
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Lorena Parra,
Universitat Politècnica de València, Spain

REVIEWED BY

Francisco Javier Diaz,
Universitat Politècnica de València, Spain
Kelly Lais Wiggers,
Federal Technological University of Paraná,
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Accurate identification of potato diseases is crucial for reducing yield losses. To

address the issue of low recognition accuracy caused by the mismatch between

target domain and source domain due to insufficient samples, the effectiveness

of Multi-Source Unsupervised Domain Adaptation (MUDA) method in disease

identification is explored. A Multi-Source Domain Feature Adaptation Network

(MDFAN) is proposed, employing a two-stage alignment strategy. This method

first aligns the distribution of each source-target domain pair within multiple

specific feature spaces. In this process, multi-representation extraction and

subdomain alignment techniques are utilized to further improve alignment

performance. Secondly, classifier outputs are aligned by leveraging decision

boundaries within specific domains. Taking into account variations in lighting

during image acquisition, a dataset comprising field potato disease images with

five distinct disease types is created, followed by comprehensive transfer

experiments. In the corresponding transfer tasks, MDFAN achieves an average

classification accuracy of 92.11% with two source domains and 93.02%with three

source domains, outperforming all other methods. These results not only

demonstrate the effectiveness of MUDA but also highlight the robustness of

MDFAN to changes in lighting conditions.
KEYWORDS

field environment, potato disease recognition, multi-source unsupervised domain
adaptation, multi-representation extraction, subdomain alignment
1 Introduction

Potato is one of the main food crops in many countries. However, various factors make

them susceptible to different diseases, which can adversely affect their yield (Arshaghi et al.,

2023). Early detection and warning are crucial for effective disease prevention and control,

playing a pivotal role in management and decision-making (Fang and Ramasamy, 2015). In
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reality, it is an extremely time-consuming and unreliable way to

detect and diagnose disease types by visual inspection of a farmer.

Although the accuracy of laboratory-based identification method is

very high, it is not suitable for the current situation of large-scale

planting while the cost is high (Verma et al., 2020). This highlights

the need for automated methods such as machine learning to

improve the efficiency of disease recognition in agricultural

environments. Given these challenges, machine learning

techniques have gained increasing attention in recent years. Early

machine learning methods primarily relied on manual feature

extraction (Liaghat et al., 2014; Hlaing and Zaw, 2018; Deng

et al., 2019; Basavaiah and Arlene Anthony, 2020). These features

typically include salient structures such as texture, edges, color, and

corners in the image (Sahu and Minz, 2023). Implementing such

methods requires substantial engineering skills and specialized

domain knowledge. Moreover, these methods are often tailored to

specific problems, lacking generality.

In recent years, deep learning methods have been widely applied

in crop disease recognition, achieving better performance than

approaches based on manual feature extraction (Bevers et al.,

2022). Atila et al. (2021) employed data augmentation techniques

to augment the PlantVillage dataset to 61,486 images, evaluating the

classification performance of various deep learning models. The

experimental findings highlighted that the B4 and B5 models of the

EfficientNet architecture achieved the highest performance in both

the original and augmented datasets. Hassan and Maji (2022)

introduced a novel deep learning model incorporating Inception

layers and residual connectivity, achieving high classification

accuracies of 99.39% on the PlantVillage dataset, 99.66% on the

rice disease dataset, and 76.59% on the cassava dataset. Gu et al.

(2022) proposed an enhanced deep learning-based multi-plant

disease identification method, conducting experiments on 14,304

field images of six diseases in apples and pears. The results

demonstrated a 14.98% improvement in accuracy compared to

the baseline method.

However, deep learning, being a data-driven algorithm, heavily

relies on large-scale labeled data for success. Establishing such

datasets for a specific task incurs significant financial and time

costs. In agricultural environments, various interfering factors pose

challenges to data annotation. In addition, traditional machine

learning assumes that the training data (source domain) and test

data (target domain) of the model obey the independent identical

distribution. However, this assumption is often invalidated in

agriculture due to variables like lighting conditions, crop variety,

planting environment, disease progression stages, and the tools used

for data collection. The resultant disparity in distribution between

the source and target domain data, known as domain shift, refers to

the significant differences in data distribution encountered in

transfer learning or domain adaptation (Tanabe et al., 2021). This

phenomenon degrades the model’s performance, as the knowledge

learned from the source domain may not generalize well to the

target domain (Zhang et al., 2022).

Essentially, domain shift arises when training samples are

insufficient to cover the testing ones. However, in reality,

obtaining a large number of samples is prohibitively expensive,

making addressing domain shift with limited samples a crucial area
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for exploration. Unsupervised Domain Adaptation (UDA) is one

such solution. As a pivotal component of transfer learning (Pan and

Yang, 2009), UDA methods aim to learn generalizable features

across domains. These methods involve training a predictive

function on labelled data in source domain and minimizing the

prediction error on unlabelled data in target domain. UDAmethods

can be broadly categorized into two types (Wang et al., 2023): the

first type is metric-based methods (Tzeng et al., 2014; Sun and

Saenko, 2016; Zhu et al., 2020; Zhang et al., 2022), which aim to

adopt a certain metric to minimize the distribution difference

between the source and target domain data. The second type is

adversarial-based methods (Long et al., 2015; Yu et al., 2019), which

involve applying a MinMax adversarial training between a feature

extractor and a discriminator to learn domain-invariant features

and align the two domains.

Recently, researchers have applied UDA methods to the field of

agriculture. Fuentes et al. (2021) proposed a system specifically

designed for open-set learning problems, capable of performing

open-set domain adaptation and cross-domain adaptation tasks.

Yan et al. (2021) proposed a UDA method for cross-species plant

disease recognition based on mixed subdomain alignment, building

upon the Deep Subdomain Adaptation Network (DSAN),

particularly addressing situations with poor correlation between

the source and target domains. Extensive experiments have

demonstrated that this method exhibits excellent recognition

performance for subdomains with low correlation. Wu et al.

(2023) used data captured in the laboratory as the source domain

and field environment data as the target domain. They employed

the DSAN method to align the data of each class in the two

domains, achieving better classification accuracy than other UDA

methods on several crop datasets.

Although these studies have made progress in applying UDA to

agricultural tasks, they primarily focus on learning crop disease

features from a single source domain (Single-Source Unsupervised

Domain Adaptation, SUDA), overlooking the fact that real-world

agricultural datasets often originate from multiple domains with

diverse characteristics. This necessitates more advanced methods,

such as Multi-Source Unsupervised Domain Adaptation (MUDA),

to better handle such complex data. These research works, although

to a certain extent, alleviates the above problems. However, they

focus solely on learning the disease characteristics of crops from a

single source domain (Single-Source Unsupervised Domain

Adaptation, SUDA), neglecting the fact that the labelled data

available in real-world scenarios originate from multiple domains.

Taking potato diseases in field environment as an example, due to

the constraints of capturing and labelling costs, there are very few

labelled data samples conforming to the same distribution.

Furthermore, the interferences of multiple factors such as capture

equipment, potato varieties, planting regions, and light conditions

lead to significant distribution differences among data captured

under different conditions. Although images captured under

different conditions contain a wealth of disease feature

information, SUDA only has one source domain and cannot

simultaneously utilize data from multiple sources. To prevent

‘negative transfer’, which occurs when significant differences or

weak correlations between the source and target domains cause the
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transferred knowledge to degrade the target domain’s model

performance (Wang et al., 2019), it is necessary to restrict

SUDA’s selection of data, thereby exacerbating the issue of data

scarcity. To effectively utilize multiple potato disease datasets

characterized by significant distributional disparities, the Multi-

Source Unsupervised Domain Adaptation (MUDA) method

emerges as a preferred choice. The simplest way to implement

MUDA is by merging all source domains into a single domain

(referred to as Source Combine), followed by aligning data

distributions using the SUDA approach. This approach may

improve the predictive capabilities of SUDA models due to data

expansion (Zhu et al., 2019a). However, it may exacerbate the

mismatch problem when aligning the multiple source domains with

the target domain, resulting in unsatisfactory performance of the

model on the target domain (Csurka, 2017). Thus, MUDA methods

have been proposed to more effectively utilize multi-source data.

