
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Dun Wang,
Northwest A&F University, China

REVIEWED BY

Yalin Wu,
Lushan Botanical Garden (CAS), China
Wei Lu,
Nanjing Agricultural University, China
Ioana Crișan,
University of Agricultural Sciences and
Veterinary Medicine of Cluj-Napoca, Romania
Vilém Pechanec,
Olomouc, Czechia

*CORRESPONDENCE

Zihao Wang

zihaowang@cug.edu.cn

RECEIVED 28 July 2024
ACCEPTED 12 November 2024

PUBLISHED 28 November 2024

CITATION

Li X, Wang Z, Wang S and Qian Z (2024)
MaxEnt and Marxan modeling to predict the
potential habitat and priority planting areas of
Coffea arabica in Yunnan, China under
climate change scenario.
Front. Plant Sci. 15:1471653.
doi: 10.3389/fpls.2024.1471653

COPYRIGHT

© 2024 Li, Wang, Wang and Qian. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 28 November 2024

DOI 10.3389/fpls.2024.1471653
MaxEnt and Marxan modeling to
predict the potential habitat and
priority planting areas of Coffea
arabica in Yunnan, China under
climate change scenario
Xia Li1,2, Zihao Wang3*, Shaoqiang Wang3,4 and Zhaohui Qian2,5

1College of Environmental Science and Engineering, Tongji University, Shanghai, China, 2Foreign
Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, China, 3Hubei Key
Laboratory of Regional Ecology and Environmental Change, China University of Geosciences,
Wuhan, China, 4Key Laboratory of Ecosystem Network Observation and Modeling, Institute of
Geographic Sciences and Natural Resources Research, CAS, Beijing, China, 5Institute of Advanced
Studies, China University of Geosciences, Wuhan, China
Introduction: Coffea arabica (Arabica coffee) is an important cash crop in Yunnan,

China. Ongoing climate change has made coffee production more difficult to sustain,

posing challenges for the region’s coffee industry. Predictions of the distribution of

potentially suitable habitats for Arabica coffee in Yunnan could provide a theoretical

basis for the cultivation and rational management of this species.

Methods: In this study, the MaxEnt model was used to predict the potential

distribution of suitable habitat for Arabica coffee in Yunnan under current and

future (2021-2100) climate scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) using

56 distributional records and 17 environmental variables and to analyze the

important environmental factors. Marxan model was used to plan the priority

planting areas for this species at last.

Results: The predicted suitable and sub-suitable areas were about 4.21×104 km2

and 13.87×104 km2, respectively, accounting for 47.15% of the total area of the

province. The suitable areas were mainly concentrated in western and southern

Yunnan. The minimum temperature of the coldest month, altitude, mean

temperature of the wettest quarter, slope, and aluminum saturation were the

main environmental variables affecting the distribution of Arabica coffee in

Yunnan Province. Changes in habitat suitability for Arabica coffee were most

significant and contracted under the SSP3-7.0 climate scenario, while expansion

was highest under the SSP5-8.5 climate scenario. Priority areas for Arabica coffee

cultivation in Yunnan Province under the 30% and 50% targets were Pu’er,

Xishuangbanna, Honghe, Dehong, and Kunming.
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Discussion: Climate, soil, and topography combine to influence the potential

geographic distribution of Arabica coffee. Future changes in suitable habitat areas

under different climate scenarios should lead to the delineation of coffee-

growing areas based on appropriate environmental conditions and active

policy measures to address climate change.
KEYWORDS

Arabica coffee, MAXENT model, Marxan model, main environmental variable, potential
habitat, priority planting area
1 Introduction

Coffee as one of the world’s three major beverage crops (Wu

et al., 2016), ranks second only to petroleum as the world’s second-

largest traded commodity (Eriyagama et al., 2013). Coffee plants are

currently cultivated in over 80 countries globally, with the coffee

industry significantly shaping the agricultural economies of major

coffee-producing nations (ICO, 2022), providing livelihoods for

millions of people directly or indirectly dependent on coffee. In

Asia, China ranks as the fourth largest coffee exporter after

Vietnam, Indonesia, and India (ICO, 2022), accompanied by an

annual foreign exchange income of $532 million (Zhang et al.,

2021b). Yunnan Province has a coffee cultivation history of over 100

years, with coffee planting area, production, and agricultural output

value accounting for over 98% of the national total (Ma et al., 2022).

In 2021, the planting area and green bean production in Yunnan

Province accounted for 0.82% and 1.08% of the global total

(Yunnan Provincial Department of Agriculture and Rural Affairs,

2022), making it a unique and dominant industry in China’s

Yunnan Province. Coffea arabica (Arabica coffee) is the

predominant variety in the region and globally (Rigal et al.,

2020a), primarily used for specialty coffee, with high economic

value (Fain et al., 2018), serving as the primary cash crop for local

growers. In 2021, the proportion of specialty coffee in Yunnan

Province was only 8%, but it increased to 22.7% by 2023, indicating

a shift towards specialty coffee as the direction of development in

Yunnan Province’s coffee industry (Yunnan Provincial Department

of Agriculture and Rural Affairs, 2023). However, coffee cultivation

will transform forests, and the future of Yunnan’s forests will

likewise be highly influenced by the intensity of management

(Kebebew and Ozanne, 2022). Despite commitments from the

private sector, including coffee traders, aimed at eliminating

deforestation from operations or supply chains, zero deforestation

policies may not be sufficient to have a wider impact on their own,

due to leakage, lack of transparency and traceability, selective

adoption, and the marginalization of smallholder farmers

(Lambin et al., 2018). Therefore, the promotion of coffee

cultivation likewise needs to be integrated with public policies put

in place by the government, especially spatial planning policies, to

harmonize forest conservation with community interests.
02
Climate is a primary abiotic factor influencing species

distribution (Bezeng et al., 2017). Climate change affects plant

growth, geographical distribution, and population size (Alan

Pounds et al., 2006), posing challenges to global agriculture and

forestry, including the coffee industry. Arabica coffee and Robusta

coffee (Coffea canephora) are the most cultivated species, with

relatively narrow ranges of bioclimatic parameters (Teketay,

1999). Among them, Arabica coffee is particularly sensitive to

climate (Davis et al., 2012), and coffee planted under marginal

bioclimatic conditions is more susceptible to environmental stress

(Fain et al., 2018). Continued climate change may exacerbate

existing issues and create new challenges for the coffee industry,

making production more difficult to sustain (Reyer et al., 2017).

Climate change due to strong emissions will reduce the global area

suitable for coffee cultivation by about half, and higher

temperatures may reduce Arabica coffee yields. In Asia, some

forested areas may instead become more suitable (Bunn et al.,

2015). Previous studies have shown the negative impacts of

climate change on coffee production in major coffee-producing

countries such as Brazil, Ethiopia, and India (Koh et al., 2020;

Adane and Bewket, 2021; Byrareddy et al., 2024). Understanding

the effects of climate change on the biological distribution of

Arabica coffee in Yunnan Province, China, and how Arabica coffee

adapts to changing climatic conditions is of significant importance

for the future ecological sustainability of the coffee industry in this

region (Wang et al., 2019).

Species Distribution Models (SDMs) use environmental data

for sites of occurrence (presence) of a species to predict a response

variable to predict whether the environmental conditions are

suitable for the species to persist meaning that the species is

expected to occur (Araújo and Peterson, 2012). Since BioClim as

the first tool to be widely used, SDMs have been widely applied to

model biological responses to climate change (Booth et al., 2014).

