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High-throughput phenotyping (HTP) provides new opportunities for efficiently

dissecting the genetic basis of drought-adaptive traits, which is essential in

current wheat breeding programs. The combined use of HTP and genome-

wide association (GWAS) approaches has been useful in the assessment of

complex traits such as yield, under field stress conditions including heat and

drought. The aim of this study was to identify molecular markers associated with

yield (YLD) in elite durum wheat that could be explained using hyperspectral

indices (HSIs) under drought field conditions in Mediterranean environments in

Southern Spain. The HSIs were obtained from hyperspectral imagery collected

during the pre-anthesis and anthesis crop stages using an airborne platform. A

panel of 536 durum wheat lines were genotyped by sequencing (GBS, DArTseq)

to determine population structure, revealing a lack of genetic structure in the

breeding germplasm. The material was phenotyped for YLD and 19 HSIs for six

growing seasons under drought field conditions at two locations in Andalusia, in

southern Spain. GWAS analysis identified 740 significant marker-trait associations

(MTAs) across all the durum wheat chromosomes, several of which were

common for YLD and the HSIs, and can potentially be integrated into breeding

programs. Candidate gene (CG) analysis uncovered genes related to important

plant processes such as photosynthesis, regulatory biological processes, and
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plant abiotic stress tolerance. These results are novel in that they combine high-

resolution hyperspectral imaging at the field scale with GWAS analysis in wheat.

They also support the use of HSIs as useful tools for identifying chromosomal

regions related to the heat and drought stress response in wheat, and pave the

way for the integration of field HTP in wheat breeding programs.
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Introduction

Wheat is one of the foremost crops around the world, providing

around 20% of the global human intake of calories and 20% of

protein (FAOSTAT, 2023). It is the most important cereal in

Mediterranean agriculture thanks to its adaptation to semi-arid

environments, where it is mainly cultivated under rainfed

conditions (Arriagada et al., 2020). Moreover, wheat is not only a

highly significant crop for its pivotal role in primary production, but

also because of the associated food industry chains (Arriagada et al.,

2020). These are some of the reasons why there is a rising demand

for increased wheat production, linked to the predictions of

increasing global wheat requirements (Leegood et al., 2010) and

the current geopolitical context (Bentley et al., 2022). However,

given the limited availability of land for agricultural use, this

increased demand tends to rely mainly on breeding programs

focused on breeding crops with higher yield potential and

stability under changing environmental conditions (Rufo et al.,

2021c). The main constraint on wheat yield mainly originates from

stress conditions such as water deficit and high temperature

conditions during the grain filling stages, both of which are

common in Mediterranean environments (Araus et al., 2002;

Barakat et al., 2016). These environments have therefore been

identified as a major sensitive region for yield reductions as a

result of climate change (Rufo et al., 2021c). Climate change models

(IPPC report, 2023) predict a decrease of about 20% in annual

precipitations and an increase of approximately 4°C in temperature

during the 21st century. Depending on their time and intensity,

drought and heat stresses, along with other environmental

pressures, can reduce wheat yields from 10% to 90% (Reynolds

et al., 2004). For this reason, wheat breeding programs are

becoming more focused on the adaptability and stability of

productivity in dry areas (Bhatta et al., 2018). The genetic

dissection of the complex mechanisms behind the heat and

drought response in wheat relies on the availability of suitable

phenotyping methods.

Phenotyping using traditional manual methods is currently

considered as a bottleneck which prevents faster selection for

increased yield and related traits in breeding programs (Araus and

Cairns, 2014). This limits our ability to dissect the genetics of critical
02
traits determining yield (Blum, 2011; Cabrera-Bosquet et al., 2012). For

this reason, plant breeders need to improve the capacity to phenotype

large number of lines rapidly in order to identify superior genotypes

accurately (Araus and Cairns, 2014). Breeding populations can include

thousands of lines, and accurately assessing and characterizing them

simultaneously is a daunting task (McMullen et al., 2009). This is where

high-throughput phenotyping (HTP) approaches offer powerful tools

to assess phenotypes in large-scale field experiments, using a range of

sensors and efficient image-processing systems (Jin et al., 2021; Hussain

et al., 2022). HTP integrates equipment for data acquisition, a control

terminal and a platform for data analysis, and possesses advantages

such as facilitating the non-destructive, high-throughput detection of

seen and unseen traits (Berger et al., 2010; Xiao et al., 2022). As a

consequence, many plant breeding programs are exploring the use of

HTP (Morisse et al., 2022), for example, through the use of vegetation

spectral indices, which represent a breeding tool which could improve

genetic gains for several plant traits (Babar et al., 2006) or serve as tools

for extracting spectral characteristics related to drought-adaptive

processes (Condorelli et al., 2018).

Spectral reflectance indices (SRIs) are calculated using

reflectance data captured by hyperspectral or multispectral

cameras, encompassing the visible (380-740nm) and the invisible

near- and short wave-infrared (740-2500nm) regions, and,

depending on the spectral domain, these SRIs provide

information related to a plant’s photosynthesis and water status

(Barakat et al., 2016). Different studies have demonstrated the

efficient use of vegetation spectral indices to measure several

physiological traits related to crop canopies, such as total dry

matter, leaf area index or photosynthetic capacity (Babar et al.,

2006; Hassan et al., 2019; Wei et al., 2019), to detect and assess crops

under different stress conditions (Aparicio et al., 2002; Condorelli

et al., 2018; Camino et al., 2021), or the use of vegetation indices as

predictors of crop yield (Sultana et al., 2014; Hassan et al., 2019;

Vannoppen et al., 2020) or abiotic stresses (Lowe et al., 2017; Liu

et al., 2019) in breeding programs. There is increasing interest in the

potential applications of HTP for the genetic dissection of complex

traits including yield or drought stress tolerance, through analyses

such as QTL mapping or genome-wide association analysis

(GWAS). GWAS is a powerful, high-efficiency and high-

resolution tool that provides significative associations between
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molecular markers and traits of interest using empirical models

(Xiao et al., 2022).

The combined used of GWAS and HTP at different levels

(proximal or remote, in greenhouses or in the field) has great

potential for improving our understanding of plant growth and

crop breeding (Xiao et al., 2022). Several studies have reported the

use of proximal SRIs obtained using handheld devices for GWAS

analysis, concluding that they are useful tools to understand the

genetic basis of agronomic physiological or quality traits in wheat

under yield potential and heat stress conditions both for bread

wheat (Gizaw et al., 2016, 2018; Liu et al., 2019; Lozada et al., 2020;

Barakat et al., 2021; Krishnappa et al., 2023) and durum wheat

(Nigro et al., 2019). HTP based on hyperspectral imaging in

greenhouse experiments and GWAS analysis has been recently

integrated for dissecting drought traits in bread wheat (Zhang

et al., 2024). The use of semi-automated devices in the field

increases phenotyping throughput for GWAS, and facilitates the

genetic dissection of N deficiency response in bread wheat using

sensors with Red-Green Blue (RGB) spectral bands and Near-

infrared (NIR) mounted on a tractor (Jiang et al., 2019), and for

canopy height and stem elongation rates in winter wheat by using

LiDAR (Light Detection and Ranging) on the FIP platform (Field

Phenotypig Platform, Kronenberg et al., 2021; Roth et al., 2024).