Early MUDA mainly uses a shallow model combination

classifier to use data from multiple source domains. Xu et al.

(2018) proposed a Deep Cocktail Network (DCN) to address

issues related to domain and category shifts among multiple

sources. Peng et al. (2019) introduced the M3SDA method, which

dynamically adjusts the moments of feature distribution to transfer

knowledge learned from multiple source domains to an unlabelled

target domain. The aforementioned methods can be categorized

into two groups: the first involves mapping multiple source

domains and the target domain into a common feature space,

where their distribution differences are minimized; the second

involves combining classifiers trained separately on multiple

source domains to obtain the final classifier for the target domain.

Zhu et al. (2019a) pointed out that both of these types of

methods focus on extracting a common domain invariant

representation for all domains, but this goal is challenging to

achieve and can easily lead to significant mismatches. Even for a

single source and target domain, learning their domain-invariant

representations is not easy, as shown in Figure 1A. When

attempting to align multiple source and target domains, the

degree of mismatch increases and can lead to poor performance.

Figure 1B is a schematic diagram of this process. The common

domain invariant representation of the source (from source1 to

source3) and target domains are their overlap. It can also be
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intuitively seen from the schematic diagram that when there are

multiple source domains, it is very difficult to obtain their common

domain-invariant representation with the target domain.

Furthermore, these methods do not consider the relationship

between target samples and the decision boundaries of domain-

specific when matching distributions. Therefore, they proposed

MFSAN to solve the above problems. While this method has

shown promising results on public datasets, it still has limitations

in two aspects. Firstly, when aligning each source-target domain

pair, they adopted a global alignment approach, as shown in

Figure 2A. This may lead to the failure to capture fine-grained

information due to the neglect of relationships between subdomains

of the same category in different domains, thereby affecting the

model’s performance (Zhu et al., 2020). Secondly, the above method

employed a single network structure in the feature extraction

process, limiting the information that could be obtained.

While MUDAmethods have demonstrated promising results in

various fields such as fault diagnosis (Wen et al., 2021; Wang et al.,

2022a), visual emotion classification (Lin et al., 2020), healthcare

(Deng et al., 2021; Abbet et al., 2022), gait detection (Guo et al.,

2021) and text sentiment analysis (Peng et al., 2023), its

effectiveness in the agricultural domain has not been widely

researched and validated. Wang et al. (2022b) applied the MUDA

method to unsupervised crop mapping and achieved good results.

Ma et al. (2023) proposed an UDA method using a multisource

maximum predictor discrepancy (MMPD) neural network for

county-level corn yield prediction. Case studies in the U.S. Corn

Belt and Argentina demonstrate that the MMPD model effectively

reduces domain differences and outperforms several other advanced

deep learning and UDA methods in terms of performance. There

have been no reported studies related to MUDA in the field of crop

disease recognition. To address the reduction in recognition

accuracy caused by complex backgrounds and significant

illumination changes in potato disease recognition within field

environments, we propose the Multi-Source Domain Feature

Adaptation Network (MDFAN), which introduces a two-stage

alignment strategy. MDFAN leverages multi-feature extraction

and subdomain alignment techniques to achieve better domain

alignment and feature extraction across multiple domains, resulting

in more accurate potato disease recognition.
FIGURE 1

Schematic of SUDA and MUDA Methods. (A) Single-source domain adaptation. (B) Multiple-source domain adaptation.
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The main contributions of this paper can be summarized

as follows:
Fron
1. Changes in lighting can significantly affect the RGB pixel

values of images captured in field environments, causing

substantial differences in image features obtained under

various lighting conditions. To maximize the use of data

from different lighting conditions to train disease

recognition models and enhance their generalization

ability and avoid negative transfer, using the MUDA

method is a feasible option. This paper proposes a disease

recognition model named MDFAN to achieve this goal.

2. MDFAN includes two alignment stages. The first stage is

domain-specific distribution alignment, primarily aimed at

achieving distribution alignment for each source-target

domain pair within a specific domain. The second

alignment stage is called classifier alignment. In this stage,

the predictions of various classifiers are aligned through

decision boundaries specific to the domain, mitigating

prediction discrepancies between different classifiers and

enhancing prediction consistency.

3. In the domain-specific distribution alignment stage, a multi-

representation extraction module and a subdomain

alignment module (as illustrated in Figure 2B) are

employed to learn multiple representations of domain

variables for source-target domain pairs. These techniques

help capture finer-grained information between subdomains

of the same category across different domains and achieve

more effective alignment.

4. Based on the lighting conditions during image capture, the

dataset is divided into four domains, each encompassing five

disease types. Extensive experiments were conducted on this

dataset using 2 and 3 source domains to evaluate the

performance of MDFAN. The experimental results

demonstrate the robust generalization capability of

MDFAN under this interference.
The rest of this paper is organized as follows. Section 2 provides a

detailed introduction to the experimental data andMDFAN. Section 3

validates the effectiveness of MDFAN through experiments conducted

on the dataset. Finally, some conclusions are drawn in Section 4.
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2 Materials and methods

2.1 Database

The study by (Suh et al., 2018) indicates that changes in

illumination are a significant factor causing differences in data

distribution. Therefore, to evaluate the efficacy of MDFAN under

conditions where illumination is the primary variable, a potato

disease dataset, named DIF_light_intensities, was constructed, with

all images captured in the field. Based on the time periods of image

capture and the weather conditions (sunny or cloudy), we partition

the data into four domains: Morning (Mo), Midday (Mi),

Afternoon (A), and Cloudy (C). Among them, the pictures in the

Mo, Mi and A domains are all captured on sunny days, which

makes the contrast between light and shade caused by occlusion

prevalent in the pictures, and there are still some overexposed

pictures in the Mi domain. In the C domain, the image is generally

dark due to insufficient lighting. In Figure 3, we present two images

each from the insufficient lighting (Domain: C) and the sufficient

lighting (Domain: Mi), providing a visual comparison to highlight

the lighting differences in field environments.

Each domain contains images of Potato Cercospora Leaf Spot

(PCLS), Potato Early Blight (PEB), Potato Late Blight (PLB), Potato

Macrophomia Blight (PMB), Potato Powdery Mildew (PPW). Each

disease type corresponds to a subdomain in its own domain. Taking

the Mo domain as an example, it contains five subdomains: PCLS,

PEB, PLB, PMB, and PPW. Therefore, the subdomain labels in these

four domains are consistent.

The domains and corresponding subdomains of disease images

in this dataset are illustrated in Figure 4.

Table 1 provides relevant information about the dataset,

including the capture time of images in each domain, the number

of images for each disease type, and other pertinent information.

Taking Mo as an example, the image capture time is 7: 00-11: 00,

and there are 86 PEB images.

To comprehensively assess the effectiveness of MDFAN, the

investigation focuses on the transfer tasks associated with both the

2-source and 3-source domains of the dataset. Among them, there

are twelve transfer tasks corresponding to 2-source domains,

abbreviated as: Mo, Mi →A; Mo, Mi →C; Mo, A →Mi; Mo,

A→C; Mi, A →Mo; Mi, A→C; Mo, C →Mi; Mo, C→A; Mi, C
FIGURE 2

(A) Global Domain Adaptation (B) Subdomain Adaptation.
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→Mo; Mi, C→A; A, C →Mo; A, C →Mi. Additionally, there are

four transfer tasks corresponding to the 3-source domains,

abbreviated as: Mo, Mi, A→C; Mo, Mi, C→A; Mo, A, C →Mi;

Mi, A, C→Mo. In the case of Mo, Mi→ A, where Mo, Mi represent

two available source domains and A represents the target domain,

the arrow “→” denotes the transfer process, and the 3-source

domains follow a similar pattern.
Frontiers in Plant Science 05
We have devoted significant effort to obtaining potato disease

data under varying lighting conditions in field environments and

have developed the DIF_light_intensities dataset. This is because

changes in lighting directly affect image brightness, contrast, and

shadows, making it challenging for models to effectively extract

features. This dataset offers a practical and challenging platform for

evaluating the robustness of our method. The following section
FIGURE 3

Lighting Conditions Comparison.
FIGURE 4

Disease Illustration in DIF_light_intensities Dataset.
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provides a detailed introduction to the MDFAN method, which is

designed to mitigate the impact of lighting variations through a

carefully crafted two-stage alignment strategy.
2.2 Methods

2.2.1 Problem definition
This section introduces the proposed potato disease recognition

method, MDFAN, designed for use in field environments. First, we

make some basic assumptions:
Fron
1. The data in the source domain are labelled, and an effective

source classifier can be constructed.

