With the combination of these two branches, the feature

extraction block is able to efficiently extract multi-scale and

multi-level features, thus improving the expressiveness and

performance of the model.
Local feature block

As shown in the Figure 3, the local feature block consists of two

branches. The first branch consists of a 3x3 convolutional layer and

two 1x1 convolutional layers. First, the 3x3 convolutional layer

enhances feature representation by extending the receptive field to

capture more complex and diverse spatial features. Following this, a

1x1 convolutional layer reduces input feature channel numbers,

thereby decreasing computational complexity and parameters.

Subsequently, another 1x1 convolutional layer further extracts

and recombines features based on this dimensionality reduction.

The second branch is a Residual Connection that passes the

input features directly to the output, skipping the intermediate

convolutional operations. This connection helps to alleviate the

gradient vanishing problem and promotes the training stability and

efficiency of deep neural networks.

Through the combination of these two branches, the local

feature block can effectively extract multi-scale and multi-level

features, while the residual connection is utilized to maintain the

stability and efficiency of the model training, ensuring that the input

features are combined with the convolutionally processed features,

thus achieving better feature learning results.
FIGURE 2

The feature extraction block architecture.

FIGURE 3

The local feature block architecture.
FIGURE 1

The GLNet architecture.
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Global feature block

As shown in the Figure 4, the global feature block consists of

two branches. The first branch consists of a convolutional layer

sufficient to cover the size of the feature map and two 1x1

convolutional layers. First, the convolutional layer that is

sufficient to cover the size of the feature map is used for global

information extraction; this convolutional layer captures the global

features of the entire feature map and provides richer contextual

information. If the feature map size is 32, the convolution kernel

size for Conv-BxB is 31. If the feature map size is 16, the

convolution kernel size for Conv-BxB is 15. Then, the first 1x1

convolutional layer is used for dimensionality reduction to reduce

the number of feature channels, thus reducing the computational

complexity and the number of parameters. Next, the second 1x1

convolutional layer further extracts features and recombines them

on the basis of dimensionality reduction to enhance the

feature representation.

The second branch: is a Residual Connection, which passes the

input features directly to the output, skipping the intermediate

convolution operation. This connection can alleviate the problem of

gradient vanishing and promote the stability and efficiency of deep

neural network training.

Through the combination of these two branches, the global

feature block can effectively extract global features, while using

residual connection to maintain the stability and efficiency of model

training, ensuring the combination of input features and

convolutionally processed features, thus achieving better

feature learning results. This design not only captures the
Frontiers in Plant Science 05
global information, but also reduces the computational

complexity through the 1x1 convolutional layer, making the

model more computationally efficient while retaining efficient

feature representation.
Feature fusion block

As shown in the Figure 5, feature fusion block mainly consists of

two 1x1 convolutional layers and Softmax function. The process is

as follows, first, the global and local features are stacked together to

form a comprehensive feature map. Then, the Softmax function is

used to calculate the weights of the global and local features so as to

assign appropriate weight values to the features of both scales. The

computed weights are then assigned to the original global and local

features, thereby adjusting the importance of the respective features.

The weighted global and local features are then summed element by

element to form the fused features. Finally, the fused features are

further processed to further extract and combine features through

two 1x1 convolutional layers to enhance feature expression.

Through this process of feature fusion block, the global and

local features can be effectively combined to make full use of multi-

scale information, thus enhancing the feature learning ability and

expression ability of the model. After the weight adjustment and

element-by-element summing operation, the global and local

features can work better together in the fusion process, and

finally the feature representation is further optimized by the 1x1

convolutional layer to enhance the overall performance of

the model.
FIGURE 4

The global feature block architecture.

FIGURE 5

The feature fusion block architecture.
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Classification layer

The classification layer consists of two fully connected layers, the

first fully connected layer has an output dimension of 256 and is used

to map the input features to a more compact feature space, thus

capturing more discriminative features. The output dimension of the

second fully-connected layer is the number of categories, which is

responsible for mapping the features extracted from the previous layer

to specific classification results. Each output node corresponds to a

category, and the output values of these nodes are transformed into the

probability of each category through the Softmax function. Magnetic

tiles, a Dropout layer with a dropout rate of 0.5 is included between the

two fully connected layers to prevent overfitting.The Dropout layer

randomly discards half of the neurons, thus making the model more

robust during training and avoiding over-reliance on training data.

Through this design, the classification layer can effectively

extract and utilize the input features, and improve the

generalization ability of the model through the Dropout layer,

and finally achieve accurate classification results.
Experiments

Implementation details

GLNet is implemented based on Tensorflow and Keras with a

batch_szie size of 40, epoch of 100, optimizer of Adamax, learning

rate of 1e-4, and loss function of cross-entropy loss function. This

paper reproduces all the comparison networks based on the same

hyperparameters, and all the experiments in this paper are

performed in a Tesla P100. The training is stopped when the

accuracy does not increase for more than three epochs.