The Maximum Entropy (MaxEnt) model is a widely used SDM

technique employed to estimate species distribution probabilities

based on the MaxEnt principle. It relies on a statistical procedure

using real observation data of species presence or abundance to

infer potential suitability based on environmental characteristics,

thus representing spatial suitability for species occurrence based on

the variables used (Phillips et al., 2004; Phillips and Dudıḱ, 2008).
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The MaxEnt model assumes that the relationship between species

distribution and environmental variables maximizes entropy, and

even if the information on species distribution data and the

environmental variables in the distribution area is incomplete, it

can still make relatively accurate predictions of the potential

distribution areas of the species with good stability, and the

predictions are basically in line with the actual distribution of the

species, especially in the preliminary stage of the study, which

provides valuable insights into the potential patterns of the species

distribution (Xu et al., 2024). Compared to models such as

BIOCLIM and DOMAIN, the MaxEnt model has a significant

advantage of higher prediction accuracy, smaller confidence

intervals, and is more stable and less affected by the random

variable (Hernandez et al., 2006; Giovanelli et al., 2010; Hijmans,

2012; Duan et al., 2014). It is also capable of handling multiple types

of environmental data (e.g., topography, soils, etc.) in addition to

climate variables, comparing with the Climate Change Adaptation

Modeler of TerrSet, to predict different climate scenarios, which

provides a flexible tool to respond to diverse challenges (Ngoy and

Shebitz, 2020; Lessmann et al., 2014; Han et al., 2024). Currently,

the MaxEnt model has been widely used in plant protection-

oriented species distribution studies (He et al., 2021). In the case

of cash crops, several studies have applied the model to the

suitability of corn, goji berries, citrus, coffee, etc (Davis et al.,

2012; Fitzgibbon et al., 2022; Li et al., 2024; Lin et al., 2022;

Zhang et al., 2021b; Cassamo et al., 2023). In China, although

Zhang et al. (2021a) compared the performance of the AHP-GIS

method with that of the MaxEnt model using default parameters

and concluded that the latter is a more suitable tool for simulating

the potential distribution of Arabica coffee in Yunnan, however,

MaxEnt has been criticized as giving a biased representation of

suitable climates if the parameters are not chosen carefully (Bunn

et al., 2015). Therefore, the parameters need to be debugged and

optimized to apply to a particular species when using the model.

Systematic conservation planning is a method frequently

employed internationally for biodiversity conservation and

determining priority conservation areas. It involves systematically

protecting the biodiversity features of an entire area, and it is a

purposeful, effective investment (Segan et al., 2011). Based on the

complementarity principle, the Marxan model uses simulated

annealing algorithms to identify the optimal set of planning units

through iterative operations and repeated selections (Lehtomäki

and Moilanen, 2013). It allows for the comparison of different

potential conservation areas based on user-defined goals and costs

and determines the regional set that most effectively achieves its

objectives (Cudlıń et al., 2020), addressing the minimum set

problem in conservation planning (Smith et al., 2010). While the

MaxEnt model emphasizes the suitability of species distribution

based on natural environmental variables such as temperature,

precipitation, and soil, the Marxan model identifies priority areas

that reduce conflicts between humans and ecosystems and

minimizes human impacts on species, thus considering more

socio-economic factors than the MaxEnt model (Yu et al., 2023).

By combining the MaxEnt and Marxan models, relevant

management costs can be minimized. Simulating the spatial

distribution of coffee habitat as a feature to support a systematic
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conservation planning model can lead to spatial planning that

maximizes benefits and minimizes land costs.

This study utilized multi-source occurrence record geographic

location data, current climate variables under different Shared

Socioeconomic Pathways (SSPs) from CMIP6, as well as

environmental data such as terrain and soil, to model the

potential suitable habitat distribution of Arabica coffee in Yunnan

Province, China using the MaxEnt model after parameter

optimization with the Kuenm R package, including the

geographical distribution characteristics under current climate

conditions and the main environmental variables influencing it.

Future potential geographical distribution, spatial changes, and

centroid migration trajectories under different climate scenarios

were also predicted. Finally, using the distribution probability

values of Arabica coffee as the conservation feature and land use/

land cover and natural protected areas data as costs, the Marxan

model was employed to identify priority planting areas for Arabica

coffee in Yunnan Province. The results of the study provide a

sustainable and implementable reference for spatial planning and

agricultural policies for local government decision-makers and

smallholder farmers to promote the cultivation of Arabica coffee.
2 Materials and methods

2.1 Collection and processing of sample
distribution points

The distribution location data of Coffea arabica in Yunnan

Province used in this study were obtained from the Global

Biodiversity Information Facility (GBIF, https://www.gbif.org),

Naturalist (https://www.inaturalist.org), Biological Plant Specimen

Museum of the Chinese Academy of Sciences (https://

pe.ibcas.ac.cn), Chinese Virtual Herbarium (CVH, https://

www.cvh.ac.cn) and relevant papers on Yunnan Province Coffee

(Ge et al., 2023; Hao et al., 2022; Li et al., 2021, 2023; Lu et al., 2022;

Rigal et al., 2020a, 2020b; Wan et al., 2024; Yang et al., 2022)

co l l ec t ed f rom the Web of Sc i ence (WOS, ht tps : / /

www.webofscience.com), totaling 331 sample points. All

occurrence records especially those lacking precise geographic

coordinates were revised with specific latitude and longitude

information using Google Earth. To minimize spatial

autocorrelation between sample points and reduce errors caused

by model overfitting due to sampling bias, duplicate records were

removed using ENMTools 1.4.4, ensuring that only one point was

retained per grid cell, and each remaining point was moved to the

center of its grid cell (Ma et al., 2024; Warren et al., 2021). After the

aforementioned processing, a total of 56 valid species sample

distribution records were adopted (Figure 1).
2.2 Selection of environmental variables

To simulate the current and future suitable habitat for coffee

cultivation in Yunnan Province, a total of 32 environmental variables

potentially influencing the distribution of Arabica coffee was selected
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based on the previous study (Zhang et al., 2021b). These factors

include climate, terrain, and soil variables (Table 1). For the current

and future (from 2021 to 2100) climate data, we retrieved raster layers

for future climate projections under three Shared Socio-economic

Pathways (SSPs), namely SSP2–4.5(Upgrade of scenario RCP4.5 from

SSP2 for the medium forcing scenario), SSP3-7.0 (Additional

scenario RCP7.0 emission pathways based on SSP3 for a rocky

road) and SSP5–8.5 (Upgrade of scenario RCP8.5 from SSP5 for

high forcing scenario) for the bioclimatic variables (Lenoir et al.,

2008; Jia et al., 2024). The layers were extracted from the sixth version

of Model for Interdisciplinary Research on Climate (MIROC6) which

was retrieved from the sixth phase of the Coupled Model

Intercomparison Project (CMIP6) in WorldClim (https://

www.worldclim.org/data/cmip6/cmip6_clim30s.html). The model

has shown good performance in climate characterization (Tian

et al., 2021), particularly in southern China, and has been widely

used in the simulation of species distribution models in this region

as well as in other similar climatic zones (Li et al., 2022; Coulibaly

et al., 2023; Oduor et al., 2023). Terrain data were obtained from the

NASA Digital Elevation Model (NASA EARTHDATA, https://

search.earthdata.nasa.gov) with a spatial resolution of 30 meters.

Elevation, slope, and aspect were extracted for the study area using

ArcGIS 10.8. Soil data were sourced from the Harmonized World

Soils Database version 2.0 (HWSD 2.0, https://gaez.fao.org/pages/

hwsd), providing information on the morphological, chemical, and

physical properties of soils at approximately 1 km resolution. The

soil characteristics of the topsoil layer (D1) of the soil mapping units

with the highest share proportion were utilized. All environmental

variables were resampled to a spatial resolution of 30 arc-seconds

(ca. 1 km2 at the equator) and converted into the appropriate

format using ArcGIS 10.8.
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Species distribution models (SDMs) may be influenced directly or

indirectly by the predictive variables used, due to factors such as

approximation, causality, or correlation among them (Zhang et al.,

2020). Tomitigate issues such as multicollinearity, autocorrelation, and

redundancy of environmental variables that may lead to model

overfitting (Burgos et al., 2020), we first conducted a Pearson

correlation coefficient analysis to retain factors within each

environmental variable type with correlation coefficients |r|< 0.85 as

illustrated in Figure 2. Result of Pearson’s correlation coefficient.