2. The target domain data is unlabelled.

3. The feature space and label space of each domain are the

same, but the probability distributions differ.
In MUDA, N different source domains are considered, with

their data distributions represented as psj(x, y)
� �N

j=1, where sj

denotes the j-th source domain. The labelled data from the source

domain is denoted as (Xsj,Ysj )
� �N

j=1, where Xsj = xsji
n o Xsjj j

i=1
refers to

the samples from source domain j, and Ysj = ysji
n o Xsjj j

i=1
refers to the

corresponding labels. The distribution of the target domain is

represented as pt(x, y). Sampling from this distribution results in

the target domain data, denoted as Xt = xtif g Xtj j
i=1 , where Yt is

unlabelled. Our aim is to establish an effective prediction model

using data from multiple source domains to achieve accurate

classification of target domain samples.
2.2.2 Overview of network framework
The structure of the proposed MDFAN is depicted in Figure 5.

It consists of three parts: common feature extractor, domain-

specific distribution alignment, and classifier alignment. The

domain-specific distribution alignment is the first alignment

stage. In this stage, the distribution alignment in the specific

domain is achieved for each source-target domain pair by using

multiple domain-invariant representations of the source-target

domain pair. The method for extracting multiple domain-

invariant representations for each source-target domain pair is to

map each domain-invariant representation to a specific feature

space and match their distributions. Generally speaking, the
tiers in Plant Science 06
simplest way to map each source-target domain pair to a specific

feature space is by training multiple networks, but this approach is

extremely time-consuming. In MDFAN, this objective is achieved

through the use of two subnetworks. The first part is a shared

subnetwork used to learn common features across all domains,

which is the common feature extractor in the MDFAN structure.

The second part consists of N subnetworks corresponding to

specific domains, also referred to as non-shared subnetworks. As

shown in Figure 5, Hj (j=1,…,N) represents a non-shared

subnetwork, which belongs to the Source j -target pair, and its

obtained weights are not shared. In each non-shared subnetwork, a

multi-representation extraction module, referred to as the Inception

Module (Szegedy et al., 2015), is used to capture more fine-grained

information. In addition, in conjunction with the LMMD metric

method in the subdomain alignment module, to minimize intra-

class variance as much as possible. After each non-shared

subnetwork, there is a corresponding domain-specific classifier Cj.

Due to the potential inconsistencies in the predictions of Cj for

target domain data near different domain decision boundaries, a

classifier alignment module was designed as the second alignment

stage. This module aligns the outputs of domain-specific classifiers

for target samples to enhance prediction consistency.

2.2.3 Common feature extractor
ResNet50 (He et al., 2016) is a classic feature extraction network

architecture widely used across various tasks. In MDFAN, ResNet50

is utilized as the common feature extractor to extract shared

features from all domains. Upon sequentially inputting data from

Source 1 to Source N and the target domain sequentially, it maps

images from the original feature space of each domain to a common

feature space.

Let F( · ) denote the ResNet50 network. Then, for a batch of

images xsj from the source domain (Xsj,Ysj ) and a batch of images

xt from the target domain Xt , the common feature extraction

process can be represented as follows:

f (xsj) = F(Xsj), f (x
t) = F(Xt) (1)

Here, f (xsj) represents the features learned from the j-th source

domain, and f (xt) represents the learned features from the

target domain.

2.2.4 Domain-specific distribution alignment
This part is used to implement the first alignment stage,

consisting of N independent non-shared subnetworks Hj( · ). Each

Hj( · ) corresponds to a source-target domain pair, where N equals

the number of source domains.Hj( · ) contains an Inception module

that learns multiple domain-invariant representations of source-

target domain pairs in a specific domain. It is also called a domain-

specific feature extractor. It also includes a subdomain alignment

module that implements domain-specific distribution alignment.

The details are introduced as follows.

(1) Domain-specific feature extraction.

To minimize the differences in data distribution between the

source and target domains during subsequent processes, multiple

domain-invariant representations of each source-target domain
TABLE 1 Composition of DIF_light_intensities dataset.

Domain Types of Diseases

Name Time PCLS PEB PLB PMB PPW

Mo 7: 00 -11: 00 88 86 88 90 102

Mi 11: 30 -15: 30 87 91 96 78 96

A 16: 00 -18: 30 91 89 95 84 93

C 7: 00 -18: 30 92 74 66 46 36
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pair are mapped to a specific feature space. The domain-specific

feature extractor is designed to achieve this goal. First, the common

features f (xsj) and f (xt) are obtained from the shared feature

extractor. Then, the common features of each source-target

domain pair will be mapped to a specific feature space by their

corresponding non-shared subnetwork Hj( · ). The complete

structure of the Inception module is illustrated in Figure 6,

consisting of a total of four branch structures: A1 - A4. This

structure increases the width of the network, with each branch

complementing the others, effectively capturing the overall

information of the leaves in the image. In addition to acquiring

overall features, it maintains the relationship between the leaves and

the background environment. Taking Source1-target as an example,

the features of Source1 and the target obtained from the shared

feature extractor are sequentially inputted into the Inception

module. The Inception module processes input data through four

parallel paths, allowing different paths to independently extract

features. The resulting representation vector is the specific domain
Frontiers in Plant Science 07
feature representation corresponding to the Source1-target domain

pair. The vector representations obtained from each branch are

outputted to the corresponding specific domain predictor C1 after

being processed by the corresponding specific domain distribution

alignment module.

(2) Domain-specific distribution alignment.

To achieve better alignment in the first stage, the conventional

Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is not

chosen. This is because the MMD method focuses on the global

distribution alignment between the source and target domains at the

domain level. Its drawback is that even if the distributions of the

source domain and the target domain are well aligned, errors in

aligning the same subdomains in these two domains may occur. This

can lead to the loss of fine-grained information, thereby affecting the

model’s performance. The LMMD (Local Maximum Mean

Discrepancy) method proposed by (Zhu et al., 2020) is employed,

which achieves effective domain-level alignment by accurately aligning

the distributions of relevant subdomains across different domains.
FIGURE 5

Structure of the MDFAN.
FIGURE 6

Architecture of the Inception Module.
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To achieve subdomain alignment, the source domain Ds and

the target domain Dt are divided into k subdomains, D(k)
s and D(k)

t ,

respectively, based on the number of categories K. Here, k takes on

values from the set 1, 2,⋯,Kf g to represent category labels. In the

DIF_light_intensities dataset, when the Mi domain serves as the

source domain, it is split into five subdomains: PCLS, PEB, PLB,

PMB, and PPW. In the case of the Mo domain as the target domain,

it is also split into five subdomains.

In formal terms, LMMD defines the following divergence

metric:

dH(p, q)≜Ek Ep(k) ½f(xs)� − Eq(k) ½f(xt)�
���

���2H (2)

Here, Ek½·� represents the mathematical expectation of category

k. xs and xt are instances of the source domain Ds and the target

domain Dt , respectively. p
(k) and q(k) are the distributions of D(k)

s

and D(k)
t , respectively. H denotes the Reproducing Kernel Hilbert

Space (RKHS) equipped with the characteristic kernel k . f( · ) is the
mapping function that transforms the original sample into one of

the RKHS feature maps. The kernel k can be defined as k (xs, xt) =
〈 f(xs), f(xt) 〉, where 〈 ·, · 〉 denotes the inner product of vectors. By
minimizing Equation 2, the gap between the distribution of the

corresponding subdomains can be narrowed.