The first report of GWAS analysis using unmanned aerial vehicles

(UAVs, UAS, RPAS) was carried out for durum wheat, when the

NDVI index was mapped using multispectral imaging (Condorelli

et al., 2018). This was followed by the analysis of lodging traits in

spring wheat using RGB and multispectral imaging (Singh et al.,

2019) and the identification of QTL hotspots for VIs in rainfed

wheat (Rufo et al., 2021b).

This study carried out a GWAS analysis using SNP markers

(from DArTseq) to identify significant associations for YLD and

vegetation spectral indices in elite durum wheat lines grown in

Mediterranean environments under drought field conditions. The

availability of genome sequences for durum wheat (Maccaferri et al.,

2019) and bread wheat (IWGSC, 2018) enabled candidate gene

analysis to identify genes involved in key crop processes including

photosynthesis, plant stress responses, and hormonal regulation. In

this study, we combine, for the first time in wheat, the use of an

aerial HTP platform equipped with hyperspectral imaging for field

phenotyping, with GWAs analysis of spectral traits, to dissect the

genetic basis of yield formation under drought conditions. This

approach combines the highest level of spectral resolution

(hyperspectral imaging) to derive crop stress indicators with high-

throughput capabilities in an aerial platform in the field.
Materials and methods

Plant materials and field trials

Field experiments were conducted using a panel of 536 durum

wheat genotypes, comprising 494 elite lines from the International

Maize and Wheat Improvement Center (CIMMYT) and 42

commercial varieties (Supplementary Table S1). The commercial

varieties were included as a representative group of wheats adapted
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to the environmental conditions of the Mediterranean locations

assessed in this study. The experiments were grown under rainfed

conditions in two locations: Location 1 (37° 32’ 17’’N, 5° 06’ 57’’W)

(Seville, Spain) in 2014, 2015, 2016, 2017, 2018 and 2021, and

Location 2 (37° 27’ 28’’N, 6° 21’ 52’’O) (Huelva, Spain) in 2021. The

average maximum and minimum temperatures, together with

accumulated rainfall, were obtained from daily data recorded by

the agroclimatic stations of the local government, Junta de

Andalucı ́a (RIA, 2023), located in the proximities of both

locations. The experimental design at each location and for each

experiment consisted of an augmented design with two replicated

checks for 100 of the elite durum wheat lines, and a three-replicated,

randomized, complete block for the 42 durum wheat varieties. For

the trials, six individual row plots of 7.2 m2 each were used, with a

sowing density of 360 seeds/m2. The wheat plots were sown between

20th November and 15th December each year and were managed

following the standard agricultural practices in both locations.
DNA isolation and genotyping

The durum wheat lines were sampled at the 4th leaf stage [DC

14 on the Zadoks scale (Zadoks et al., 1974)] for genetic analyses.

The plant material was collected at field trials and immediately

frozen using dry ice. All the samples were preserved at -80 °C until

DNA isolation. About 100mg of the frozen leaf tissue per line was

used for DNA extraction with a DNeasy Plant Mini Kit (catalogue

number 69104 and 69106) from (Qiagen, Hilden, Germany),

following the manufacturer’s protocol. The quality and

concentration of each sample was assessed by electrophoresis on

a 0.8% agarose gel. In addition, the restriction enzyme Tru1I (Msel,

catalogue number ER0982) (ThermoFisher, Waltham, MA, USA)

was used to confirm absence of nucleases in DNA prior to

genotyping. Approximately 81% of the samples were genotyped

by Diversity Arrays Technology Pty Ltd. (University of Canberra,

Bruce, Australia) (DArT), and the remaining 19% at the Genetic

Analysis Service for Agriculture (SAGA, Mexico). Sequence data for

samples genotyped were first aligned against the bread wheat

IWGSC RefSeq v2.0 (https://wheat-urgi.versailles.inra.fr/Seq-

Repository/Assemblies) and Svevo durum wheat (https://

www.interomics.eu/durum-wheat-genome), using end-to-

end alignment.

A panel of 46,935 biallelic SNPmarkers was obtained (Figure 1).

After thinning the marker’s panel by retaining markers with a

minor allele frequency (MAF) ≥ 0.05 using Tassel 5 software

(Bradbury et al., 2007), the final dataset contained 10,641 biallelic

SNP markers (Figure 1).
Phenotypic trait measurement and
image acquisition

Yield (YLD; kg/ha) and 19 vegetation spectral indices (Table 1)

were evaluated across multiple years and environments. We derived

the vegetation spectral indices from high-resolution RGB,

hyperspectral and thermal remote sensing imagery collected
frontiersin.org
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during several airborne campaigns. Hyperspectral imagery was

spatially and atmospherically processed to obtain the vegetation

indices presented in Table 1, following the methods outlined by

Zarco-Tejada et al. (2016) and Camino et al. (2019). An aircraft

managed by the Laboratory for Research Methods in Quantitative

Remote Sensing [QuantaLab, IAS-CSIC, Spain), equipped with a

micro-hyperspectral imager (Micro-Hyperspec VNIR model,

Headwall Photonics, Fichburg, MA, USA), was used for acquiring

the images. The flights were conducted at similar times in the crop

cycle (Supplementary Table S2) to coincide with the pre-anthesis

and anthesis stages of wheat [stages 49 to 69 on the Zadoks scale

(Zadoks et al., 1974)]. The spectral vegetation indices used in this

analysis (Table 1) were classified based on their ability to assess

various physiological and structural traits in crop canopies, as

follows: 1) Chlorophyll fluorescence indices, which utilize blue

(e.g., BF1) and red-edge (e.g., SIF2) spectral regions to monitor

photosynthetic capacity; 2) Chlorophyll indices, related to

chlorophyll content and essential for assessing photosynthesis

(e.g., MCARI), combining visible and near-infrared regions

(NIR); 3) Carotenoid indices, reflecting the presence of

carotenoids that protect against oxidative stress using green and

red-edge spectral regions; 4) Xanthophyll indices, related to light

management and photoprotection, such as the Photochemical

Reflectance Index (PRI), which primarily utilizes the green

spectral region around 550 nm; 5) Plant disease indices, assessing

physiological responses to pathogens; and 6) Structural indices,

which are related to biomass, leaf area, and overall structural

characteristics, focusing on the red and NIR.
Population structure and linkage
disequilibrium assessment

The thinned molecular markers dataset was used to assess the

population structure by principal components analysis (PCA) in

Tassel 5.0 (Bradbury et al., 2007). The results were then plotted in R

using the ‘plot’ function (R Core Team, 2020).
Frontiers in Plant Science 04
Linkage disequilibrium (LD) between pairs of genetic locations

across the two wheat sub-genomes (A, B) were evaluated using

Tassel 5 (Bradbury et al., 2007). Pairwise LD (square allele

frequency, r2) for SNP markers pairs was calculated following

Weir (1997). The intersection of the fitted curve with the cut-off

threshold was the mean r2 value for each chromosome (Breseghello

and Sorrells, 2006; Liu et al., 2017). LD decay was then plotted in R

following Remington et al. (2001) using the mean r2 value of each

chromosome and the genetic distance in base pairs (bp).
Statistical analysis and marker-
trait associations

Phenotypic correlations between assessed traits were analyzed

by the ‘cor’ function in R (Kendall, 1938, 1945; Becker et al., 1988)

across years and environments, and also plotted in R using the

‘ggfortify’ package (Horikoshi and Tang, 2016).

GWAS was conducted across years and environments using

best linear unbiased estimates (BLUEs) for YLD and 19 spectral

indices, and 10,641 SNP markers to identify marker-trait

associations using the Tassel 5.0 software (Bradbury et al., 2007).