Subsequently, all environmental factors were inputted into a

preliminary MaxEnt model with default parameters, and factors with

low or zero contribution rates in the results were removed. Finally, 17

key factors (bio3, bio4, bio6, bio7, bio8, bio12, bio14, bio15, bio17,

bio18, altitude, slope, aspect, alum_sat, clay, pH_water, tcarbon_eq)

were identified as the environmental variables for predicting the

distribution of Coffea Arabica in Yunnan Province. The results of

the preliminary experiment are presented in Supplementary Table S1.
2.3 Establishment, optimization, and
evaluation of MaxEnt model

The principle of maximum entropy refers to the full

consideration of known information when inferring the unknown

probability distribution, mainly based on Shannon’s information

entropy theory, which decreases when the total amount of

information increases (Allahverdyan et al., 2021). Under the

premise of ensuring the inclusion of existing information, when

the entropy is maximized, it can be determined that the least

amount of unknown information is included, thus reducing the

uncertainty brought by unknown information. Assuming a point
FIGURE 1

Sample distribution of Coffea arabica in the study area.
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exists in a multidimensional natural environmental space,

associated with multiple environmental factor parameters, it

becomes possible to extract the environmental factor parameters

linked to all distribution points of a species within this space. By

applying specific algorithms, the ecological requirements of the
Frontiers in Plant Science 05
species can be inferred, and the results can then be projected onto

different temporal and spatial geographic regions to predict the

potential distribution range of the species in a particular area (Elith

et al., 2011). A formal explanation of the MaxEnt model based on

this principle can be found in Supplementary Material.
TABLE 1 Environmental variables used to model the potential distribution of Arabica coffee.

Category Variable Description Unit

Bioclimatic variables

bio1 Annual mean temperature °C

bio2 Mean diurnal range °C

bio3 Isothermality (bio2/bio7) (×100) –

bio4
Temperature seasonality (standard

deviation ×100)
–

bio5 Max temperature of the warmest month °C

bio6 Min temperature of the coldest month °C

bio7 Temperature annual range (Bio5-Bio6) °C

bio8
The mean temperature of the

wettest quarter
°C

bio9
The mean temperature of the

driest quarter
°C

bio10
The mean temperature of the

warmest quarter
°C

bio11
The mean temperature of the

coldest quarter
°C

bio12 Annual precipitation mm

bio13 Precipitation of the wettest month mm

bio14 Precipitation of the driest month mm

bio15
Precipitation seasonality (coefficient

of variation)
mm

bio16 Precipitation of the wettest quarter mm

bio17 Precipitation of the driest quarter mm

bio18 Precipitation of the warmest quarter mm

bio19 Precipitation of the coldest quarter mm

Terrain variables

altitude Altitude m

slope Slope °

aspect Aspect °

Soil variables

sand Topsoil sand fraction % wt

silt Topsoil silt fraction % wt

clay Topsoil clay fraction % wt

org_carbon Organic carbon content g/kg

ph_water pH Value (H2O) -log(H+)

total_n Total nitrogen content g/kg

cec_soil Cation exchange capacity soil cmol/kg

alum_sat Aluminum saturation % ECEC

tcarbon_eq Calcium carbonate % weight

gypsum Gypsum content % weight
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Phillips et al. (2004) developed the MaxEnt software for

predicting species’ potential distributions on the Java platform.

This software establishes constraints based on the environmental

variable characteristics of actual geographical distribution points of

the species and subsequently explores possible distributions under

the principle of maximum entropy. The probability distribution of

species presence at maximum entropy is anticipated to closely align

with the species’ actual distribution. The process for utilizing the

MaxEnt model involves several key steps: first, the collected

occurrence data is inputted in CSV format into the “Samples”

module, organized by species name, longitude, and latitude. Next,

relevant environmental factor variables are standardized in terms of

boundaries, coordinate systems, and raster sizes using GIS, and then

converted into ASC layer format for input into the “Environmental

layers”module, where environmental variables can be designated as

either discrete or continuous. Following this, the user sets the

number of iterations (typically 10) or the proportion of validation

data (20%-30%) and determines whether to generate response

curves for evaluating model accuracy, as well as whether to

employ the jackknife method for selecting dominant
Frontiers in Plant Science 06
environmental factors (Phillips, 2017). Finally, the output results

are interpreted to derive insights from the model’s predictions.

Species distribution models (SDMs) utilize options and

algorithm settings that influence model complexity to describe the

relationship between occurrence data and environmental variables.

However, default settings often lead to overly complex models and

overfitting of training data, resulting in distorted estimates of

suitability and poor transferability to other locations or times

(Soley-Guardia et al., 2024). Therefore, before using the MaxEnt

model to predict the suitable habitat for Arabica coffee in Yunnan

Province, we optimized it using the R package kuenm. The analysis

began with input data, including thoroughly filtered and sparse

species occurrence records to calibrate a complete event set,

randomly partitioned into training event subsets and a 30%

subset of events for testing candidate models (Cobos et al., 2019),

along with environmental variables for creating candidate models.

Additionally, a set of Arabica coffee occurrence records from

Yunnan Province, collected from papers in WOS that were not

used in the calibration process, was used as fully independent

occurrence data to test the final model. This dataset had a
FIGURE 2

Result of Pearson’s correlation coefficient.
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different source from the other datasets and had no spatial

autocorrelation with the calibration data. A range of 0.1 to 4, with

an interval of 0.1, for the regularization multiplier (RM), and feature

combinations (FC) including linear (L), quadratic (Q), product (P),

threshold (T), and hinge (H), were cross-combined to explore

parameter interactions. A total of 1240 candidate models were

evaluated, reflecting all combinations of 40 regularization

multiplier settings, 31 feature class combinations, and 1 distinct

set of environmental variables. Model performance was assessed

based on statistical significance (Partial ROC), omission rates (OR),

and the Akaike information criterion corrected for small sample

sizes (AICc). Finally, significant models with omission rates ≤5%

and Delta_AICc=0 were selected, indicating the best model mobility

from known distribution areas to predicted areas and effectively

avoiding overfitting (Warren et al., 2014; Warren and Seifert, 2011).
2.4 Species habitat suitability prediction

The optimal parameter combination was inputted into MaxEnt

for modeling and the average value was chosen as the model output

result after 10 repetitions. The impact of environmental factors on the

model was determined using the jackknife test method, and predictive

charts were plotted to evaluate the importance of environmental

variables. During the model-building process, the accuracy of the

model was verified using the Area Under the Curve (AUC) value in

the jackknife test. AUC represents the area under the Receiver

Operating Characteristic (ROC) curve and theoretically ranges from

0.5 to 1. Higher values indicate higher predictive accuracy, with values

between 0.9 and 1 indicating excellent predictive performance. The

model generated logical output (LO) values ranging from 0 to 1,

representing the suitable index for different regions. The selection of

thresholds is crucial for predicting different levels of suitability areas,

thus affecting the calculation of different suitable regions. We selected

the Maximum Training Sensitivity plus Specificity (MTSS) and the

balance of training omission, predicted area, and threshold value

(TPT) as classification thresholds for suitable and less suitable areas,

respectively, to reclassify LO. As a result, the potentially suitable

habitat for Arabica coffee in Yunnan Province was classified into three

levels: suitable, less suitable, and unsuitable habitats (Clark et al., 2014;

Liu et al., 2013).
2.5 Future potential habitat prediction
under different climate scenarios

By altering future bioclimatic variables, this study created

potential habitats for Arabica coffee in Yunnan Province under

three different Shared Socioeconomic Pathways (SSPs): SSP2-4.5,

SSP3-7.0 and SSP5-8.5, for four future periods (2021-2040, 2040-

2060, 2060-2080 and 2080-2100, i.e., 2030s, 2050s, 2070s and 2090s).