It is assumed that each sample is associated with a category

according to the weight wk. Therefore, the unbiased estimate of

Equation 2 can be expressed as:

d̂H(p, q) =
1
ko

K

k=1
o

xsi∈Ds

wsk
i f(x

s
i) − o

xtj∈Dt

wtk
i f(x

t
j )

������

������
  (3)

Where wsk
i and wtk

i represent the weights of xsi and xtj belonging

to category k, respectively. Bothons
i=1w

sk
i andont

j=1w
tk
j sum to 1, and

o
xi∈D

wk
i f(xi) is the weighted sum over category k. The weight wk

i for

the sample xi is calculated using the following equation:

wk
i =

yik

o(xj ,yj)∈Dyjk
  (4)

Where yik is the kth value of the vector yi. For samples in the

source domain, the true labels ysi are used to calculate the weight w
sk
i

for each sample. However, since the target domain lacks available

labels, the probability distribution predicted by the neural network

is used instead. Since the output is a probability distribution, it can

effectively assign xi to each category K.

After applying LMMD to the representation vectors obtained from

the multi-representation module, Equation 3 can be rewritten as:

d̂H(p, q) =
1
Ko

K
k=1

1
ns
o

xsi∈Ds

wsk
i f(x

s
i) −

1
nt
o

xtj∈Dt

wtk
j f(x

t
j )

������

������

2

H
(5)

As f( · ) cannot be directly computed, it is replaced by Equation 6,

resulting in the LMMD loss being redefined as:
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1
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i w
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j k (z

s
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s
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t
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i w
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j k (z
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 � 2
n(k)s n(k)t

ons
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i w

tk
j k (z

s
i , z

t
j )
i

(6)

Among them, zsif gnsi=1 and ztj
n ont

j=1
represent the activations of

the source and target subdomains samples after the multi-feature

extraction, respectively, and wsk and wtk represent the weights of zs

and zt belonging to class K.

Equation 6 can be briefly expressed as:

LLmmd =
1
No

N
j=1d̂ (Hj(F(Xsj)),Hj(F(Xt))) (7)
2.2.5 Classifier alignment
During the domain-specific distribution alignment process, the

results obtained from each non-shared subnetworkHj( · ) are fed into

their corresponding predictor Cj in the classifier alignment section.

This predictor is referred to as the domain-specific predictor. Because

predictors are trained independently on various source domains, they

often exhibit discrepancies in their predictions for target samples.

This limitation easily leads to misclassification of samples near

category boundaries in the target domain. To address this issue, we

propose the second alignment stage, referred to as classifier

alignment. It consists of two parts: domain-specific classifiers and

prediction alignment. They are introduced separately as follows.

(1) Domain-specific classifiers

The domain-specific classifier C is a multi-output network

consisting of N specific domain predictors Cj

� �N
j=1. Each predictor

Cj is a softmax classifier and receives domain-invariant features after

the specific feature extractorHj(F(Xt)) of the j-th source domain. F( ·

) represents the common feature extractor introduced in Section

2.2.3, whileHj( · ) is the domain-specific feature extractor introduced

in Section 2.2.4. Each classifier uses a cross-entropy loss, formulated

as follows:

Lcls =oN
j=1Ex∼Xsj

J(Cj(Hj(F(x
sj
i ))), y

sj
i ) (8)

(2) Prediction alignment

This stage is used to minimize the differences of the decisions

among all classifiers. Specifically, by utilizing the absolute

differences between the probability outputs of all predictors for

target domain data as the difference loss, the calculation process is

as shown in Equation 9:

Ldisc =
2

N � (N − 1)o
N−1
j=1 oN

i=j+1Ex∼Xt
½ Ci(Hi(F(xk)))  − Cj(Hj(F(xk)))
�� ��� (9)

In which E½·� denotes mathematical expectation, minimizing

Equation 9 ensures that the probability outputs of all classifiers are

similar. Finally, the average value of classifiers C1 -CN (i.e., the

‘Average’ portion in Figure 4) is calculated and used as the predicted

output for the target sample.
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2.2.6 Optimization objectives and
training strategies

MDFAN includes a classifier loss Lcls, an LMMD loss Llmmd ,

and a classifier discrepancy loss Ldisc. Among them, by minimizing

the classifier loss, the network can accurately classify the source

domain data; minimizing the Llmmd loss captures more fine-grained

information, and minimizing the classifier discrepancy loss reduces

differences between classifiers. Finally, the total loss is calculated as:

Ltotal = Lcls + lLlmmd + gLdisc (10)

Where l and g are balancing parameters that compromise the

roles of various functional modules. The optimization objective (10)

can be easily trained and implemented using standard mini-batch

stochastic gradient descent. The whole process is summarized in

Algorithm 1.
Fron
1. Give the number of training epochs T

2. for t in 1: T do

3. Randomly pick up m samples xsj
i ,ysj

i

n om

i=1
from one of N

source domains (Xsj ,Ysj)
� �N

j=1.

4. Randomly pick up m samples xt
i

� �m
i=1 from target domain Xt

5. Input the source and target samples into the common

feature extractor to obtain the common latent

representations F(xsj
i ) and F(xt

i).

6. Input common latent representations of source

samples into domain-specific feature extractor to

obtain the domain-specific representations of source

samples Hj(F(x
sj
i )).

7. Feed domain-specific representations of the source

sample Hj(F(x
sj
i )) to a domain-specific classifier to

obtain Cj(Hj(F(x
sj
i ))), and the classification is computed

as Equation 8.

8. Feed the common latent representation of the target

sample back to all domain-specific extractors,

obtaining domain-specific representations for the

target samples H1(F(x
t1
i )),…, HN(F(x

tN
i )).

9. Use Hj(F(x
sj
i )) and Hj(F(x

t1
i )) to calculate lmmd loss as

Equation 7.

10. Use H1(F(x
t1
i )),…, HN(F(x

tN
i ))to compute the disc loss as

Equation 9.

11. Update the common feature extractor F, multiple

domain-specific feature extractors H1, · · ·,HN and

multiple classifiers C1, · · ·, CN by minimizing the

total loss in Equation 10.
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12. End for
Algorithm 1. Multi-source domain feature adaptation network.
3 Experiment

3.1 Baseline and comparison

At present, the commonly used method in plant disease

identification is pre-training-fine-tuning. Therefore, the pre-

training-fine-tuning model based on ResNet50 is used as the

Baseline. Other methods participating in the comparison are

summarized as follows:

(1) DDC, DAN, and DeepCoral: These three methods are

commonly used metric-based approaches and are widely employed

in SUDA methods. DDC (Tzeng et al., 2014) reduces domain shift

between the source and target domains through the MMD, while

DAN (Long et al., 2015) achieves this by using an enhanced version of

MMD called MK-MMD. DeepCoral (Sun and Saenko, 2016) aligns

the second-order statistics of the distributions between the source and

target domains through a linear transformation.

(2) DANN, DAAN: Both of these methods are based on

adversarial UDA approaches. DANN (Ganin et al., 2016) employs

an adversarial learning strategy to achieve cross-domain feature

fusion, while DAAN (Yu et al., 2019) shares a similar base network

with DANN. The core of DAAN lies in the introduction of a

conditional domain discriminator block and integrated dynamic

adjustment factors, enabling dynamic adjustment of the

relationship between marginal and conditional distributions.

(3) MRAN: The method (Zhu et al., 2019b) introduced a

domain adaptation algorithm based on multiple representations,

utilizing a hybrid structure for the extraction and alignment of

multiple representations.

(4) MFSAN: Zhu et al. (2019a) integrated the technical

approaches of two previous MUDA methods, achieving both the

minimization of feature space differences between multiple source

and target domains, and the optimization of multiple

classifier outputs.