To evaluate the performance of GLNet and comparison networks,

we use Accuracy (ACC), Precision (Prec), Recall and F1 score (F1). And

the categories of Prec, Recall and F1 are balanced in a way using macro.
Dataset

This paper validates the performance of GLNet using the

Philippines Rice Diseases dataset, which has a total of 14 categories.

They are Rice Blast (140 photos), Sheath Blight (98 photos), Brown

Spot (150 photos), Narrow Brown Spot (98 photos), Sheath Rot (98

photos), Stem Rot (100 photos), Bakanae (100 photos), Rice False

Smut (99 photos), Bacterial Leaf Blight (140 photos), Bacterial Leaf

Streak (99 photos), Tungro Virus (100 photos), Ragged Stunt Virus

(100 photos), and Grassy Stunt Virus (100 photos). Figure 6 shows

examples of the different categories.
Comparison experiment

To validate the performance of GLNet, we compare it with

typical image classification networks including VGGNet,

InceptionNet, InceptionNet, DenseNet, and EfficientNetb0.
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We can get the following conclusions from the data in Table 1.

First, upon examining these results in detail, it becomes evident

that traditional convolutional neural networks (CNNs) such as

VGGNet16, ResNet152, ResNet50, and ResNet101, tend to excel at

capturing local details but often overlook global contextual

information, particularly in the context of wheat leaf disease image

classification where this issue is particularly pronounced. Their

performance, as indicated by metrics like ACC, Prec, recall, and F1

score, is generally lower compared to more advanced networks.

GLNet, on the other hand, addresses this limitation by

introducing a global feature block that effectively captures the

overall image architecture and contextual information, thereby

compensating for the traditional network’s shortcomings in global

feature perception. This enhancement allows GLNet to excel in

understanding and classifying wheat leaf disease images, as

evidenced by its top-tier performance across all metrics, with an

accuracy of 0.9638, a precision of 0.9665, a recall of 0.9635, and an

F1 score of 0.9637.

Second, GLNet leverages a combination of local and global

feature blocks, seamlessly integrating the information from both

through a feature fusion block. The local feature blocks focus on

capturing local details and texture features within the image, while

the global feature blocks provide a broader context and overall

architectural information. By utilizing soft weight assignment and

element-wise summation, the feature fusion block ensures that the

advantages of both local and global features are comprehensively

utilized. This dual focus enables GLNet to analyze wheat leaf disease

images from a more holistic perspective, significantly improving

recognition accuracy and robustness across different disease types.

In comparison to other advanced networks like DenseNet121,

DenseNet169, EfficientNetB0, InceptionNet, RFE-CNN, DCNN,

and M-bCNN, GLNet demonstrates superior performance, with

higher accuracy, precision, recall, and F1 scores. This highlights the

effectiveness of GLNet’s architecture in capturing both local and

global features, which is crucial for accurately classifying wheat leaf

disease images.

In summary, the superiority of GLNet in the wheat leaf disease

image classification task stems from its ability to effectively integrate

local and global features and achieve a more comprehensive feature

understanding and expression through the feature fusion block,

which improves the classification performance and the practicality

of the model.

As shown in detail in Figure 7, the GLNet model exhibits

excellent classification ability for each category of wheat leaf disease

images, and this remarkable result strongly demonstrates the

effectiveness of the global feature introduction strategy. This

strategy enables the model to capture and learn the complex

features of wheat leaf disease images from a more comprehensive

perspective, which greatly improves the classification accuracy and

generalization ability.
Ablation experiment

To verify the validity of different blocks in GLNet, we designed

the following real: GLNet(w/o global) represents that GLNet does
frontiersin.org
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FIGURE 6

Example dataset.
TABLE 1 Results of comparative experiments.

Network Metric

ACC Prec Recall F1

DenseNet121 0.9203 0.9258 0.9206 0.9197

DenseNet 169 0.9130 0.9156 0.9135 0.9115

EfficientNetB0 0.6594 0.7123 0.6611 0.6367

InceptionNet 0.9203 0.9232 0.9206 0.9202

ResNet156 0.7391 0.7714 0.7389 0.7384

ResNet 50 0.8696 0.8752 0.8706 0.8682

(Continued)
F
rontiers in Plant Science
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TABLE 1 Continued

Network Metric

ACC Prec Recall F1

ResNet 101 0.7319 0.7464 0.7325 0.7321

VGGNet16 0.1159 0.1062 0.1143 0.067

RFE-CNN 0.8116 0.8616 0.8143 0.8076

DCNN 0.8623 0.8677 0.8619 0.8616

M-bCNN 0.8188 0.8336 0.8190 0.8202

GLNet 0.9638 0.9665 0.9635 0.9637
fro
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not use global feature blocks, GLNet(w/o local) represents that

GLNet does not use local feature blocks, and GLNet(w/o fusion)

represents that GLNet does not use feature fusion blocks.