Using the Distribution Changes Between Binary SDMs tool in SDM

Toolbox v2.6 within ArcGIS 10.8, this study further simulated the

spatial pattern changes including range expansion, unoccupied areas,

no change, and range contraction to analyze the impact of climate

change on the size of potential habitats for the species (Brown, 2014).
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Simultaneously, considering the suitable areas for specific scenarios

and periods as a whole, they were simplified into vector particles, with

changes in the central point position reflecting the trend of habitat

shifts due to climate change. The Centroid Changes tool was used to

calculate the coordinate changes and migration distances of current

and future suitable habitats (Liang et al., 2021).
2.6 Construction of the Marxan model

The Marxan model is primarily designed to address the

minimum set cover problem which aims to protect the minimum

number of conservation targets that must be protected at the lowest

cost and make it easier to establish protected areas without

disrupting existing community continuity (Klein et al., 2009). The

Marxan software uses a minimum coverage set model and

incorporates a simulated annealing algorithm to complete the

protected area siting analysis with the following operational

objective function (Watts et al., 2009). Considering that the

government controls land use through spatial planning, this study

defines the township administrative area as the smallest planning

unit which reflects the human-land relationship in coffee cultivation

for convenient management. After removing administrative regions

with excessively small areas, the study area is divided into a total of

1392 planning units. Using the zoning statistics tool in ArcGIS 10.8,

the existence probability of the target species in each planning unit

under current climatic conditions is calculated to construct a species

distribution feature matrix.

o
PUs

Cost + BLMo
PUs

Boundary + o
Convalue

SPF � Penalty

+ CostThresholdPenalty(t)

o
PUs

Cost is a cost factor that represents the total cost of the

selected planning units in the program. We established its values for

the ratio of the area of land use/land cover (LULC) types where

coffee cultivation is prohibited and the area of nature reserves to the

total area of the planning unit. The LULC data is derived from the

30-meter annual China Land Cover Dataset (CLCD) (Yang and

Huang, 2021), selecting LULC types such as cropland, water, snow/

ice, barren, impervious, and wetland for the year 2019. Natural

protected area data are obtained from Key Biodiversity Areas (KBA,

https://www.keybiodiversityareas.org), The World Database on

Protected Areas (WDPA, https://www.protectedplanet.net/), and

the China Natural Protected Area Specimen Resource Sharing

Platform (PAPC, https://www.papc.cn). BLM is the boundary

length modifier, o
PUs

Boundary is the boundary factor, characterizes

the total boundary length of the selected planning units in the

scheme, and together they can regulate the compactness of the

selected planning units; o
Convalue

SPF � Penalty is a penalty factor for

species conservation, SPF is the penalty for a single planning unit

that does not accomplish the protection goal, and Penalty is the

penalty coefficient. By adjusting the size of the SPF value, the size of

the objective function can be controlled when the protection goal is
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not achieved, so that the selected planning units can accomplish the

protection goal as much as possible. Based on the requirements of

the Yunnan Province Provincial Government’s Action Plan for

Agricultural Modernization, the conservation target is set at 30%

and the forward target is set at 50%. CostThresholdPenalty(t) is a

penalty factor when the upper limit of the cost threshold

is exceeded.

The Species Penalty Factor (SPF) and Boundary Length

Modifier (BLM) are used in the model to balance the

conservation of species in planning and the length of protected

area boundaries. Sensitivity analysis is conducted by plotting

sensitivity curves to find the most suitable values for BLM and

SPF. Finally, BLM = 1.6 and SPF = 1.6 are determined, and the

model is iterated 100 times to obtain the optimal solution for

planning units. The specific roles of the parameters and the

sensitivity analysis process for determining them are detailed in

the Supplementary Material. The conceptual and methodological

flowchart of this study is shown in Figure 3.
3 Results

3.1 Model optimization and
accuracy assessment

Based on 56 species distribution records and 17 environmental

variables, the potential suitable habitat distribution of Arabica coffee
Frontiers in Plant Science 08
in Yunnan Province was predicted. Among the 1240 model results,

combinations that were statistically significant and met the criteria

for model omission rates and AICc were selected: RM set to 1.5 and

FC combination set to QTH. The model performance is shown in

Supplementary Figure S4. The model was run 10 times using this

combination setting, resulting in an average training AUC for the

replicate runs of 0.935 ± 0.013 (Supplementary Figure S5). Among

these runs, the model with the highest test gain value both

exceeding 0.9 had an AUC of 0.938 for the training data and

0.968 for the test data (Supplementary Figure S6). This indicates

excellent predictive accuracy of the model, with high confidence in

the predicted results.
3.2 Main environmental variables

The importance of environmental variables is mainly assessed

by the percent of contribution (PC) and permutation importance

(PI) indices where higher values indicate greater importance (Zhang

et al., 2021a). Based on the MaxEnt simulation results for Arabica

coffee, 7 environmental variables had very small contributions or

permutation importance values (<1%), hence only 10 dominant

environmental variables are provided (Table 2. Dominant

environmental variables for the potential distribution of Arabica

coffeeDominant environmental variables for the potential

distribution of Arabica coffee). The top 5 factors by percent of

contribution are the minimum temperature of the coldest month
FIGURE 3

Conceptual and methodological flowchart.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1471653
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1471653
(bio6, 20.8%), altitude (16.8%), mean temperature of the wettest

quarter (bio8, 14.7%), slope (14.6%), and alum_sat (12.2%),

accounting for a cumulative contribution of 79.1%. The top 5

factors by permutation importance are altitude (32.2%), mean

temperature of the wettest quarter (bio8, 19%), pH water (11.5%),

temperature seasonality (bio4, 7.9%) and precipitation of driest

quarter (bio17, 5.5%), accounting for a cumulative permutation

importance of 76.1%. In the Jackknife plot (Supplementary Figure

S7), when analyzing with only one variable, the altitude had the

best-regularized training gain value, followed by the mean

temperature of the wettest quarter (bio8), precipitation of the

warmest quarter (bio18) and minimum temperature of the

coldest month (bio6), all with values exceeding 0.9 which

significantly higher than other factors, indicating their substantial

influence on the distribution of Arabica coffee in Yunnan Province.

Therefore, the minimum temperature of the coldest month (bio6),

mean temperature of the wettest quarter (bio8), and altitude are the

dominant factors influencing the potential distribution of Arabica

coffee in Yunnan Province, while precipitation of the warmest

quarter (bio18), slope and aluminum saturation (alum_sat) also

play important roles.