Since most of the previously mentioned methods are specifically

designed for SUDA, for convenient comparison, we devise three

MUDA evaluation criteria tailored for different purposes. Each

criterion is introduced separately below:

(1) Single-Best: This criterion assesses the performance of a single

source domain in transferring to the target domain and reports the

highest accuracy achieved in the transfer task. For example, in the

transfer tasks Mo, Mi → A, this criterion lists the highest accuracy

results from the two transfer tasks Mo → A and Mi → A.

(2) Source-Combine: In this criterion, multiple source domains

are merged, and the accuracy of each method is reported on the

corresponding transfer tasks for the merged dataset. This approach

can be viewed as a form of data augmentation for a single-source

domain. Similarly, taking Mo, Mi →A as an example, under this

criterion, it refers to merging the source domains Mo and Mi into a

single source domain based on the same categories, and then listing

the classification accuracy of their transfer to the target domain D.
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(3) Multi-Source: This criterion is used to report the results of

the MUDA method in each task. Still taking Mo, Mi →A as an

example, under this criterion, the Mo and Mi domains are keep

independent as source domains, and the classification accuracy of

their transfer to the target domain A is listed.

The first criterion functions as a benchmark to assess whether

the introduction of data from additional source domains can lead to

improved accuracy in various transfer tasks, irrespective of whether

it involves source domain merging or multiple source domains. The

second criterion aims to demonstrate the research value of MUDA

methods by evaluating their effectiveness through the merging of

multiple source domains and assessing performance on

corresponding transfer tasks. The third criterion is to

demonstrate the effectiveness of MFSAN and MDFAN.
3.2 Implementation details

All experiments in this paper are conducted on the server with

the following configuration: Ubuntu 18.04 system, i7-10000

processor, NVIDIA GeForce GTX 3070Ti, 8GB RAM, and

PyTorch1.7 as the deep learning framework. During data loading,

images are initially resized to 256x256 and subsequently randomly

cropped to 224x224 before being fed into the network.

The initial learning rate is set to 0.01, batch size to 32, and the

training runs for 100 epochs. Stochastic Gradient Descent (SGD)

with a momentum of 0.9 is employed as the optimizer. The learning

rate is adjusted during SGD using a decay strategy with the

following formula: hk = h0=(1 + ar)b , where r linearly changes

from 0 to 1 over the course of training. The initial value h0 is set to

0.01, a and b are set to 10 and 0.75, respectively. In the early stages

of the training process, to suppress noisy activations, l and g are set

as dynamic adjustment factors, gradually transitioning from 0 to 1

through the following formula: gp = lp = 2=exp( − qp) − 1 is fixed

at 10 throughout the entire experiment.
3.3 Experimental results and analysis

3.3.1 Performance comparison
As described in Section 2.1, significant differences exist in the

distribution of images captured under varying illumination

intensities. Considering this variability, the DIF_light_intensities

dataset is created, which accounts for changes in illumination

during image capture. This dataset encompasses four domains: Mo,

Mid, A, and C, each representing five distinct types of potato diseases.

To evaluate the resilience of the MDFAN method against lighting

variations, a comprehensive series of transfer experiments is

conducted using this dataset across 2-source and 3-source domains.

Each experiment is assessed using three indicators: Single-Best,

Source-Combine, and Multi-Source. Detailed descriptions of these

experiments are provided in the following section.

(1) 2-source domain

Table 2 presents the classification accuracy of various algorithms

on individual transfer tasks and the average accuracy across all tasks,

denoted as Avg1, when using 2-source domains. The highest accuracy
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for each transfer task is highlighted in bold, and the second is

underlined. Analyzing these values reveals several patterns. For the

same SUDA method, the accuracy in the Source-Combine scenario

surpasses that in the Single-Best scenario. Additionally, the Multi-

Source scenario outperforms Source-Combine. These improvements

can be attributed to different factors. The enhancement in Source-

Combine performance results from the increased data volume after

merging the source domains. In contrast, Multi-Source not only

benefits from the increased available data but also effectively mitigates

domain shift between different source domains and between the

source and target domains.

All UDA methods, except for DDC, outperform Baseline in

both individual task accuracy and average accuracy Avg1. Source-

Combine demonstrates a notable improvement of 1.31%-7.97% in

average accuracy compared to Single-Best. Multi-Source exhibits an

even more substantial increase of 2.39%-8.36% over Source-

Combine and achieves a remarkable 5.33%-13.8% improvement

over Single-Best in terms of average accuracy. Based on these

results, the following conclusions can be drawn: (1) Since images

captured under different illumination intensities exhibit significant

differences, commonly used pre-training-fine-tuning method have

poor generalization ability on such experimental configuration.

This results in the Baseline model having low classification

accuracy. (2) The UDA method can effectively improve the

accuracy of disease classification on such condition. (3)

Compared to the “rudely” approach of source domain

combination, Mult i-Source further enhances network

performance by more “sophisticatedly” leveraging data from

multiple source domains.

DDC exhibits the lowest performance, and analysis suggests that

this is primarily due to the characteristics of DDC’s own network

structure. DDC fixes the first 7 layers of AlexNet and incorporates

MMD as an adaptive metric on the 8th layer. However, AlexNet

tends to overfit on small datasets, and its limited depth hinders

effective extraction of abstract features.

Across twelve transfer tasks, MDFAN achieves the highest

accuracy in ten of them. For individual task accuracy, it

outperforms MFSAN by 0.22%-3.23%, with an average accuracy

improvement of 1.09%. This demonstrates that MDFAN addresses

the issue of domain shift caused by illumination changes more

effectively than MFSAN. The improvement in accuracy indicates

that MDFAN’s two-stage alignment strategy offers greater

deployment advantages in field environments with significant

lighting variations.

To analyze how the Mo, Mi, A, and C domains, and their

corresponding illumination conditions, affect model performance,

Avg2 is introduced, representing the average accuracy of various

methods in the same transfer task. As shown in Table 2, Avg2 is

calculated under three criteria: Single-Best, Source-Combine, and

Multi-Source. The three transfer tasks with the bottom Avg2 values

are marked in red, while the three with the top values are marked in

blue. Under the three criteria, the bottom 3 transfer tasks of Avg2

consistently have C domain as the target domain regardless of

changes in their source domains. For the top 3 tasks of Avg2, under

Single-Best criterion, the target domain is consistently Mo; under

Source-Combine criterion, two have Mo as the target domain and
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TABLE 2 Classification accuracies (%) with 2-source domain.

Mo,C→A Mi,A→Mo Mi,A→C Mi,C→Mo Mi,C→A A,C→Mi A,C→Mo Avg1

70.09 79.01 66.97 79.01 69.86 70.04 76.07 71.80

56.07 61.40 54.21 61.40 54.56 58.15 60.02 58.55

81.75 85.70 70.67 85.14 71.96 87.00 85.70 80.36

76.16 83.52 72.28 82.39 73.13 80.39 83.52 78.31

80.84 90.74 76.91 88.71 87.38 92.07 90.74 85.69

79.20 84.42 76.44 85.77 77.81 79.73 85.77 79.68

82.24 89.61 73.90 89.61 82.24 90.53 86.91 83.89

75.19 82.06 70.20 81.72 73.85 79.70 81.25 –

81.78 86.00 73.44 86.46 81.07 74.23 84.42 77.75

69.16 71.11 60.97 70.43 65.65 67.62 67.72 66.52

85.04 91.87 79.67 93.22 89.48 92.29 91.42 88.21

80.61 90.51 76.90 92.10 85.75 85.24 89.84 84.06

89.95 92.09 72.89 94.13 90.88 94.93 92.35 88.63

82.01 86.90 78.06 91.87 85.74 83.26 90.06 83.75

83.41 89.62 76.91 89.62 87.62 88.55 88.49 85.20

81.71 86.41 74.12 88.04 83.74 83.73 85.97 –

88.32 93.68 80.83 94.36 93.93 95.81 92.78 91.02

90.42 95.03 84.06 94.13 94.63 96.70 93.00 92.11

89.37 94.36 82.45 94.25 94.28 96.26 92.89 –

highlights the highest three.
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Standard Method Mo,Mi→A Mo,Mi→C Mo,A→Mi Mo,A→C Mo,C→Mi