By comparing the result of Table 2, we can get the

following conclusions:

First, In the field of wheat leaf disease image recognition, local

features play an important role. In the GLNet model, the local

feature block is responsible for capturing these subtleties, which can
Frontiers in Plant Science 08
be clearly demonstrated by the experimental results in Table 2. This

is clearly evidenced by the experimental results in Table 2, where the

ACC of GLNet (w/o local) is 0.9493, Prec is 0.9549, Recall is 0.9492,

and F1 is 0.9491, which is a significant decline compared with the

full GLNet. This indicates that in the absence of the local feature

block, GLNet is difficult to effectively focus on detailed features such

as the unique texture of localized lesions on leaves, and is unable to

accurately differentiate and identify these key local lesion
FIGURE 7

Comparison experiment confusion matrices.
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information, which in turn leads to a significant reduction in

classification performance, highlighting the irreplaceable nature of

localized features in providing precise detail information for the

model to accurately identify different disease types.

Second, Global features are also indispensable in the task of wheat

leaf disease image recognition, which is responsible for capturing the

overall architecture of the entire leaf image as well as the background

information. Leaf blade as a whole, its lesions are not only reflected in

the local lesions, but also include the overall color change, the

distribution of lesions on the leaf blade, and the contrast relationship

with the surrounding healthy tissues, which are important clues
Frontiers in Plant Science 09
reflecting the overall pathological state of the leaf blade. Analyzing

the experimental data, the indexes of GLNet (w/o global) were

relatively poor, with ACC of 0.9130, Prec of 0.9149, Recall of 0.9135,

and F1 of 0.9115, which were much lower than that of the complete

GLNet. Without the guidance of global features, GLNet will not be able

to fully understand the overall pathology of the leaf, leading to

inaccurate judgment of the overall lesion distribution and severity,

thus affecting the improvement of classification performance.

The feature fusion block plays a key role in GLNet, which allows

local and global features to work together. Wheat leaf disease

images contain multiple levels of information from microscopic

localized spots to macroscopic leaf overall status only when they are

effectively integrated can they be maximized. For example, if local

texture features are combined with global features such as overall

color and spot distribution, the model will be able to judge and

classify the disease more comprehensively and accurately. The data

in Table 2 show that the performance of the GLNet (w/o fusion)

version shows a significant decrease, with ACC, Prec, Recall, and F1

of 0.9493, 0.9541, 0.9492, and 0.9497, respectively, which are

different from the best performance of the full GLNet.

As can be seen from Figure 8, we can clearly see that each building

block in GLNet plays an active role in processing all types of wheat leaf
TABLE 2 Results of ablation experiments.

Network Metric

ACC Prec Recall F1

GLNet (w/o global) 0.9130 0.9149 0.9135 0.9115

GLNet (w/o local) 0.9493 0.9549 0.9492 0.9491

GLNet (w/o fusion) 0.9493 0.9541 0.9492 0.9497

GLNet 0.9638 0.9665 0.9635 0.9637
FIGURE 8

Ablation experiment confusion matrices.
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disease images. It is worth noting that only when these blocks work in

concert, i.e., are utilized simultaneously, GLNet can perform at its best

and achieve optimal classification results. This fully illustrates the close

cooperation and complementarity between the various components of

the GLNet architecture, which together promote the overall model’s

ability to recognize wheat leaf disease images.

We visualized the output of Local feature block and Global

feature block using Grad-CAM. As can be seen from Figure 9, we

can see that the Local feature block can focus more on the local

region of the wheat leaf disease image, while the Global feature

block can focus on more regions than the Local feature block with

its ability to learn global features.
Conclusion

When dealing with the wheat leaf disease image classification

task, traditional convolutional neural networks often face the

problems of insufficient local feature perception and incomplete
Frontiers in Plant Science 10
understanding of global information. To overcome these

shortcomings, GLNet is proposed as a new solution in this

paper.GLNet adopts a global-local network architecture, which

effectively integrates local and global features by introducing

parallel processing of global and local feature blocks and utilizing

feature fusion blocks. This design not only enables the model to

better capture the multi-scale features of an image, but also

significantly improves the performance and accuracy in the wheat

leaf disease classification task.

The innovation of GLNet is its ability to simultaneously process

and fuse local details and global background information at

different scales. Experimental results show that the performance

of GLNet significantly decreases in the absence of local features,

global features, or feature fusion blocks, further validating the

effectiveness and necessity of its design. This makes GLNet a

powerful tool for dealing with the task of classifying wheat leaf

disease images and provides new technical support and

methodology for disease identification and prediction in the

agricultural field.
FIGURE 9

(A) Visualization of the input of the Local feature block and Global feature block. (B) Visualization of the output of the Local feature block.
(C) Visualization of the output of the global feature block.
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