A weighted mixed linear model (W-MLM) (Casstevens and Wang,

2015) was applied using the PCA matrix, with the first and second

principal components as fixed effects and the kinship matrix (K-

mat) (Supplementary Table S3) as a random effect, at the optimum

compression level and following the model equation:

y = Xb + Zµ + e

where y is a vector of observed phenotypes; X and Z are matrices

related to b and µ, respectively; b is a vector of fixed effects; µ is a

vector of genetic effects (with covariance proportional to a kindship

or relationship matrix); and e is a vector of residuals. R was used to

extract significant MTAs between markers and assessed traits,

according to a Bonferroni-corrected threshold of -log10 (0.05/n) =

5.33, where n is the total number of SNPs (10,641), and a = 0.05.

Manhattan and quantile-quantile (QQ) plots were visualized using
FIGURE 1

SNP markers density raw dataset (left) and thinned dataset (right) plot chromosome wise representing the number of SNP markers. Horizontal axis
shows chromosome length (Mb); color legend depicts number of SNP markers.
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the R package ‘Cmplot’ (Yin et al., 2021) (script can be found at

https://github.com/YinLiLin/CMplot).
Candidate gene analysis

As described in Mérida-Garcıá et al. (2020), the sequences of

associated SNP markers were blasted against the bread wheat

reference assembly RefSeq v2.0 (https://wheat-urgi.versailles.inra.fr/

Seq-Repository/Assemblies) and the Svevo durum wheat reference

assembly (https://www.interomics.eu/durum-wheat-genome), with

no indels or mismatches allowed, using an ad hoc Java program to

confirm the physical mapping location on each genome. To

estimate the position of the MTAs, measured in centimorgans
Frontiers in Plant Science 05
(cM), a map of correspondences between the positions in bp and

cM was created for every Svevo chromosome. This map uses the

data provided in Supplementary Table 2 of Maccaferri et al. (2014),

which provides a large set of markers, including their nucleotide

sequences, and their estimated cM positions on the correct

chromosome. To calculate their positions in bp, a BLAST search

into the Durum Interomics pseudomolecules (https://doi.org/

10.1038/s41588-019-0381-3) was performed (parameter -

ungapped). From the resulting map, the only markers retained

were those with a public sequence or available for research

purposes, and with a single best hit (maximum bitscore) in the

correct chromosome. Finally, the map was sorted by chromosome

and cM, and checked to remove those markers whose positions in

bp were unsorted. Using the resulting map, and knowing the
TABLE 1 Spectral indices assessed for durum wheat panels grouped by index type (in bold).

Spectral Index Acronym Reference

Photosynthetic Activity and Chlorophyll Fluorescence emissions

Blue fluorescence index BF1 Zarco-Tejada et al. (2018)

Blue fluorescence index BF2 Zarco-Tejada et al. (2018)

Solar-induced chlorophyll fluorescence SIF2
Plascyk and Gabriel (1975); Moya

et al. (2004)

Reflectance curvature index CUR Zarco-Tejada et al. (2000)

Chlorophyll pigments

Blue/green index BGI1 Zarco-Tejada et al. (2005)

Blue/green index BGI2 Zarco-Tejada et al. (2005)

Carotenoid xanthophyll pigment index DCabxc Datt (1998)

Transformed chlorophyll absorption in reflectance index/Optimized soil-adjusted vegetation index
(TCARI/OSAVI)

TCARI/
OSAVI

Haboudane et al. (2002)

Normalized phaeophytinization index NPQI Barnes et al. (1992)

Modified chlorophyll absorption in reflectance MCARI Haboudane et al. (2004)

Transformed chlorophyll absorption in reflectance index TCARI Haboudane et al. (2002)

Carotenoid pigments

Simple ratio carotenoids – CARter index CAR Hernández-Clemente et al. (2012)

Carotenoid concentration index CRI700 Gitelson et al. (2003, 2006)

Carotenoid concentration index CRI700m Gitelson et al. (2003, 2006)

Carotenoid concentration index CRI550 Gitelson et al. (2003, 2006)

Carotenoid concentration index CRI550m Gitelson et al. (2003, 2006)

Xanthophyll indices

Photochemical reflectance index PRI Gamon et al. (1992)

Carotenoid and Xanthophyll pigments

Carotenoid xanthophyll pigment index DCabxc Datt (1998)

Assessing Plant Health and Disease Stress

Health index HI Mahlein et al. (2013)

Structural and biomass changes

Normalized difference vegetation index NDVI Rouse et al. (1973)
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TABLE 2 Physical position (cM) for marker-trait associations based on Maccaferri et al. (2014).

Marker Chr Pos (cM) Traits

SNP229 1A 29.0 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP76228 1A 61.0 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP1275 1A 71.0 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP1276 1A 71.0 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP1481 1A 85.5 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP77275 1A 111.6 CRI700m

SNP2019 1A 123.2 CAR, CUR, MCARI, NDVI, PRI

SNP2648 1B 12.0 CRI550, CRI550m

SNP2830 1B 33.6 MCARI, NDVI, PRI

SNP26551 1B 37.6 CAR, YLD

SNP3098 1B 46 CUR, MCARI, PRI

SNP3549 1B 47.8 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP981 1B 48.8 CAR

SNP3877 1B 65.0 YLD

SNP3937 1B 67.5 CUR, MCARI, TCARI

SNP23059 1B 93.6 CAR, MCARI, TCARI_OSAVI, TCARI

SNP5762 1B 136.2 YLD

SNP32258 1B 156.2 YLD

SNP45417 2A 38.2 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP46534 2A 46.6 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP6223 2A 52.1 MCARI

SNP33554 2A 91.0 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI

SNP6626 2A 96.9 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP6675 2A 99.9 CUR, PRI

SNP7069 2A 109.6 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP7835 2A 132.2 MCARI, PRI, TCARI

SNP11390 2A 136.2 CAR, CUR, MCARI, PRI, TCARI

SNP8165 2A 151.2 MCARI

SNP8198 2A 154.6 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP8232 2A 154.6 CAR, CUR, MCARI, PRI

SNP13427 2A 163.3 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP46141 2A 210.8 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI

SNP46142 2A 210.8 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP9483 2B 24.7 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP9484 2B 24.7 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP70996 2B 45.3 MCARI, PRI

SNP9901 2B 55.4 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP9976 2B 57.7 CAR, YLD

SNP10568 2B 91.3 HI
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TABLE 2 Continued

Marker Chr Pos (cM) Traits

SNP10840 2B 95.3 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI

SNP10841 2B 95.3 CAR, CUR, MCARI, NDVI, PRI

SNP46997 2B 101.6 CAR, CRI550m

SNP11217 2B 115.1 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP13388 2B 137.9 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI, YLD

SNP43735 2B 166.6 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI

SNP12651 2B 181.6 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP46683 3A 7.9 CAR, CUR, MCARI, PRI, TCARI

SNP77245 3A 33.6 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP14668 3A 66.8 MCARI

SNP14760 3A 67 CAR, PRI

SNP15000 3A 80.1 CAR, HI, YLD

SNP38516 3A 81.4 CAR, YLD

SNP15180 3A 90.3 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP15291 3A 97.4 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP15292 3A 97.4 CAR, NDVI, PRI

SNP15681 3A 123.1 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP15835 3A 136.4 YLD

SNP76391 3B 16.9 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP16842 3B 25.4 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI

SNP17449 3B 68.3 CAR

SNP17455 3B 69.1 CUR, DCabxc, MCARI, NDVI, PRI, TCARI

SNP17862 3B 81.2 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP18017 3B 88.0 CAR, MCARI, PRI

SNP20210 3B 136.9 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI, YLD

SNP76785 3B 136.9 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP76832 3B 136.9 BF21, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP20617 4A 15.5 YLD

SNP21331 4A 57.3 CAR, MCARI, PRI

SNP21648 4A 65.1 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP21687 4A 69.4 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP21759 4A 79.3 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP22313 4A 133.9 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI

SNP23640 4B 41.6 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP24067 4B 52.9 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP25678 5A 20.6 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP25731 5A 26.9 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI, YLD

SNP16002 5A 27.4 CAR, CUR, MCARI, NDVI, PRI

SNP26048 5A 48.3 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI
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TABLE 2 Continued

Marker Chr Pos (cM) Traits

SNP47527 5A 48.6 CAR

SNP47528 5A 48.6 CAR

SNP47529 5A 48.6 CAR, PRI

SNP47530 5A 48.6 CAR

SNP47531 5A 48.6 CAR

SNP47532 5A 48.6 CAR

SNP47533 5A 48.6 CAR

SNP47536 5A 48.6 CAR, CRI550m

SNP47537 5A 48.6 CAR

SNP26845 5A 90.3 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP28567 5B 6.5 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI

SNP29706 5B 54.4 CAR

SNP29849 5B 68.5 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP31932 5B 75.9 PRI

SNP32147 5B 146.1 CAR, NPQI, YLD

SNP27817 5B 148.4 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP30955 5B 150.9 BF2, CAR, CUR, MCARI, NDVI, PRI

SNP32334 6A 0.9 CAR, CUR, MCARI, NDVI, PRI

SNP32837 6A 44.3 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP32939 6A 49.7 BF1, BF2, BGI1

SNP33144 6A 53.2 MCARI

SNP33615 6A 63.5 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP33665 6A 67.3 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP34751 6B 21.6 CAR, NPQI, YLD

SNP34891 6B 27.1 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP34892 6B 27.1 CAR, CUR, MCARI, PRI, TCARI

SNP47538 6B 31.2 CAR, PRI

SNP47539 6B 31.2 CAR

SNP47540 6B 31.2 CAR

SNP47541 6B 31.2 CAR, PRI

SNP35255 6B 45.7 CAR, MCARI, PRI

SNP13219 6B 52.5 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP37933 6B 76.3 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP37996 6B
86.0

BF1, BF2, BGI1, CAR, CRI550m, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI,
TCARI, YLD

SNP36835 6B 86.2 HI

SNP37315 6B 96.7 BGI2

SNP76145 6B 137.2 CAR, CUR, MCARI, NDVI, PRI, TCARI

SNP73562 7A 8.4 YLD
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positions in bp of our markers, their positions in cM were

interpolated. To compare with the meta-QTL (MQTL) analysis

reported by Soriano et al. (2017), the physical position of the

MQTLs was inferred based on the closest DArTseq or SNP

marker to the MQTL. A confidence interval of 5kbp to the left

and right of the marker was established.

Candidate genes were identified and manually chosen based on

their annotations within a window of ±50kbp. Gene expression

analyses were performed using the publicly available

transcriptomics analyses under different heat and drought stress

conditions previously published for bread wheat (Liu et al., 2015;

Ma et al., 2017; Gálvez et al., 2019). These results were drawn as a

heatmap using the data retrieved by Wheat Expression (www.wheat-

expression.com/) and the R package ‘NMF 0.21.0’ (Gaujoux and

Seoighe, 2010). The samples analyzed were: (1) seedling samples

grown under controlled conditions included in NCBI SRA ID

SRP045409 (control, IS; heat and drought (PEG induced drought)

stress for 1 and 6 hours, PEG1 and PEG6, respectively) (Liu et al.,

2015); (2) samples grown in a shelter and corresponding to NCBI

SRA ID SRP102636 (anther stage irrigated leaf phenotype, AD_C;

anther stage drought-stressed leaf phenotype, AD_S; tetrad stage

irrigated developing spike phenotype, T_C; and tetrad stage

drought-stressed developing spike phenotype, T_S) (Ma et al.,

2017); and (3) flag leaf samples from field experiments

corresponding to NCBI SRA ID SRP119300 (irrigated, IF; mild

stress, MS; and severe stress, SS, flag leaves samples) (Gálvez

et al., 2019).
Results

Agroclimatic conditions

Locations 1 and 2 are both in Mediterranean climate-zones,

characterized by hot and dry summers, and short and mild winters
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with irregular precipitation. Figure 2 shows the patterns for

maximum and minimum average temperatures (°C) and monthly

accumulated precipitation (mm) during the crop cycle (from

November to June) for each growing season in the two locations.

For Location 1, the 2018 season was the wettest, with 488 mm of

precipitation, whereas the driest was 2015, with 243 mm (Figure 3).

Figure 2 reveals increasing temperatures from March until the

end of the crop season for all the years assessed, together with

irregular precipitation throughout the crop cycle in both testing

locations. Yearly variations in precipitation and temperatures were

reflected in the differences found in the final YLD (Figure 3).

However, this relationship was not always clearly evident, with

contrasting patterns sometimes being found, as for season 2015 in

Location 1 and season 2021 in Location 2 (Figure 3), which could be

attributed to high soil fertility, as suggested by Royo et al. (2021).
Phenotypic analyses

The yearly means of crop final yield (Kg/ha) are shown in

Figure 4. Variations in precipitation and temperatures were

reflected in the differences found in the final yield (Figure 4). For

instance, Location 1 had the highest values of YLD in 2018 (5,250

kg/ha), likely due to the highest level of accumulated precipitation

during the crop cycle (Figures 3, 4). However, this relationship was

not obvious in some cases, with different patterns found, as in

Location 2 in 2021, with a high average yield (5,605 kg/ha),

although the accumulated precipitation (352 mm) was not

significantly different from the average yearly rainfall.

Phenotypic correlations were found between yield and HSIs

related to plant photosynthesis processes, and canopy structure and

density (Figure 5), which directly or indirectly affected final crop

production. Positive correlations (r = 0.30) between YLD and the

structural index NDVI (normalized difference vegetation) were also

found, as previously reported by Basnyat et al. (2004); Chandel et al.
TABLE 2 Continued

Marker Chr Pos (cM) Traits

SNP38478 7A 14.3 YLD

SNP38846 7A 53.4 CAR, CUR, MCARI, NDVI, PRI, TCARI

SNP38848 7A 53.4 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP40233 7A 113.6 CAR

SNP40908 7A 147.5 CAR, CRI550m, PRI, YLD

SNP76958 7A 170.7 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP46389 7A 170.8 BF1, BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP41357 7A 172.9 BF2, CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI

SNP45972 7B 54.0 HI, YLD

SNP43797 7B 96.1 BF1, BF2, BGI1, CAR, CUR, DCabxc, MCARI, NDVI, PRI, SIF2, TCARI_OSAVI, TCARI

SNP44041 7B 109.3 CAR

SNP21473 7B 195.9 CAR

SNP45528 7B 208.3 CAR, CUR, DCabxc, MCARI, NDVI, PRI, TCARI_OSAVI, TCARI
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FIGURE 2

(A) Monthly precipitation (Pp, mm) and evapotranspiration (Eto, mm); (B) average maximum (Tmax, °C) and minimum (Tmin, °C) temperatures (below) during
the crop cycle (from November to June) for each growing season (2014, 2015, 2016, 2017, 2018 and 2021 in Location 1; 2021* in Location 2).
FIGURE 3

Crop cycle rainfall variation (y-axis) for each growing season (x-axis).
Accumulated precipitation (mm) is indicated above each boxplot.
Evapotranspiration (mm) at Location 1 for each growing season (2014,
2015, 2016, 2017, 2018 and 2021 in Location 1; 2021* in Location 2).
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FIGURE 4

Mean values of yield and crop cycle accumulated precipitation (mm)
at Location 1 for each year of assessment. Pp: yearly accumulated
precipitation (mm); YLD: yield (kg/ha); 2021*: means corresponded
to Location 2 in 2021.
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(2019) and Rufo et al. (2021a), using different wheat populations.