Single-Best

Baseline 70.09 62.36 75.55 66.97 75.55

DDC 56.07 51.73 67.40 54.21 67.4

DAN 81.75 75.51 87.00 75.51 76.65

DeepCoral 76.16 71.13 84.36 72.28 84.36

DANN 87.38 76.67 92.07 76.91 87.88

DAAN 79.20 72.97 78.63 76.44 79.73

MRAN 80.61 75.29 90.53 75.29 89.97

Avg2 75.89 69.38 82.22 71.09 80.22

Source-
combine

Baseline 76.17 69.52 79.07 67.21 73.57

DDC 67.99 65.43 68.72 58.89 64.54

DAN 89.25 81.98 93.83 80.60 89.86

DeepCoral 81.76 75.06 87.00 78.06 85.90

DANN 92.52 78.98 94.93 77.59 92.29

DAAN 82.24 72.75 88.11 77.82 86.13

MRAN 83.41 79.21 89.21 77.60 88.77

Avg2 81.91 74.70 85.28 73.97 83.01

Multi-Source MFSAN 92.76 84.30 97.14 84.06 94.27

MDFAN 94.39 87.07 96.26 84.30 95.37

Avg2 93.58 85.69 96.70 84.18 94.82

Bold indicates the highest accuracy, underlining marks the second-highest. Red highlights the lowest three Avg2 values, and blue
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one has Mi. Under Multi-Source criterion, two have Mi as the target

domain and one has Mo. Analyzing Avg2 across different modes

reveals that for Source-Combine, even the worst performance is

improved by 4.59% compared to Single-Best, and the best

performance is enhanced by 5.82%. In contrast, Multi-Source

demonstrates improvements of 13.07% and 14.48% for the worst

and best Avg2 values respectively, compared to Single-Best, and

8.48% and 8.66% compared to Source-Combine. It is MDFAN that

achieves this level of accuracy, further highlighting its strong

robustness to illumination changes.

Based on the above results, the following conclusions can be drawn:

(1) Insufficient lighting conditions, such as overcast days, can limit the

model’s ability to extract features from images captured under such

conditions. (2) Images captured during the morning and noon on sunny

days are beneficial for improving the model’s performance. (3)

Compared to single-source domain and source combine, MUDA

methods demonstrate stronger robustness to varying lighting conditions.

The confusion matrix is a commonly used tool to assess

classification task performance. It allows for further evaluation of

the recognition accuracy of a classification model for different

diseases. Each disease type corresponds to a subdomain within its

respective domain. Thus, by examining the classification accuracy

of each method for each disease type in the confusion matrix of a

given transfer task, the strengths and weaknesses of each method

can be clearly identified.

Figure 7 illustrates the confusion matrices for DAN, DeepCoral,

DANN and MFSAN under three criteria for the Mo, Mi → A tasks.

From this figure, it can be observed that the different UDA algorithms

exhibit distinct error sources when identifying potato diseases. ‘Single-’,
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‘Combine-’, and ‘Multi-’ in Figure 7 indicate that the method belongs

to ‘Single-Best’, ‘Source-Combine’, and ‘Multi-Source’, respectively.

The same is true in other figures. For example, the recognition rate

of Single-DAN for PCLS is very low only 55% and the test samples are

misidentified as PLB. The other methods in Source-Combine and

Multi-Source greatly improve the accuracy of the disease. The accuracy

of Combine-DANN andMulti-MDFAN is the highest, reaching 100%.

The classification of the other four disease types by each method also

conforms to this trend, so it is no longer repeated.

(2) 3-source domain

The results for the 3-source domains are presented in Table 3,

from which conclusions similar to those for the 2-source domains

scenario can be drawn. However, there are some differences between

the experimental results of the 3-source domains and the 2-source

domains, which are described below: (1) Due to the further increase

in available data, the classification accuracy on individual tasks and

average accuracy of each method in Single-Best, Source-Combine,

and Multi-Source have improved compared to the 2-source domains

scenario. (2) Under the Source-Combine criterion, the adversarial-

based DANN method achieves the highest accuracy among all

methods in two transfer tasks. This implies that an increase in the

dataset size to a certain extent (in this experiment, the number of

images for each disease type ranges from 200 to 300) is beneficial for

the performance improvement of the DANN method.

When 3-source domain datasets are available, a similar analysis

is conducted to assess the impact of the Mo, Mi, A, and C domains

on the model’s performance, following the same analysis as with the

2-source domain scenario. The difference is that only the lowest

value in Avg2 is marked in red, and only the best is marked in blue.
FIGURE 7

Confusion matrices of transfer task Mo, Mi → A. (A) Single-DAN, (B) Single-DeepCoral, (C) Single-DANN, (D) Combine-DAN, (E) Combine-
DeepCoral, (F) Combine-DANN, (G) Multi-MFSAN, (H) Multi-MDFAN.
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From Table 3, it can be observed that when the target domain is C,

the Avg2 is the lowest, while it is the highest when the target domain

is Mi. This leads to the conclusion that insufficient lighting can

affect model performance, while abundant lighting contributes to

the improvement of model performance.

Although insufficient illumination adversely affects the model’s

performance, the Multi-Source method can better solve this problem

and improve the accuracy of the corresponding tasks. In this scenario,

MFSAN achieves an accuracy of 85.22% in the task Mo, Mi, A→C,

while MDFAN further improves the accuracy to 87.53%. Compared

to the three transfer tasks Mo, Mi→ C, Mo, A→ C, and Mi, A→ C

with C as the target domain under the condition of 2 source domains,

MDFAN achieves higher accuracies of 0.46%, 3.23%, and 3.47%

respectively for the transfer task Mo, Mi, A → C. In summary, it is

evident that by incorporating a third source domain, MDFAN further

enhances accuracy. This demonstrates its ability to more effectively

leverage diverse data sources, thereby improving the model’s

generalization capability.

To analyze the classification of each disease by typical

methods under three criteria when the target domain is C, we

present their confusion matrices in Figure 8 for the transfer task

Mo, Mi, A→C.
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For example, the recognition rates of Single-DAN for PEB,

PMB, and PPW are 58%, 74%, and 65%, respectively. In

comparison, the classification results of various methods in

Combine-Source for these items show both improvements and

declines in accuracy. However, the methods in Multi-Source have

greatly improved the accuracies for these three diseases. The

situation for the other two disease types is similar and will no

longer be repeated. Overall, Multi-Source is better adapted to

insufficient lighting conditions compared to Combine-Source.

3.3.2 Feature visualization
To visualize the differences in the performance of UDA

methods, t-distributed stochastic neighbor embedding (t-SNE) and

gradient-weighted class activation mapping (Grad-CAM) are used

to display the relevant results. Firstly, t-SNE is used to visualize

the latent feature space representation of the source domains and

the target domain, and their categories for the transfer task Mi, A

→Mo in the methods DAN and DANN from Single-Best

and Source-Combine, as well as MFSAN and MDFAN from Multi-

Source. Since Single-Best and Source-Combine both belong to

SUDA methods, and the final result of Multi-Source is obtained

based on classifiers for multiple source domain-target domain
TABLE 3 Classification accuracies (%) with 3-source domain.