The response curves of environmental factors reflect the

dependency of suitability on variables (Zhang et al., 2021a). Based

on the above results, single-factor modeling was conducted and

single-factor response curves were plotted (Supplementary Figure

S8) to study the relationship between distribution probability and

major environmental variables. It is generally believed that when

the distribution probability is greater than 0.5, the corresponding

environmental factor is suitable for plant growth (Wang et al.,

2023). The range which is suitable for the survival of Arabica coffee

of the lowest temperature of the coldest month (bio6) and the mean

temperature of the wettest quarter (bio8) is approximately between

5 to 10°C and 23 to 25°C. Additionally, the temperature seasonality

(bio4, standard deviation ×100) should be less than 450. For

precipitation, annual precipitation (bio12) above approximately
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1200mm is suitable for the growth. Arabica coffee in Yunnan

Province is most suitable at altitudes around 1200m with the

range approximately between 680m to 1750m while the slope

should be less than 9°. The distribution probability of Arabica

coffee decreases with increasing aluminum saturation (alum_sat)

among the soil variables, indicating that soil with high aluminum

content may adversely affect coffee growth.
3.3 Current and future potential suitable
habitat distribution

Currently, the potential suitable habitat distribution area for

Arabica coffee in Yunnan Province is illustrated in Figure 4. Both

suitable and sub-suitable areas are primarily concentrated in the

southern and western regions of Yunnan Province, particularly in

the Hengduan Mountains region where the elevation is below 1500

meters. The predominant climatic types in these areas are the South

Asian tropical and North tropical regions. The distribution areas of

suitable habitats and their proportion to the total study area are

presented in Table 3. Potential distribution areas under current

climate conditions. The suitable and sub-suitable areas cover

approximately 42,124.44 km2 and 138,732.46 km2, accounting for

47.15% of the total provincial area. Among them, the suitable

habitat area accounts for approximately 11% of the total area of

Yunnan Province. The suitable habitat areas are mainly distributed

in cities (or prefectures) such as Baoshan, Dehong, Lincang, Pu’er,

Xishuangbanna, Honghe, and Yuxi with their combined area

accounting for about 10% of the total area of Yunnan Province. A

smaller portion is distributed at the border between Dali and

Lijiang, the northern part of Chuxiong, as well as Kunming and

Qujing. In Pu’er and Xishuangbanna, the suitable habitat areas

account for over 30% of the total city area while in Honghe and

Yuxi the suitable habitat areas are mainly distributed along the

Ailao Mountain range. The entire area of Wenshan has a suitable/

sub-suitable habitat coverage of 75.56%, but the majority is a sub-

suitable habitat with suitable habitat occupying only 4.08% of the

total area.

Changes in bioclimatic variables were manipulated to explore

the future potential suitable habitats for Arabica coffee in Yunnan

Province as depicted in Figure 5. Predicted distribution of Arabica

coffee in Yunnan Province under future climate scenarios (2021-

2100). Despite the predominance of potential suitable/sub-suitable

habitats in the western and southern regions of Yunnan Province

during the four future periods (2021-2040, 2040-2060, 2060-2080,

and 2080-2100), the characteristics of their area changes vary. The

results indicate that the magnitude of changes in suitable habitat

areas is generally greater than that of sub-suitable habitat areas in

most cases under the same climate scenario. Except from 2060 to

2080 under the SSP2-4.5 scenario, the trends in area changes of

potential suitable/sub-suitable habitats for Arabica coffee in Yunnan

Province over the four future periods are consistent across different

climate scenarios. Specifically, under the SSP3-7.0 scenario, the

suitable habitat area decreases annually while the sub-suitable

habitat area increases annually. Overall, except for a slight
TABLE 2 Dominant environmental variables for the potential
distribution of Arabica coffee.

Variable
Percent of

contribution(%)

Permutation
importance

(%)

bio6 20.8 0.7

altitude 16.8 32.2

bio8 14.7 19

slope 14.6 4.3

alum_sat 12.2 0.7

bio12 5 1.9

bio4 3.5 7.9

bio17 3.2 5.5

bio18 2.7 3.8

ph_water 2.2 11.5
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FIGURE 4

Predicted distribution of Arabica coffee in Yunnan Province under current climate condition.
TABLE 3 Potential distribution areas under current climate conditions.

City

Unsuitable
habitat(km2)

Sub-suitable
habitat(km2)

Suitable
habitat(km2)

Percentage of
suitable areas in

the city(%)

Percentage of
suitable areas in

Yunnan
Province(%)<TPT TPT-MTSS ≥MTSS

Baoshan 5225.1 12218.8 1750.5 9.12 0.46

Chuxiong 21580.1 6085.2 827.2 2.9 0.22

Dali 20562.4 7422.9 458.7 1.61 0.12

Dehong 251.1 8043.3 2952.7 26.25 0.77

Diqing 23152.4 123.1 0 0 0

Honghe 7240. 7 18165.3 6687.6 20.84 1.74

Kunming 18320.4 2278.2 403.8 1.92 0.11

Lijiang 18446. 0 1752.1 416.9 2.02 0.11

Lincang 6939.5 14713.6 2099.2 8.84 0.55

Nujiang 12369.8 1899.0 370.1 2.53 0.1

Puer 5133.2 25539.7 13715.7 30.90 3.58

Qujing 24781.4 3917.8 143.6 0.5 0.4

Wenshan 7646.1 22363.0 1276.9 4.08 0.33

Xishuangbanna 1944.1 7751.1 9331.7 49.04 2.43

Yuxi 7007.6 6272.3 1675.8 11.21 0.44

Zhaotong 22110.2 187.1 14.0 0.06 0.004
F
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increase in the total area of potential suitable/sub-suitable habitats

between 2021-2040, the total area shows a decreasing trend in other

periods, indicating a contraction trend in potential habitats for

Arabica coffee in Yunnan Province over the next 80 years under this

climate scenario with suitable habitats gradually deteriorating into

sub-suitable habitats. In contrast to the SSP2-4.5 and SSP3-7.0

scenarios, where the suitable/sub-suitable area shows a trend of first

increasing and then decreasing during the periods of 2021-2040,
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2040-2060 and 2060-2080, the suitable/sub-suitable habitat area

under the SSP5-8.5 scenario significantly decreases by 32.88%

between 2021-2040, then undergoes a substantial increase of

48.73% between 2040-2060 and 2060-2080, followed by a further

decrease of 22.04% between 2080-2100. The area and change rates

of potential suitable/sub-suitable habitats under different decade

scenarios are summarized in Table 4. Predicted suitable areas under

current and future climate conditions.
FIGURE 5

Predicted distribution of Arabica coffee in Yunnan Province under future climate scenarios (2021-2100).
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3.4 Potential habitat distribution changes
in future climatic scenarios

The comparison analysis of the distribution patterns of potential

suitable/sub-suitable habitats for Arabica coffee in Yunnan Province

under different climate scenarios and periods compared to the current

period (Figure 6. Area changes of suitable/sub-suitable habitats for

Arabica coffee in Yunnan Province under future climate scenarios/

periods. (a) Percentage of area in each suitability class; (b) Area change

in suitable habitat) reveals a simultaneous expansion and contraction of

suitable/sub-suitable habitats in the future. Under the SSP3-7.0 climate

scenario, the suitability changes for Arabica coffee habitats are most

significant, with the highest degree of contraction observed under this

scenario. Conversely, the changes are least pronounced under the
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SSP5-8.5 climate scenario, but the expansion is highest under this

scenario. Specifically, the expansion is most pronounced during the

2040-2060 period under the SSP5-8.5 scenario, with an area increase

from unsuitable to suitable/sub-suitable habitats of 10,742.25 km2,

representing a 20.31% expansion rate. Additionally, its stability is also

the highest, with a stable area of 40,142.67 km2, accounting for 75.91%

stability, indicating the most suitable growth conditions for Arabica

coffee in Yunnan Province under this scenario. Conversely, the degree

of retreat is highest during the 2040-2060 period under the SSP2-4.5

scenario, with an area decrease from suitable/sub-suitable to unsuitable

habitats of 15,354.88 km2, representing a loss rate of 35.07%.

In terms of the potential suitable habitat for Arabica coffee in

Yunnan Province, Figure 7 reveals that the expanded suitable areas

in each period are mainly concentrated in Xishuangbanna, while the
FIGURE 6

Area changes of suitable/sub-suitable habitats for Arabica coffee in Yunnan Province under future climate scenarios/periods. (A) Percentage of area
in each suitability class; (B) Area change in suitable habitat.
TABLE 4 Predicted suitable areas under current and future climate conditions.