Moreover, phenotypic correlations were found between YLD and

HSIs related to plant photosynthesis processes (indices of simple

carotenoid ratio (CAR, r = 0.47), solar-induced chlorophyll

fluorescence (SIF2, r = 0.39) and photochemical reflectance (PRI,

r = -0.37)) (Figure 5). This highlights the important impact of the

assimilation processes during grain filling on final yield. As

expected, correlations were also found between spectral indices

which were classified in the same group (Figure 5; Table 1).

Significant correlations between HSIs were also observed,

several of which were observed between spectral indices belonging

to the same categories as described above (Table 1). These

correlations suggest that these indices capture similar spectral

regions that are sensitive to plant traits, such as the chlorophyll

region or Solar-Induced Fluorescence (SIF) emission related to

photosynthetic capacity. Furthermore, correlations were found

between different groups of indices, exemplified by connections

between indices of a group of chlorophyll pigments (MCARI,

TCARI, and TCARI/OSAVI) with those of a group including

photosynthetic activity and chlorophyll fluorescence emission

(CUR) (Figure 5). Indices from this group were also found to be

closely correlated to those of a group of carotenoid and xanthophyll

pigments (DCabxc) (Figure 5).
Frontiers in Plant Science 11
Population structure and
linkage disequilibrium

In the PCA analysis, the first and second principal components

(PC) accounted for 3.3% and 2.6% of the genetic variation,

respectively (Figure 6). No genetic sub-structure was identified in

the panel. LD decay was estimated around 3.98 kbp for all the

chromosomes (Figure 7).
Marker-trait associations and
candidate genes

A total of 740 significative marker-trait associations were

identified for the 20 analyzed traits (Supplementary Table S4). A

summary of the results for all the traits across years and

environments is reported in Figure 8. The physical position of the

associated markers is shown in Supplementary Figure S1.

Manhattan and QQ-plots can be found in Supplementary Figure

S2. 721 SNP markers were linked to spectral indices

(Supplementary Table S4) and 19 to YLD. Twelve of the latter

were also associated with one or more spectral indices. The

carotenoid index (CAR), which was correlated with YLD
FIGURE 5

Phenotypic correlations between assessed traits across years and environments. Spectral index abbreviations are shown in Table 1. Color intensities
show degrees of positive and negative significance (p< 0.05).
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(Figure 5), showed the highest number of significative associations,

with 14% of the total number of MTAs, followed by the

photochemical reflectance index PRI (11.62%), as well as a

moderate correlation with YLD (Figure 5), and the chlorophyll

index MCARI (11.35%), which is sensitive to chlorophyll a+b

content. The indices of CUR (10.00%), sensitive to fluorescence
Frontiers in Plant Science 12
emission, NDVI (9.32%), related to structure, TCARI (9.19%),

sensitive to chlorophyll, and DCabxc (8.11%), sensitive to

chlorophyll and carotenoids (Figure 8), also showed a medium-

high number of significative associations (Figure 8). Fifteen of the

19 indices analyzed showed co-localization with YLD

(Supplementary Table S7). Among these, the CAR, PRI, MCARI

and CUR indices were those with the highest number of co-

localized MTAs, with 32, 25, 23 and 22, respectively. To our

knowledge, this is the first report of co-localization of

fluorescence (BF1, BF2, CUR, SIF2), chlorophyll a+b (BGI1,

DCabxc, TCARI/OSAVI, NPQI, MCARI, TCARI), carotenoid

(CAR, CRI550m), plant disease (HI) and xanthophyll (PRI)

indices with YLD.

The number of MTAs per chromosome across years and

environments ranged from 11 on wheat chromosome 4B to 100

on chromosome 2B (Figure 8). Genome A accounted for 54.05% of

the total marker-trait associations (320 MTAs), and the remaining

45.95% (272 MTAs) corresponded to genome B.

The physical position for MTAs (Table 2) and MQTLs,

previously described in Soriano et al. (2017) and Arriagada et al.

(2022) for each chromosome, are shown in Figure 9.

The QTLs found for yield, some of which were shared with one

or more vegetation spectral indices, were placed in several

chromosomes (Supplementary Table S4), which agree with the

different QTLs and MQTLs described in previous studies (Soriano

et al., 2017; Anuarbek et al., 2020; Arif et al., 2020; Farouk et al.,

2021; Mangini et al., 2021; Arriagada et al., 2022; Mulugeta et al.,

2023; Valladares Garcıá et al., 2023) for durum wheat yield or yield-

related traits. Eleven markers (SNP26551, SNP9976, SNP13388,

SNP15000, SNP38516, SNP20210, SNP25731, SNP32147,

SNP34751, SNP37996 and SNP40908) were found to be

significatively associated with yield and the simple carotenoid

ratio index (some of them were also associated with other spectral

indices, see Supplementary Table S4), which were well correlated (r

= 0.47) (Figure 5), in agreement with the importance and influence

of carotenoids on yield as precursors of vitamin-A and plant

hormones involved in plant growth and its responses to adverse

growth conditions (Mi et al., 2022). Marker SNP9976, mapped on

durum wheat chromosome 2B, was found within the MQTL15

(Soriano et al., 2017), described for grain weight (GW), and within a

grain yield MQTL found under irrigated conditions, as described in

Arriagada et al. (2022) (Figure 9). SNP32147 and SNP34751, were

found to be significantly associated with yield and the normalized

phaeophytinization index (Supplementary Table S4), which belongs

to chlorophyll pigments group (Table 1), and is thus related to the

process of photosynthesis in the plant. It has been described in

previous studies as an efficient SRI for indirect selection of grain

yield (Liu et al., 2019). In addition, SNP32147, mapped on wheat

chromosome 5B, was found in proximity to the MQTL49 (Soriano

et al., 2017), related to GY and GW (Figure 9). SNP15000 and

SNP45972 were both significatively associated with yield and health

index (Supplementary Table S4), which has been previously

described as relevant for yield estimation in spring wheat and

used to determine patterns of drought distribution in agricultural

areas (Zuhro et al., 2020). SNP15000 and SNP38516 (also associated

with YLD), both mapped on wheat chromosome 3A, were found in
FIGURE 6

Principal component analysis of genotypic data using 10,641 SNP
markers. Pop1: durum wheat varieties; Pop2: elite durum wheat lines
collected in 2014; Pop3: elite durum wheat lines collected in 2015;
Pop4: elite durum wheat lines collected in 2016; Pop5: elite durum
wheat lines collected in 2017; Pop6: elite durum wheat lines
collected in 2018; and Pop7: elite durum wheat lines collected
in 2021.
FIGURE 7

Linkage disequilibrium (LD) decay analysis using SNP markers.
Estimated r2 against linkage distance in bp is shown. LD decay was
measured at 3.98 kbp.
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the proximity of a YLD MQTL (irrigated conditions) and a yield

and yield-related traits MQTL (rainfed conditions), respectively,

both described in Arriagada et al. (2022) (Figure 9). Finally,

SNP73562 and SNP38478, both mapped on wheat chromosome

7A and associated with YLD, were found within the MQTL59

(Soriano et al., 2017) described for GW.