Standard Method Mo,Mi,A →C Mo,Mi,C →A Mo,A,C →Mi Mi,A,C →Mo Avg

Single-Best

Baseline 66.97 70.09 75.55 79.01 72.91

DDC 54.21 56.07 67.40 61.40 59.77

DAN 75.51 81.75 87.00 85.70 82.49

DeepCoral 72.28 76.16 84.36 83.52 79.08

DANN 76.91 87.38 87.88 90.74 85.73

DAAN 76.44 79.20 79.73 85.77 80.29

MRAN 75.29 82.24 90.53 89.61 84.42

Avg2 71.09 76.13 81.78 82.25

Source-combine

Baseline 73.44 82.94 80.84 87.13 81.09

DDC 61.43 74.30 69.84 75.62 70.30

DAN 81.75 92.99 95.15 92.55 90.61

DeepCoral 79.21 89.49 90.75 91.65 87.78

DANN 79.21 94.39 95.37 94.58 90.89

DAAN 79.91 88.08 90.75 91.87 87.65

MRAN 75.29 85.51 86.78 89.16 84.19

Avg2 75.75 86.81 87.07 88.94

Multi-Source

MFSAN 85.22 93.93 94.71 93.68 91.89

MDFAN 87.53 94.16 95.81 94.58 93.02

Avg2 86.38 94.05 95.26 94.13
Bold indicates the highest accuracy for each transfer task, underlining represents the second-highest accuracy. Red font indicates the lowest Avg2 value, and blue font indicates the highest
Avg2 value.
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pairs, the Multi-Source are further divided into single source

domains for visualization. In other words, within the MUDA

method, Mi, Mo → A is separately visualized by breaking it down

into Mi → A and Mo → A.
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Figure 9 displays the feature alignment performance of the

mentioned methods on this transfer task. It is evident that MDFAN

has the best performance, followed by MFSAN, and DAN performs

the worst. This aligns with the quantitative analysis results in
FIGURE 8

Confusion matrices of transfer task Mo, Mi, A → C. (A) Single-DAN, (B) Single-DeepCoral, (C) Single-DANN, (D) Combine-DAN, (E) Combine-
DeepCoral, (F) Combine-DANN, (G) Multi-MFSAN, (H) Multi-MDFAN.
FIGURE 9

Visualization of potential spatial representations for Mi, A → Mo task using t-SNE(• is source domain, • is target domain). (A) Single-DAN, (B) Single-

DANN, (C) Combine-DAN, (D) Combine-DANN, (E) Multi-MFSAN-Mi→A, (F) Multi-MFSAN-Mo→A, (G) Multi-MDFAN-Mi→A, (H) Multi-MDFAN-Mo→A.
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Table 2. Figure 10 shows the t-SNE visualization effect of the above

method on the classification objects in the target domain. Different

disease types are represented by various shapes and colors. It is easy

to see that MDFAN has better category discrimination ability than

MFSAN, DANN, and DAN. This indicates that the comprehensive

use of two-stage alignment strategy, multi-representation extraction

module and subdomain alignment method can make the model

have better generalization ability for datasets with domain shift

caused by light variation.

In Figure 11, the Grad-CAM maps of several methods on the

target domain A are presented. From these Grad-CAM maps, the

regions of interest for each method in the images of each disease

type are clearly visible. The performance of each method can be

assessed based on the degree of agreement between the regions of

interest and the lesion regions. The first row shows the disease

images, and others display the Grad-CAMmaps, produced by DAN

(Single-Best), DAN(Source-Combine), MFSAN and MDFAN,

respectively. It is evident that MDFAN can pinpoint the location

of the potato disease more accurately than other methods.

3.3.3 Ablation experiment
Ablation experiments are crucial for understanding the

contribution of each component within MDFAN. By isolating the

multi-representation extraction module and the subdomain

alignment module, we can assess the impact of each part. In the

following experiments and analyses, we will explore the significance

of these components. Ablation experiments are conducted on
Frontiers in Plant Science 15
transfer tasks corresponding to both 2-source domain and 3-

source domain scenarios. Table 4 presents the experimental

results corresponding to the 2-source domain scenario.

The compared methods include MFSAN, MDFANInception,

MDFANlmmd, and MDFAN. Among them, MDFANInception

retains the multi-representation extraction structure, with the

subdomain alignment module replaced by MMD; MDFANlmmd,

on the other hand, retains the subdomain alignment module but

does not have the multi-representation extraction structure.

By examining Table 4, it is observed that in 50% of the transfer

tasks (Mo,Mi→A; Mo,A→C; Mo,C→ A; Mi, A→Mo; Mi,A→ C;

A,C →Mi), the accuracy of MDFANInception and MDFANlmmd

methods is lower than when they are combined, i.e., the accuracy

of the MDFAN. This trend is also reflected in the average accuracy

metric. It indicates that the combination of multi-representation

extraction and subdomain alignment techniques effectively

enhances model performance. Moreover, in the remaining 50% of

the transfer tasks, the accuracy of MDFANlmmd is either greater

than or equal to the accuracy of MDFAN. Regarding average

accuracy, MDFANlmmd surpasses MDFANInception but falls short

of MDFAN. This suggests that while subdomain alignment

contributes more to the final method’s performance than the

multi-representation extraction network, it cannot entirely replace

the role of the multi-representation extraction module.

Table 5 shows the results of the ablation experiments for the 3-

source domain scenarios. In 75% of the transfer tasks (Mo,Mi,

A→C; Mo,Mi,C→A; Mo,A,C→Mi), the accuracy of MDFANlmmd
FIGURE 10

Visualization for Mi, Mo → A task using t-SNE. (A) Single-DAN, (B) Single-DANN, (C) Combine-DAN, (D) Combine-DANN, (E) Multi-MFSAN-Mi→A, (F)
Multi-MFSAN-Mo→A, (G) Multi-MDFAN-Mi→A, (H) Multi-MDFAN-Mo→A.
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is superior to MDFANInception and MDFAN, with MDFAN being

the best only in 25% of the tasks. The situation is consistent with

average accuracy, where the average accuracy of MDFANlmmd is

higher than that of MDFANInception and MDFAN. This

indicates that the contribution of the subdomain alignment

module is greater than that of the multi-representation extraction
Frontiers in Plant Science 16
module. However, despite this, the average accuracy of the worst-

performing method, MDFANInception, in MDFAN is still better than

that of MFSAN.

The results of the ablation experiments indicate that both multi-

representation extraction and subdomain alignment techniques

contribute to improving model accuracy. Specifically, subdomain
TABLE 4 Classification accuracy (%) of ablation experiments with 2-source domain.

Method
Mo,
Mi→A

Mo,
Mi→C

Mo,
A→Mi

Mo,
A→C

Mo,
C→Mi

Mo,
C→A

Mi,
A→Mo

Mi,
A→C

Mi,
C→Mo

Mi,
C→A

A,
C→Mi

A,
C→Mo

Avg

MFSAN 92.76 84.30 97.14 84.06 94.27 88.32 93.68 80.83 94.36 93.93 95.81 92.78 91.02

MDFANInception 92.29 83.83 96.03 82.45 93.83 89.72 93.45 79.45 94.58 93.00 95.15 93.68 89.51

MDFANlmmd 92.52 88.68 97.14 83.60 95.37 89.49 94.13 80.14 95.26 95.33 96.04 93.91 91.80

MDFAN 94.39 87.07 96.26 84.30 95.37 90.42 95.03 84.06 94.13 94.63 96.70 93.00 92.11
frontier
TABLE 5 Classification accuracy (%) of ablation experiments with 3-source domain.

Method Mo,Mi,A→C Mo,Mi,C→A Mo,A,C→Mi Mi,A,C→Mo Avg

MFSAN 85.22 93.93 94.71 93.68 91.89

MDFANInception 84.99 94.39 95.81 93.23 92.11

MDFANlmmd 87.76 94.63 96.70 93.91 93.25

MDFAN 87.53 94.16 95.81 94.58 93.02
FIGURE 11

Grad-CAM visualization for Mi, Mo →A task.
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alignment demonstrated superior effectiveness, suggesting that this

technique is more efficient in reducing data distribution differences

caused by illumination variations in real field environments.

Therefore, compared to other models, MDFAN offers a more

effective solution for disease recognition in real agricultural settings.
4 Conclusion

This paper proposes a Multi-Source Domain Feature Adaptation

Network (MDFAN) based on a two-stage alignment strategy to address

the issue of data distribution differences caused by illumination changes

in field environments, which negatively impact model performance. In

the recognition tasks for five types of potato diseases, MDFAN

effectively reduces distribution differences between source and target

domains through multi-representation extraction and subdomain

alignment techniques, while enhancing prediction consistency. The

experimental results demonstrate that MDFAN achieves average

accuracies of 92.11% and 93.02% in 2-source and 3-source domain

transfer tasks, respectively, significantly outperforming other methods.