Decades Scenarios
Predicted area/104km2 Increase/decrease rate (%)

Suitable habitat Sub-suitable habitat Suitable habitat Sub-suitable habitat

Current – 4.39 14.52 – –

2021-2040

SSP2-4.5 4.41 15.67 0.58 7.97

SSP3-7.0 4.33 15.22 -1.40 4.84

SSP5-8.5 3.14 13.88 -28.48 -4.40

2040-2060

SSP2-4.5 2.96 14.09 -32.55 -2.95

SSP3-7.0 3.60 15.27 -17.89 5.17

SSP5-8.5 5.31 16.17 20.93 11.35

2060-2080

SSP2-4.5 4.14 15.04 -5.72 3.62

SSP3-7.0 3.62 14.81 -17.52 2.03

SSP5-8.5 4.68 15.95 6.59 9.87

2080-2100

SSP2-4.5 4.84 14.57 10.29 0.37

SSP3-7.0 3.96 15.24 -9.70 4.97

SSP5-8.5 3.55 14.10 -19.19 -2.85
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lost land is mainly concentrated in Pu’er. Under the climate

scenarios of 2040-2060-SSP2-4.5, 2040-2080-SSP3-7.0, and 2021-

2040-SSP5-8.5, Pu’er has experienced a significant contraction of its

suitable areas as the city where Arabica coffee is currently most

suitable for growth. Conversely, Xishuangbanna which is located at

a lower latitude has maintained significant growth in suitable areas

under different future climate scenarios, especially evident during
Frontiers in Plant Science 13
the periods of 2021-2040-SSP3-7.0, 2080-2100-SSP2.45, and 2040-

2080-SSP5-8.5.

To further investigate the response of Arabica coffee in Yunnan

Province to climate change, the change in the centroid range of its

potential suitable habitat under different future climate scenarios

was analyzed as shown in Figure 8. The centroids of suitable areas

are mainly concentrated in Pu’er and tend to move towards lower
FIGURE 7

Potential habitat changes of Arabica coffee from current to future climatic conditions.
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latitudes in most scenarios. Under the SSP2-4.5 scenario, the

centroids of suitable areas generally move eastward with latitudes

lower than the current centroid by distances of 26.42 km, 6.66 km,

5.82 km, and 16.17 km in different periods. In the SSP3-7.0 scenario,

the trend of centroid movement is similar to that in the SSP2-4.5

scenario but the movement distance is relatively smaller. The

centroid moves eastward by 13.8 km in the 2030s, then shifts

southward by 13.91 km in the 2050s, westward by 9.31 km in the

2070s, and finally moves eastward by 15.95 km in the 2090s,

returning to a latitude similar to the current centroid. In the

SSP5-8.5 scenario, the magnitude of centroid displacement is

larger compared to the other two scenarios and the trend is

different. In the 2090s, the centroid moves to the south of the

current centroid, with distances of 20.65 km, 31.93 km, 28.56 km,

and 15.45 km in different periods. The geographic locations of

centroids for each climate scenario and period are provided in

Supplementary Table S5.
4 Discussion

4.1 Accuracy of model prediction

The default parameters of MaxEnt were initially set based on

testing data from 266 species across six different geographic regions

by early model developers (Merow et al., 2013). However, utilizing

only default parameters may lead to overfitting and decreased

accuracy in model predictions (Tracy et al., 2018). Furthermore,

the complexity of the model has a significant impact on the species’

predictive ability. Studies have shown that constraining the

complexity of the MaxEnt model can be achieved by using AICc

parameters and adjusting the multiplier options (Warren et al.,

2014).In this study, the R programming language’s kuenm package

was employed to filter through 1,160 model results with various

settings, including 40 multiplier levels and 29 feature combinations.
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Among the combinations that met the corresponding conditions,

those with the smallest delta_AICc values were selected to

optimize the settings. After re-modeling, improved predictions

of the potential suitable habitat for Arabica coffee in Yunnan,

China, were obtained compared to the predictions based on

default parameters.

Although the MaxEnt model has proven its efficiency in species

distribution research, studies have indicated that the accuracy of

occurrence data should be considered in model usage, as it

significantly impacts the model’s fit (Anderson et al., 2020).

Despite the diverse sources of species distribution data used in

this study and efforts to maintain their independence, inevitable

influences from the quality of database records could lead to

distortions and expansions in inferred environmental associations

and suitable areas (Gábor et al., 2020). Additionally, there must be a

temporal correspondence between the recorded occurrence data of

species and biophysical variables and the biophysical variables

influencing species distribution must have statistical significance.

However, due to the opportunistic nature of data sampling, certain

habitat conditions of species may be overly represented (Monsarrat

et al., 2019). Consequently, eliminating sampling biases of variables

used in the study while retaining essential ecological signals remains

challenging (Franklin, 2023). Moreover, when extending the model

to areas beyond the study region, selecting appropriate variables will

determine the model’s fit on a larger scale, which is crucial for

subsequent research considerations (Feng et al., 2019).
4.2 Environmental variables affecting
habitat suitability of Arabica coffee
in Yunan

In this study, Pearson correlation analysis and contribution

ratio were used to determine the main environmental factors

affecting the distribution of Arabica coffee, and ten bioclimatic
FIGURE 8

(A) Core distribution Changes under 12 future climate scenarios/periods. (B) Lines indicate the magnitude of projections over time and arrows
indicate their direction.
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variables, three topographic factors, and four soil factors were

selected as independent variables for the prediction model

(Avelino et al. , 2005). Response curves for important

environmental predictors are shown in Supplementary Figure S8.

Temperature is an important climatic factor affecting the

growth and development of Arabica coffee. In particular, low

temperatures are the most significant. In the coldest months,

temperatures below 5°C can lead to leaf damage and growth

cessation, while in Yunnan the average temperature of the coldest

month is above this. The hottest month of the year, when coffee is in

full bloom, has maximum temperatures of up to 25°C, which can

increase photosynthetic rates and promote plant growth; however,

high temperatures may cause coffee leaves to burn or dry out,

resulting in a decrease in net photosynthesis (Zhang et al., 2021a).

The wettest seasonal temperatures for potentially suitable habitat

for coffee in Yunnan Province do not exceed 25°C.

Coffee growth has specific requirements for precipitation and its

timing. Adequate rainfall is crucial for maintaining coffee plants,

especially during critical growth stages such as flowering and fruit

development (Thioune et al., 2020). Insufficient precipitation may

lead to water stress, resulting in decreased quality and yield of coffee

beans (Zhang et al., 2021b). Conversely, excessive rainfall during the

flowering period can cause flower drop, adversely affecting the fruit

set (Tavares et al., 2018). Therefore, a moderate and well-timed

balance of rainfall throughout the growing season is ideal for

coffee cultivation.

Altitude is an important topographical factor affecting the

quality of Arabica coffee. The large temperature difference

between day and night at high altitudes makes the coffee growth

cycle long, which is conducive to the accumulation of nutrients, and

the concentration of chlorogenic acid and fat increases with altitude

(Bertrand et al., 2006), enhancing the flavor of the coffee beans.

However, these areas have relatively low temperatures and

precipitation, which are not favorable for coffee growth (Moguel

and Toledo, 1999). Slope also affects soil depth, soil respiration, and

nutrient utilization, and gentle slopes are suitable for growing

Arabica coffee (Martins et al., 2019). Our findings are consistent

with previous studies.