The search for candidate genes aimed to identify corresponding

gene models, in durum and bread wheat. We also analyzed the

corresponding gene expression under different drought levels, and

stress conditions were performed for the significantly associated

markers. Gene annotation from the durum wheat genome (https://

www.interomics.eu/durum-wheat-genome) al lowed the

identification of 695 candidate genes (Supplementary Table S5).

Among these, there were 244 HC genes related to different plant

processes including stress responses, but also photosynthesis, and

structural and regulatory plant biological processes. Of these, we

can highlight the HC genes which encode photosystem I and II
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assembly proteins, NAD(P)H-quinone oxidoreductases,

cytochrome subunits, F-box family proteins, disease resistance

proteins, kinase family proteins, aspartic proteinases, or

glycosyltransferases, among others (Supplementary Table S5).

Most orthologs of these genes were also found in gene annotation

from the bread wheat reference assembly RefSeq v2.0 (https://

wheat-urgi.versail les. inra.fr/Seq-Repository/Assemblies)

(Supplementary Table S6). The results for the gene expression

analyses under different stress conditions (Liu et al., 2015; Ma

et al., 2017; Gálvez et al., 2019) are shown as a heatmap in

Supplementary Figure S3.
Discussion

This study focused on the phenotypic and yield response of elite

durum wheat in field experiments conducted under Mediterranean
FIGURE 8

(A) Number of MTAs found for each chromosome. Bars for genome A chromosomes are indicated in blue, genome B in yellow; (B) Number of MTAs
for each trait assessed. Chr: chromosome; No. MTAs: number of significant marker-trait associations; A: durum wheat genome A; B: durum wheat
genome B; spectral indices abbreviations are given in Table 1; YLD, yield (Kg/ha).
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field conditions. These growing environments are characterized by

irregular precipitation during the crop growth cycle, and high

temperatures during anthesis and grain filling (Araus et al., 2002;

Barakat et al., 2016), exhibiting varying environmental conditions

influenced by climate change, specifically characterized by heat

and drought.
Marker trait associations

The dissection of the genetic basis of complex traits is a key

objective in breeding programs (Rufo et al., 2021a). In this context, the
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identification of marker-trait associations as well as QTL related to

traits of interest, such as final yield in wheat, are major goals in plant

breeding (Arriagada et al., 2020), and can be encompassed within the

objectives of these breeding programs. Hyperspectral indices have

recently been proposed to assist the genetic dissection of bread

(Rasheed et al., 2014; Crain et al., 2018; Chandel et al., 2019; Jiang

et al., 2019; Liu et al., 2019; Singh et al., 2019; Rufo et al., 2021a; Govta

et al., 2022; Yu et al., 2024; Zhang et al., 2024) and durum wheat traits

(Condorelli et al., 2018b; Zendonadi dos Santos et al., 2021; Safdar et al.,

2023). The present GWAS analysis resulted in 740 significant MTAs

for yield and HSIs, distributed across all durum wheat chromosomes

(Supplementary Table S4). The pseudomolecule position distribution
FIGURE 9

Genetic map for the significant marker-trait associations [position in cM based on Maccaferri et al. (2014)] based on the previously-described yield or
yield-related traits (Soriano et al., 2017; Arriagada et al., 2022) for each chromosome. Green: MQTL from Soriano et al., 2017, blue: MQTLs detected
under irrigated conditions (Arriagada et al., 2022); red: MQTLs detected under rainfed conditions (Arriagada et al., 2022).
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reveals several QTLs where the HSIs co-locate with yield

(Supplementary Table S7), highlighting the potential of HSIs as

spectral plant traits in yield genomic dissection.

The NDVI (Normalized Difference Vegetation Index), which is an

indicator of the plant structure and response to drought (Ji and Peters,

2023) and belongs to the structural and biomass changes indices group,

showed 69 associations across almost all durum wheat chromosomes

(Supplementary Table S4), in agreement with the results presented by

Condorelli et al. (2018). Nineteen of them (27.54%) are co-localized

with yield associations on several chromosomes (2B, 3A, 3B, 5A, 5B, 6B

and 7A). Importantly, SNP43735, mapped on wheat chromosome 2B

and linked to several HSIs including NDVI, was found within the

MQTL19 (Soriano et al., 2017) described for index NDVI. Previous

studies, including Xiao et al. (2013) and Li et al. (2014), reported QTL

for NDVI which co-locate with YLD on chromosome 3AS. Our results

are in agreement with the influence of vegetative growth on final wheat

production (Chandel et al., 2019), and thus the relation that can be

found between this vegetation spectral index and final crop

productivity (Labus et al., 2010). As Li et al. (2020) recently

highlighted, water and nitrogen availability can be considered as

highly limiting factors in crop production. In fact, nitrogen is the

most important element for plant growth and development, affecting

the biochemical and physiological functions of the plant and also

increasing final yield (Leghari et al., 2016). There are different studies

on this topic which used NDVI to predict or estimate final yield in

winter and durum wheat, including Chandel et al. (2019), who

concluded that the NDVI-YLD relation was stronger in the heading

stage (96% accurate estimation of grain and biomass yields in irrigated

wheat), and Panek and Gozdowski (2020), whose results agree with

Chandel et al., paving the way for forecasting cereal grain yield.

SNP32837 (mapped on chromosome 6A), found in association with

several spectral indices including NDVI, was located within the

MQTL54 (Soriano et al., 2017) described for GW. Moreover, NDVI

has been associated with drought-adaptive traits, as well as grain yield,

under stress conditions in wheat crops (Bort et al., 2005; Reynolds et al.,

2007; Bowman et al., 2015; Tattaris et al., 2016; Yousfi et al., 2016).

Numerous marker-trait associations were found for HSIs,

including indices of group of xanthophyll pigments (86 MTAs),

chlorophyll pigments (such as MCARI and TCARI, with 84 and 68

MTAs, respectively) or photosynthetic activity and chlorophyll

fluorescence emission (e.g., CUR, with 74 MTAs), among other

photosynthesis-related spectral traits (Supplementary Table S4).

These associations resulted of great interest and value thanks to

their relation to photosynthesis processes in plants, as well as to

their direct or indirect relation to yield, since, as Paul (2021)

highlighted, the role of photosynthesis is pivotal in driving the

biological processes involved in final crop yields.

The identification of molecular markers linked to yield and/or

different hyperspectral indices facilitates their subsequent use in

marker-assisted selection (MAS) or other applications in wheat

breeding programs. Moreover, the common associations found for

yield and some HSIs can be applied to select vegetation indices as

possible estimators of yield, and used for monitoring the development

of the crop more efficiently across different growth stages.

The main innovation of this study is the use of high-resolution

hyperspectral cameras, opening up new possibilities for exploring a
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broader spectrum of spectral indices. The versatility of hyperspectral

imaging provides researchers with a more comprehensive dataset for

characterizing plant traits associated with essential photosynthetic

processes. This strategic use of hyperspectral imaging not only

advances our understanding of plant physiology but also contributes

significantly to the remote sensing community, showcasing its potential

to uncover a deeper layer of information for enhanced cropmonitoring

and phenotypic analysis.
Candidate gene analysis

This study used hyperspectral indices assessed during the pre-

and anthesis stages and final yield phenotyped in durum wheat lines

grown under hot, dry, Mediterranean field conditions to perform a

combined GWAS analysis. This combined approach unveiled

specific genomic regions associated with crop adaptation and

yield in response to the challenging climatic conditions of heat

and drought.