Furthermore, ablation experiments indicate that the subdomain

alignment module contributes more to improving model

performance than the multi-representation extraction module,

though the combination of both yields the best results.

In our study, the following limitations exist: Although MDFAN

demonstrates strong generalization ability under varying lighting

conditions, its performance under other differing factors, such as soil

conditions, camera types, and crop varieties, as well as its

generalization to other crops, still requires further validation.

Additionally, the model assumes access to multiple labelled source

domain data; however, in practical agricultural environments,

collecting and annotating such data may pose significant

challenges, particularly under varying field conditions.

Based on the findings and limitations of this study, the following

future research directions are proposed: Further exploration of

MDFAN’s performance under various environmental factors

beyond lighting, such as different soil conditions, crop type

variations, and its applicability to other crops, is necessary.

Developing a generalized model that can be widely applied across

different plant species and disease types will greatly enhance its

practical value in agriculture.

Overcoming these limitations will facilitate the deployment of

MDFAN in practical applications and further enhance the

automation of crop disease recognition.
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Atila, Ü., Uçar, M., Akyol, K., and Uçar, E. (2021). Plant leaf disease classification using
EfficientNet deep learning model. Ecol. Inf. 61, 101182. doi: 10.1016/j.ecoinf.2020.101182
Basavaiah, J., and Arlene Anthony, A. (2020). Tomato leaf disease classification using
multiple feature extraction techniques. Wireless Pers. Commun. 115, 633–651.
doi: 10.1007/s11277-020-07590-x

Bevers, N., Sikora, E. J., and Hardy, N. B. (2022). Soybean disease identification
using original field images and transfer learning with convolutional neural
networks. Comput. Electron. Agric. 203, 107449. doi: 10.1016/j.compag.
2022.107449

Csurka, G. (Ed.). (2017). Domain adaptation in computer vision applications
(Springer). doi: 10.1007/978-3-319-58347-1
frontiersin.org

https://doi.org/10.1016/j.media.2022.102473
https://doi.org/10.1007/s11042-022-13390-1
https://doi.org/10.1016/j.ecoinf.2020.101182
https://doi.org/10.1007/s11277-020-07590-x
https://doi.org/10.1016/j.compag.2022.107449
https://doi.org/10.1016/j.compag.2022.107449
https://doi.org/10.1007/978-3-319-58347-1
https://doi.org/10.3389/fpls.2024.1471085
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gao et al. 10.3389/fpls.2024.1471085
Deng, X., Huang, Z., Zheng, Z., Lan, Y., and Dai, F. (2019). Field detection and
classification of citrus Huanglongbing based on hyperspectral reflectance. Comput.
Electron. Agric. 167, 105006. doi: 10.1016/j.compag.2019.105006

Deng, F., Tu, S., and Xu, L. (2021). “Multi-source unsupervised domain adaptation
for ECG classification,” in 2021 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). 854–859 (Houston, TX, USA: IEEE).

Fang, Y., and Ramasamy, R. P. (2015). Current and prospective methods for plant
disease detection. Biosensors 5, 537–561. doi: 10.3390/bios5030537

Fuentes, A., Yoon, S., Kim, T., and Park, D. S. (2021). Open set self and across
domain adaptation for tomato disease recognition with deep learning techniques.
Front. Plant Sci. 12, 758027. doi: 10.3389/fpls.2021.758027

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., et al.
(2016). Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 1–35.
doi: 10.1007/978-3-319-58347-1_10

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A
kernel two-sample test. J. Mach. Learn. Res. 13, 723–773. doi: 10.1142/
S0219622012400135

Gu, Y. H., Yin, H., Jin, D., Zheng, R., and Yoo, S. J. (2022). Improved multi-plant
disease recognition method using deep convolutional neural networks in six diseases of
apples and pears. Agriculture 12, 300. doi: 10.3390/agriculture12020300

Guo, Y., Gu, X., and Yang, G.-Z. (2021). MCDCD: Multi-source unsupervised
domain adaptation for abnormal human gait detection. IEEE J. Biomed. Health Inf. 25,
4017–4028. doi: 10.1109/JBHI.2021.3080502

Hassan, S. M., and Maji, A. K. (2022). Plant disease identification using a novel
convolutional neural network. IEEE Access 10, 5390–5401. doi: 10.1109/
ACCESS.2022.3141371

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, Las Vegas, NV, USA, pp. 770–778.

Hlaing, C. S., and Zaw, S. M. M. (2018). “Tomato plant diseases classification using
statistical texture feature and color feature,” in 2018 IEEE/ACIS 17th International
Conference on Computer and Information Science (ICIS). 439–444 (Singapore: IEEE).

Liaghat, S., Mansor, S., Ehsani, R., Shafri, H. Z. M., Meon, S., and Sankaran, S. (2014).
Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm.
Comput. Electron. Agric. 101, 48–54. doi: 10.1016/j.compag.2013.12.012

Lin, C., Zhao, S., Meng, L., and Chua, T.-S. (2020). “[amp]]ldquo;Multi-source
domain adaptation for visual sentiment classification,” in Proceedings of the AAAI
Conference on Artificial Intelligence. 2661–2668.

Long, M., Cao, Y., Wang, J., and Jordan, M. (2015). “Learning transferable features
with deep adaptation networks,” in International conference on machine learning:
PMLR. 97–105.

Ma, Y., Yang, Z., and Zhang, Z. (2023). Multisource maximum predictor discrepancy
for unsupervised domain adaptation on corn yield prediction. IEEE Trans. Geosci.
Remote Sens. 61, 1–15. doi: 10.1109/TGRS.2023.3247343

Pan, S. J., and Yang, Q. (2009). A survey on transfer learning. IEEE Trans. knowledge
Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang, B. (2019). “Moment
matching for multi-source domain adaptation,” in Proceedings of the IEEE/CVF
international conference on computer vision. 1406–1415.

Peng, S., Zeng, R., Cao, L., Yang, A., Niu, J., Zong, C., et al. (2023). Multi-source
domain adaptation method for textual emotion classification using deep and broad
learning. Knowledge-Based Syst. 260, 110173. doi: 10.1016/j.knosys.2022.110173

Sahu, K., and Minz, S. (2023). Adaptive fusion of K-means region growing with
optimized deep features for enhanced LSTM-based multi-disease classification of plant
leaves. Geocarto Int. 38, 2178520. doi: 10.1080/10106049.2023.2178520

Suh, H. K., Hofstee, J. W., IJsselmuiden, J., and van Henten, E. J. (2018). Sugar beet
and volunteer potato classification using Bag-of-Visual-Words model, Scale-Invariant
Feature Transform, or Speeded Up Robust Feature descriptors and crop row
information. Biosyst. Eng. 166, 210–226. doi: 10.1016/j.biosystemseng.2017.11.015
Frontiers in Plant Science 18
Sun, B., and Saenko, K. (2016). “Deep coral: Correlation alignment for deep domain
adaptation,” in Computer Vision–ECCV 2016 Workshops, G. Hua and H. Jégou,
Amsterdam, The Netherlands (Eds.), October 8-10 and 15-16, 2016. 443–450 (The
Netherlands: Springer International Publishing, Cham, Amsterdam), pp. 443–450.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition. Boston, MA, USA. 1–9.

Tanabe, R., Purohit, H., Dohi, K., Endo, T., Nikaido, Y., Nakamura, T., et al. (2021).
“MIMII DUE: Sound dataset for malfunctioning industrial machine investigation and
inspection with domain shifts due to changes in operational and environmental
conditions,” in 2021 IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA). 21–25 (New Paltz, NY, USA: IEEE).

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep domain
confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474.
doi: 10.48550/arXiv.1412.3474

Verma, S., Chug, A., and Singh, A. P. (2020). Exploring capsule networks for disease
classification in plants. J. Stat Manage. Syst. 23, 307–315. doi: 10.1080/
09720510.2020.1724628
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