In terms of soil conditions, this study considers soil pH and

aluminum saturation as the primary environmental variables

affecting Arabica coffee in Yunnan. Soil pH is a crucial factor

influencing the effectiveness of nutrients, with its variation directly

impacting the absorption of nutrients by coffee trees. Small-seeded

coffee is best suited to grow in soils with pH values ranging from 5.5

to 6.5. Aluminum (Al) toxicity is a major factor limiting crop

productivity in acidic soils where aluminum ions (Al3+) primarily

affect plant root systems, slowing their growth and development,

reducing lateral root numbers, and consequently decreasing plant

yield (Bazzo et al., 2013). While Arabica coffee is relatively more

tolerant to aluminum compared to other varieties, most coffee-

producing areas are located in acidic soils where the aluminum ion

content is sufficient to impair plant development, damage root

systems and restrict their ability to absorb water and nutrients,

thereby affecting their growth and productivity (de A. Bojórquez-

Quintal et al., 2014).
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4.3 Impact of climate change on habitat
suitability of Arabica coffee in Yunnan and
adaptive strategies

The research findings indicate that the suitable habitats for

Arabica coffee in Yunnan Province are primarily located in the

western and southern regions, which are predominantly

characterized by a subtropical climate. These regions align with

the biological requirements of Arabica coffee and correspond with

the actual distribution of coffee cultivation in Yunnan. Compared to

current climate conditions, the area of suitable habitats is projected

to decrease under most future emission scenarios. Notably, the

magnitude of change is higher under high-emission scenarios,

demonstrating the significant impact of global climate change on

Arabica coffee cultivation in this region. Conversely, the area of sub-

suitable habitats is projected to increase in most scenarios, showing

a trend consistent with the overall reduction of suitable habitats,

indicating that suitable habitats may degrade into sub-suitable ones.

The analysis of the geometric center (centroid) movement of

suitable habitats in response to climate change reveals that under

high-emission scenarios (SSP585), the centroid shift is more

pronounced compared to other scenarios. The relationship

between the centroid movement and the changes in suitable

habitat areas over four future periods shows a trend where,

during periods of habitat reduction, the centroid moves southeast,

while during periods of habitat expansion, the centroid shifts

towards higher latitudes or elevations in the northwest. This

aligns with previous research indicating that climate warming

leads to a reduction in species’ suitable habitats, often

accompanied by a shift towards higher elevations (Walther et al.,

2005; Adhikari et al., 2020).

Climate warming may extend the boundaries of suitable

habitats for coffee into more subtropical regions (Barreto Peixoto

et al., 2023; de Sousa et al., 2019), while changes in precipitation

patterns, particularly in monsoon climate regions, may lead to

increased rainfall (Collins et al., 2024) which could potentially

expand the cultivation range for coffee in the region. Based on the

contribution rates of environmental factors, the layout of the

Yunnan Arabica coffee industry should consider not only the

adaptation and improvement of existing coffee plantations to

withstand meteorological hazards, such as droughts or prolonged

low temperatures, through better fertilizer management to avoid

soil acidification but also the long-term impacts of climate change.

When establishing new coffee plantations in the future, careful

planning should be undertaken to mitigate adverse factors. The

overall layout should gradually shift towards higher elevations

and latitudes.
4.4 Priority planting areas and strategies
for Arabica coffee in Yunnan

Utilizing the Marxan model, prioritized planting areas (PPAs)

for Arabica coffee were computed under different protected

proportions (PROP) of 0.3 and 0.5. The simulation results were
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imported from ArcGIS software to generate systematic

conservation plans for Arabica coffee in Yunnan province under

various agricultural development goals. As illustrated in Figure 9,

when PROP was set at 0.3, the prioritized planting areas for Arabica

coffee were predominantly concentrated in Pu ’er and

Xishuangbanna, with some scattered distribution in Dehong,

Honghe, and Kunming. A total of 133 townships were selected,

covering 9.83% of all planning units. Increasing PROP to 0.5

resulted in the addition of 125 townships, which were similarly

located in these three cities or prefectures, totaling 18.53% of all

planning units, with the majority situated in Dehong and Honghe.
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These findings demonstrate the concentrated distribution of

prioritized planting areas for Arabica coffee, facilitating the

formulation of targeted agricultural management policies.

Moreover, the congruence between these results and the

predictions of the Maxent model regarding the potential suitable

habitat zones for Arabica coffee in Yunnan province indicates the

accuracy of the forecasts.

Systematic conservation planning is a specialized approach

designed for effective decision-making in species protection. The

appropriate planning units identified through systematic

conservation planning represent the hotspots of Arabica coffee
FIGURE 9

(A) Priority planting areas under different protection proportions; (B) Priority planting areas in Kunming; (C) Priority planting areas in Dehong.
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distribution in Yunnan. Currently, Arabica coffee studied as an

economic crop is widely cultivated. The results obtained through

integration with species distribution models can be used to identify

priority planting areas for coffee in the region and formulate

corresponding strategies. Overall, the selected PPAs mainly cover

the primary production areas of Arabica coffee in Yunnan,

including Pu’er, Dehong, and Xishuangbanna, where coffee has

been cultivated for an extended period. According to the

simulations of the MaxEnt model, these areas are suitable for

coffee cultivation under current climatic conditions and are

projected to remain stable in the face of future climate change

scenarios. Local governments can delineate coffee planting areas

based on their own climatic, topographic, and soil conditions,

potentially extending the lifespan of coffee cultivation and

bringing lasting economic benefits to local communities.

The study found that several planning units within the WuHua,

XiShan, GuanDu, and PanLong Districts of Kunming, the capital of

Yunnan Province, were included in the systematic conservation

plan under two different PROP conditions. These areas are located

in the economic core of Yunnan and under future climate change

scenarios, the expansion or contraction of suitability in these areas

is more pronounced. Therefore, large-scale coffee cultivation in

these areas presents certain challenges. Research suggests that

agricultural landscape trajectories are formed by the action or

reaction of local communities to socio-economic and

environmental driving factors as well as local processes

interacting at different spatial scales (Ribeiro Palacios et al., 2013).

With the burgeoning development of niche economies, many

coffee-growing regions offer a variety of services such as leisure/

tourism and sustainable food production, all of which have the

potential to benefit producers, consumers, and the environment

(Jha et al., 2014; Zhou et al., 2023). Currently, some of the world’s

major coffee-producing plantations are developing coffee tourism

experiences (Degarege and Lovelock, 2021). As an attractive tourist

destination, Kunming is suitable for integrating coffee cultivation

with cultural and tourism industries, encouraging local farmers to

establish cooperatives and promote ecotourism near urban areas.

Coffee tourism, as a component of rural tourism, would serve as a

source for income diversification and maintenance of sustainable

livelihoods (Woyesa and Kumar, 2021).

Factors related to coffee production are divided into

environmental factors and agricultural genetics, with the former

creating suitable conditions for coffee production and the latter

determining breeding quality (Jiménez et al., 2023). This study only

discusses how environmental variables determine the distribution of

habitat suitability for coffee production and uses its results to simulate

priority planting areas for Arabica coffee in Yunnan under different

development goals. The cultivation of coffee as an economic crop

requires consideration of more socio-economic factors, and the

quality of coffee also determines its value to a certain extent.