SNP1275 (1A chromosome) and SNP1276 (1B), both

significantly linked to various HSIs (Supplementary Table S4),

were found in the proximity (-8bp) of the durum wheat HC

genes TRITD1Av1G177430.1 and TRITD1Bv1G163490.1 ,

respectively. Both genes encode a membrane-associated kinase

regulator G, an enzyme which belongs to the protein kinase

family, which are involved in plant stress response as regulatory

components and in controlled cellular activities (Wang et al., 2020).

This agrees with the decreased expression of both genes under

increasing drought stress conditions in the field (Supplementary

Figure S3). Markers SNP46997 (1B), SNP47527, SNP47529,

SNP47530, SNP47532 and SNP47537 (all mapped on chromosome

3B) are all associated with the carotenoid index (CAR), related to

the pigment pool involved during the photosynthesis process. These

markers were found in the vicinity (within the window of ±50kbp)

of several HC genes (Supplementary Table S6) which encoded

photosystem I P700 chlorophyll a apoproteins and photosystem II

CP47 reaction center proteins. The photosystems I and II play

important roles in photosynthesis processes (Gao et al., 2018), and

carotenoids are part of their co-factors (Fromme et al., 2001; Gao

et al., 2018), with some of these genes decreasing their expression

under stress conditions (Supplementary Figure S3). SNP3549 (1B),

associated with several fluorescence, chlorophyll, structural and

xanthophyll indices (Supplementary Table S4), was found in the

surroundings (within a window of ±15kbp) of gene

TRITD1Bv1G134220.2, which encodes an ABC family transporter

(Supplementary Table S6). ABC transporters have been described in

plants as proteins which play key roles in plant growth, nutrition,

development, response to abiotic stresses, and interaction with its

environment (Kang et al., 2011). In keeping with the ABC protein

function, this gene decreases its expression under field drought

stress conditions (Supplementary Figure S3).

The SNP46534 (2A), associated with different HSIs

(Supplementary Table S4), was found in the proximity (-3262bp)

of the gene TRITD2Av1G018540.1, which encodes a cytochrome

P450 family protein. It is an enzymatic protein with a key role in

plant development and stress defense (Ohkawa et al., 1998; Li et al.,
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2012; Jun et al., 2015). This gene is also involved in plant

development, showing decreased expression under field drought

conditions (Supplementary Figure S3).

Similarly, SNP77245 (3A), associated with several HSIs

(Supplementary Table S4), was found in the surroundings (within

the window of ±50kbp) of genes TRITD3Av1G017220.1,

TRITD3Av1G017230.1, TRITD3Av1G017250.1 and TRITD3Av1G

017260.1, which also encode cytochrome P450 proteins. These genes

also showed decreased expression under increased field drought

conditions and PEG stress treatment (Supplementary Figure S3). A

similar reaction in gene expression was found for TRITD3Bv1G076220.1,

which encodes a cytochrome b559 subunit alpha (Supplementary Figure

S3), one of the main components of the photosystem II reaction center

(Chu and Chiu, 2016). This gene was found in the proximity (-42250bp)

of marker SNP47527 (3B), which is associated with the carotenoid index

CAR. In the vicinity (-21,235 bp) of SNP47529 (3B), associated with CAR

and PRI, we found gene TRITD3Bv1G076150.1, which encodes a

cytochrome b6 (Cytb6), a protein specific to chloroplasts which

participates in the electron transport chain in photosynthesis (Cramer,

2020). In the expression heatmap shown in Supplementary Figure S3,

this gene increased its expression under heat and drought stress field

conditions (including IF, control) and under PEG stress treatment, but

decreased it under AD_C, T_C and T_S conditions (anther stage

irrigated leaf phenotype, tetrad stage irrigated developing spike

phenotype and tetrad stage drought-stressed developing spike

phenotype, respectively). SNP46997 (1B), was linked to carotenoid

indices CAR and CRI550m. This marker was found in proximity

(-17bp) to gene TRITD1Bv1G206480.4 (Supplementary Table S6),

encoding a NAD(P)H-quinone oxidoreductase subunit 2, which plays

crucial roles in several biological plant processes including photosynthesis

(Hu et al., 2018). Moreover, the candidate gene analysis showed another

7 HC genes in the same durum wheat chromosome 1B, albeit more

distanced (within a window of -15 and -20kbp) of the SNP46997 (see

Supplementary Table S6), which form a cluster (TRITD1Bv1G206400.1,

TRITD1Bv1G206410.1, TRITD1Bv1G206420.1, TRITD1Bv1G206420.2,

TR ITD1Bv 1G2 0 6 4 2 0 . 3 , TR ITD1B v 1G2 0 6 4 2 0 . 4 a nd

TRITD1Bv1G206430.1), all of which encode a NAD(P)H-quinone

oxidoreductase subunit 1. SNP5762 (1B), associated with yield, was

found in the proximity (-169bp) of gene TRITD1Bv1G215590.1

(Supplementary Table S6), which encodes an aspartic proteinase. This

enzyme has been described as part of a group of enzymes related to

gliadins in the wheat endosperm (Belozersky et al., 1989). As described in

Tenikecier and Genctan (2020), increased or decreased seed size,

influenced by endosperm size, affects the final yield in wheat.

Moreover, the chromosome where this gene was mapped agrees with

previous wheat studies which described major genomic regions for

gluten strength and genes related to endosperm proteins as gliadins

(Kaan et al., 1993; Ruiz and Carrillo, 1993; IWGSC, 2018; Mérida-Garcıá

et al., 2019). SNP9483 and SNP9484, both located on wheat chromosome

2B, and SNP13427 (2A) associated with several HSIs (Supplementary

Table S4), were found in the proximity (-235 and -772bp, respectively) of

HC genes TRITD2Bv1G013040.1 and TRITD2Bv1G231900.1

(Supplementary Table S6), which encode NBS-LRR (leucine-rich

repeats) disease resistance protein, LRRs and immunoglobulin-like
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domains protein 3 G, respectively. The LRRs are involved as cellular

controllers in different plant processes such as cell division or

differentiation (Chakraborty et al., 2019), as well as in stress (Torii,

2004; Dufayard et al., 2017) and defense (Lee andYeom, 2015) responses.

A group of 9 markers composed of SNP33554, SNP8198 and SNP33554

(2A), SNP20210, SNP76785 and SNP76832 (3B), SNP13219 (4A),

SNP44041 and SNP73562 (7B) were significantly linked to different

HSIs, and some of them also with yield (Supplementary Table S4). All

were related in terms of greater or lesser proximity (within the window of

±50kbp) to genes encoding F-box proteins (Supplementary Table S6),

which is one of the largest protein families in plants. F-box proteins can

participate as positive regulators in plant responses to stress, such as

drought conditions, and also influence plant immunity and hormone

signaling (Abd-Hamid et al., 2020).

The marker SNP15681 (3A), linked to several HSIs (Supplementary

Table S4), was found in a proximal region (-2662bp) to the HC gene

TRITD3Av1G246000, which encodes a disease resistance protein

responsible for plant immune responses (Belkhadir et al., 2004).