Research has shown that over the past fifty years, temperatures in

Brazilian coffee-growing cities have increased by approximately 0.25°

C per decade, while annual precipitation during flowering and

ripening periods has been decreasing, leading to a decline of over

20% in coffee production in southeastern Brazil (Koh et al., 2020). For
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Yunnan Province, being located in mountainous areas often subjects

it to more severe climate fluctuations compared to flat regions, which

explains the higher climate risks in the region (Diffenbaugh and

Giorgi, 2012). Compounded by rural areas’ relative lack of

infrastructure and other economic development opportunities

(Watson and Achinelli, 2008), the hazards induced by climate

change will translate into high overall climate risks for China’s core

coffee-growing regions. To achieve efficient protection and allocate

resources for conservation, future cultivation, and promotion of

Arabica coffee in Yunnan need to consider geographical layouts

and varietal selection to mitigate adverse environmental factors and

the impacts of climate change. Selecting high-quality varieties suitable

for specific climates, especially in policies regulated at the county level

that have a decisive impact on the towns where coffee is grown, will

require increased investment to provide more agricultural services,

broaden farmers’ income sources, and offer practical references for

Arabica coffee cultivation.
4.5 Limitations and prospects

The MaxEnt model exhibits data dependence (Warren and

Seifert, 2011), and its performance is influenced by the

relationship between the number of constraint functions and

sample size, resulting in significant computational demands

during the iterative process. Insufficient distribution information

may lead to predictive errors, meaning that a scarcity of distribution

points or inaccuracies in environmental variables can adversely

affect the model’s predictive precision (Merow et al., 2013). Future

research should ensure that known distribution points within the

range are as numerous and accurate as possible, and when selecting

environmental variables, factors that significantly impact the target

species’ distribution should be prioritized over simply including all

available environmental factors.

This study only predicted the effects of climate, soil, and

topography on Arabica coffee, without considering the influence

of interspecific interactions such as competition and predation and

other ecological factors. Consequently, the predicted potential

suitable areas may deviate from the actual suitable areas. Given

that different climate models and scenarios can yield varying results,

the selection of future climate scenarios may affect the predictive

accuracy of species’ potential distributions. An over-reliance on a

single scenario or model may lead to underestimating or

overestimating a species’ future viability in certain regions

(Kumar, 2012). The complexity of the climate system and the

indirect effects of climate change on ecosystems and species

habitats such as increased frequency of extreme weather events

may not be fully captured in the models.

For provincial analyses, a resolution of 30 arc-seconds is

normally sufficient to capture species distribution patterns at

larger scales. However, given the spatial heterogeneity of localized

ecological processes (e.g., microclimate effects), the use of this

resolution may ignore minor differences in habitat distribution

(e.g., slope) at some smaller spatial scale. Meanwhile, the fineness

of the resolution may predict suitable habitat areas inaccurately
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when generalizing the potential distribution to areas where the

species has not been investigated.

Additionally, land use changes are often driven by complex

factors, including human activities, policies, and economic

considerations, making future land use policies such as the

establishment of protected areas or reforestation initiatives

unpredictable. This unpredictability will impact habitat availability

and the conditions necessary for species survival. While the MaxEnt

model typically assumes a stable ecological niche for species, in

reality, species may possess a certain degree of adaptability to

climate and land use changes (Pradhan et al., 2024). This

adaptability may not be entirely captured by the model, potentially

leading to underestimations or overestimations of a species’ future

distribution capacity. Similarly, plant breeding, especially genetic

engineering, may significantly alter the growth characteristics and

adaptive capacity of coffee (Ngoy and Shebitz, 2020). Breeding efforts

may in the future produce coffee varieties that are better adapted to

extreme climate change, which in turn may affect their habitat

requirements. Therefore, while the present model provides a

valuable reference for assessing climate change impacts, it may

have limitations in long-term predictions. Future research should

incorporate ecologically relevant predictive variables, considering

additional influential abiotic and biotic factors to enhance model

accuracy (Comia-Geneta et al., 2024). It is also important to explore

the incorporation of plant breeding progress into species distribution

models to improve the accuracy of long-term climate change

projections for more comprehensive spatial planning strategies.
5 Conclusions

In this study, MaxEnt and Marxan models were used to

simulate the geographical distribution of potentially suitable

habitats for Arabica coffee in Yunnan Province, China under

current and future (2021-2100) climate scenarios, to identify key

environmental factors affecting the distribution and to predict

changes in the suitable areas and centroid migration under future

scenarios. The following main conclusions were drawn.

1. The results of the potential habitat suitability evaluation of

Arabica coffee in Yunnan Province using the MaxEnt model were

reliable and MaxEnt predicted that the suitable and sub-suitable

areas were about 4.21×104 km2 and 13.87×104 km2, respectively,

accounting for 47.15% of the total area of the province. Among

them, the suitable areas are mainly concentrated in the west and

south of Yunnan, especially in Pu’er and Xishuangbanna,

accounting for about 11% of the total area of Yunnan.

2. 79.1% of the cumulative contribution of Minimum

temperature of the coldest month, altitude, mean temperature of

wettest quarter, slope, and aluminum saturation are the key

environmental variables affecting the distribution of Arabica

coffee in Yunnan Province. The minimum temperature of the

coldest month and the mean temperature of the wettest quarter

for the survival of Arabica coffee range from about 5 to 10°C and 23

to 25°C, and the value of temperature seasonality is less than 4.5,

and the annual precipitation should be more than 1200 mm. An

altitude of 1200 m and a slope of less than 9° is the most suitable
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terrain. Soils with high aluminum content may adversely affect the

growth of Arabica coffee.

3. Under the SSP3-7.0 scenario from 2021 to 2100, the area of

suitable habitats decreases while the area of sub-suitable habitats

increases year by year. In general, except for the small increase in the

total area of potentially suitable/sub-suitable habitats between 2021

and 2040, the total area of such habitats shows a decreasing trend in

all other periods, which indicates that the potential habitats of arabica

coffee in Yunnan Province will show a shrinking trend in the next 80

years under this climate scenario. This shows that the potential

habitat of Arabica coffee in Yunnan Province under this climate

scenario will shrink, and the suitable habitat will be gradually

degraded to a sub-suitable habitat. The expansion and contraction

of suitable and sub-suitable habitats for Arabica coffee in Yunnan

Province under different climate scenarios coexist. Under the SSP3-

7.0 climate scenario, the most significant change in habitat suitability

for Arabica coffee was observed and the highest degree of contraction

was observed under this scenario, while the least significant change

was observed under the SSP5-8.5 climate scenario, but the highest

degree of expansion was observed under this scenario

4. The center of the suitable area in the optimal zone of Arabica

coffee shifted eastward in the SSP2-4.5 scenario, while the trend of

the center of the suitable area shifted in a direction similar to that of

the SSP2-4.5 scenario but the distance of the shift was smaller in the

SSP3-7.0 scenario, and the distance of the shift of the center of mass

in the SSP5-8.5 scenario was larger than that in the other

two scenarios.

5. Using the method of systematic conservation planning,

township administrative districts as conservation units, LULC, and

nature reserve data as conservation cost values, and the distribution

probability of Arabica coffee as conservation characteristic values, we

analyzed that the priority planting areas in Yunnan Province under

the conservation objectives of 30% and 50% are Pu’er,

Xishuangbanna, Honghe, Dehong, and Kunming. We put forward

corresponding management policy recommendations.
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Phillips, S. J., Dudıḱ, M., and Schapire, R. E. (2004). A maximum entropy approach
to species distribution modeling. Proc. Twenty-First Int. Conf. Mach. Learn. 83.
doi: 10.1145/1015330.1015412

Phillips, S. J. (2017). A brief tutorial on Maxent. Available online at: http://
biodiversityinformatics.amnh.org/open_source/maxent/ (accessed September 23,
2024)

Pradhan, M., Malakar, A., and Sinha, A. (2024). Appraisal of the potential habitat
distribution of Madhuca longifolia manifested remarkable resilience under various
socio-climatic scenarios pan-India. Model. Earth Syst. Environ. 10, 2435–2446.
doi: 10.1007/s40808-023-01913-0

Reyer, C. P. O., Adams, S., Albrecht, T., Baarsch, F., Boit, A., Canales Trujillo, N.,
et al. (2017). Climate change impacts in Latin America and the Caribbean and their
implications for development. Reg. Environ. Change 17, 1601–1621. doi: 10.1007/
s10113-015-0854-6

Ribeiro Palacios, M., Huber-Sannwald, E., Garcıá Barrios, L., Peña de Paz, F., Carrera
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