SNP13388 (2B) was associated with different HSIs and yield

(Supplementary Table S4), and was found in the proximity (-6,765bp)

of the HC gene TRITD2Bv1G222900.1, which encodes the enzyme

glycosyltransferase G. This enzyme is important in plants due to its

involvement in photosynthetic processes during the transformation of

photosynthesis products into disaccharides, oligosaccharides and

polysaccharides (Keegstra and Raikhel, 2001). Moreover, some

glycosyltransferases have been described as being involved in the cell

wall polysaccharide synthesis of grain wheat endosperm (Suliman et al.,

2013). SNP17449, (3B), associated with the carotenoid index CAR, was

a l so found in the surroundings ( -3470bp) of gene

TRITD7Av1G013810.1, which also encodes a glycosyltransferase

enzyme (Supplementary Table S6). None of these genes for

glycosyltransferases showed differences in their expression under the

different stress conditions assessed (Supplementary Figure S3). Finally,

SNP8165 (2A), associated with the MCARI chlorophyll index, was

related to gene TRITD2Av1G258530.1 (-30461bp), which encodes a

MYB-related transcription factor, described by Zhao et al. (2018). This

enzyme is involved in a plant’s stress responses and increases its

expression under PEG6 stress treatment, also showing a slight

increase in its expression under T_C and T_S conditions (tetrad stage

irrigated developing spike phenotype and tetrad stage drought-stressed

developing spike phenotype, respectively) (Supplementary Figure S3).

Among the candidate HC genes results obtained using the bread

wheat reference genome, the genes found within a ±50kbp window of

three SNP markers (Supplementary Table S4) were of special interest.

SNP2648 (2D), mapped in durum wheat chromosome 2A and

associated with the carotenoid indices CRI550 and CRI550m (both

carotenoid indices), was found in the proximity of the HC genes

TraesCS2D03G0083900.1 and TraesCS2D03G0084000.1, both of which

encode a flower-promoting factor 1-like protein 1. This protein

regulates plant flowering, and is also involved in the gibberellin

signaling pathway (Kania et al., 1997). The flowering locus has also

been previously associated with seed dormancy processes (Chen et al.,

2014; Chen and Penfield, 2018), germination (Chiang et al., 2009) and

water use efficiency (McKay et al., 2003; Mohammadin et al., 2017),
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among other plant processes. The orthologs in durum wheat for these

genes were TRITD2Av1G010590 and TRITD2Bv1G013770, both of

which are located in durum wheat chromosome 2A and encode

flowering-promoting factor 1-like proteins 1. Marker SNP28567 (5B),

linked to several HSIs related to photosynthetic processes

(Supplementary Table S4), was found in the proximity (-5343 and

-1454bp, respectively) of two HC genes, TraesCS5B03G0023300.1 and

TraesCS5B03G0023400.1, both of which encode an ERD (Early-

responsive to dehydration stress) family protein. These ERD genes

have been described as those with a rapid activation during drought

stress conditions (Alves et al., 2011). The expression of the first gene

slightly decreases with increasing stress levels under both field and PEG

conditions. However, interestingly, this gene exhibits higher expression

levels under PEG treatment compared to stress conditions in the field.

TraesCS5B03G0023400.1, slightly increases its expression with

increased PEG treatment (Supplementary Figure S4). The orthologs

in durum wheat were TRITD5Bv1G003930 and TRITD5Av1G004810

(mapped on 5B and 5A, respectively), both of which encode an ERD

family protein. SNP34891 and SNP34892 (both mapped on 6B),

associated with several HSIs (Supplementary Table S4), were found

in proximity to 6 HC genes (TraesCS6B03G0102400.1, Traes

CS6B03G0102500.1, TraesCS6B03G0102700.1, TraesCS6B03G010

2800.1, TraesCS6B03G0103000.1 and TraesCS6B03G0103100.1)

(Supplementary Table S6), all of which encode high affinity nitrate

transporters, which, as their name suggests, play a key role in nitrate

uptake (Crawford and Glass, 1998), as well as in nitrate transport and

use, and stress resistance (Du et al., 2022). The ortholog genes in durum

wheat were TRITD6Av1G006050 , TRITD6Av1G006030 ,

TRITD6Bv1G008700 and TRITD6Av1G006000 (mapped on 6A and

6B), all of which encode high affinity nitrate transporters.
Conclusions

The use of hyperspectral imagery as a high-throughput

phenotypic tool to obtain vegetation indices, and their co-

localization with final crop yield in GWAS analysis, opens up the

possibility of using the HSIs to complement or replace certain field

measurements in breeding programs, and of their use as estimators

of final production. The GWAS results reported here showed

marker-trait associations for final crop yield and HSIs related to

photosynthesis processes and structural properties. These results

contribute to a better understanding of the dissection of the HSIs

assessed, which is directly or indirectly related to final yield or

critical physiological processes in durum wheat. Candidate genes

analysis revealed a number of gene models across all durum wheat

chromosomes, among which we can highlight those related to

photosynthetic processes and plant stress responses. The MTAs

and candidate genes reported in this study could be of use in

breeding programs focused on the use of HTP for driving yield

improvements by selecting suitable genotypes. These results

support the use of hyperspectral remote sensing imagery in the

context of wheat breeding. Further research is needed to advance in

our understanding of biophysical modelling to develop spectral

plant traits specific to heat and drought resilience.
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SUPPLEMENTARY FIGURE S1

Physical position of the (57) associated SNP markers found in GWAS analysis.

SUPPLEMENTARY FIGURE S2

Manhattan and quantile-quantile plots for the 19 traits assessed in GWAS analysis.

SUPPLEMENTARY FIGURE S3

Heatmap for gene expression analysis under several stress conditions for

candidate genes. IF: irrigated field conditions; MS: mild stress conditions; SS:
severe stress conditions (Gálvez et al., 2019*); IS: seedling PEG shock control;

PEG1: seedling 1 h PEG stress; PEG6: seedling 6 h PEG stress (Liu et al.,

2015**); AD_S: anther stage irrigated shelter phenotype; AD_S: anther stage
drought stressed shelter phenotype; T_C: tetra stage irrigated shelter

phenotype; and T_S: tetrad stage drought shelter phenotype (Ma
et al., 2017***).
References
Abd-Hamid, N. A., Ahmad-Fauzi, M. I., Zainal, Z., and Ismail, I. (2020). Diverse and
dynamic roles of F-box proteins in plant biology. Planta, Review (Springer Berlin
Heidelberg) 251:68. doi: 10.1007/s00425-020-03356-8

Alves, M. S., Fontes, E. P. B., and Fietto, L. G. (2011). EARLY RESPONSIVE to
DEHYDRATION 15, a new transcription factor that integrates stress signaling
pathways. Plant Signal. Behav 6, 1993–1996. doi: 10.4161/psb.6.12.18268

Anuarbek, S., Abugalieva, S., Pecchioni, N., Laidò, G., Maccaferri, M., Tuberosa, R.,
et al. (2020). Quantitative trait loci for agronomic traits in tetraploid wheat for
enhancing grain yield in Kazakhstan environments. PloS One 15, 1–21. doi: 10.1371/
journal.pone.0234863

Aparicio, N., Villegas, D., Araus, J. L., Casadesús, J., and Royo, C. (2002).
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(2020). Mapping agronomic and quality traits in elite durum wheat lines under
differing water regimes. Agronomy 10, 1–23. doi: 10.3390/agronomy10010144
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