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Evaluating the accuracy of nine
canopy resistance models in
estimating winter wheat
evapotranspiration using the
Penman–Monteith equation
Yingnan Wu, Qiaozhen Li , Xiuli Zhong and Xiaoying Liu*

Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of
Agricultural Sciences, Beijing, China
Accurate estimation of farmland evapotranspiration (ET) is crucial for agricultural

production. The accuracy of the widely used Penman–Monteith (PM) equation for

estimating crop ET depends on the quality of input data and their ability to

accurately model the canopy resistance (rc). In this study, we evaluated the PM

equation in estimatingwinter wheat ET using nine rc models, with both original and

recalibrated parameters, including the Farias (FA), Monteith (MT), Garcίa-Santos
(GA), Idso (IS), Jarvis (JA), Katerji-Perrier (KP), Stannard (ST), Todorovic (TD), and

Coupled surface resistance (CO)models. We used long-termmeasurements (2018

to 2023) from the Bowen ratio energy balance method at both daily and seasonal

scales. Parameterization was performed using data from the 2020–2021 growing

season, while the remaining 4 years were used for verification. The results showed

that the FA, KP, and STmodels performed better in estimating daily ET with original

parameters, achieving a root mean square error (RMSE) of 1.07–1.16 mm d−1 and a

mean bias error (MBE) of −0.59–0.02 mm d−1. After parameterization, the

performance of acceptable rc models based on RMSE (ranging from 1.07 to

1.22 mm d−1, averaged 1.16 mm d−1) ranked as follows on the daily scale: FA >

CO > KP > ST > IS > GA > JA > MT. The rc models were more accurate in simulating

ET on a seasonal scale than on the daily scale. Before calibration, the acceptable

FA, KP, and MTmodels overestimated seasonal ET with the MBE ranging from 2.83

to 75.32 mm and RMSE from 29.79 to 82.38 mm. After correction, the suitable

rc models based on RMSE values decreased by FA > CO > KP > IS > ST > GA > JA on

the seasonal scale, which ranged from 29.79 to 76.35mm. The performance of the

revised rc models improved on both daily and seasonal scales, with RMSE

reductions of 29.03% and 68.18%, respectively. Considering both the accuracy

and calculation complexity, the FA and KPmodels were recommended to be used

in the PM equation to estimate daily and seasonal ET in semiarid regions. The CO,

GA, ST, IS, and JA models can also be used as alternatives, depending on the

availability of meteorological parameters.
KEYWORDS

Bowen ratio energy balance, winter wheat, evapotranspiration, canopy resistance
model, calibration, model parameter, Penman-Monteith equation
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1 Introduction

Evapotranspiration (ET) is one of the largest components of

surface water loss (Zhang et al., 2016), and its accurate

determination is essential in areas of water cycle regulation,

energy transfer, vegetation health and growth, agricultural water

management, hydrological modeling, water resource allocation,

ecosystem functioning, and climate change impact assessment

(Shen et al., 2002; Sun et al., 2007; Zhang et al., 2022b).

Although ET can be directly measured using several methods,

such as weighing lysimeters (Shahrokhnia and Sepaskhah, 2012),

eddy covariance (Xu et al., 2021), Bowen ratio energy balance

(BREB) (Han and Li, 2010), and sap flow (Zheng et al., 2022),

these methods were often limited by high costs, complicated

operations, and strict site requirements (Liu et al., 2009).

Therefore, accurately estimating ET using meteorological data

and empirical or semi-empirical models, which were cost-effective

and easier to operate, is crucial. To date, several methods for

estimating ET had been well developed, including the one-step

approach (López-Urrea and Chávez, 2019), the two-step approach

(Meng et al., 2021), and the complimentary relationship approach

(Zhou et al., 2015). The Penman–Monteith (PM) equation,

recommended by the Food and Agriculture Organization, had

reasonable accuracy (Allen et al., 1998). However, its accuracy

was heavily dependent on the precise estimation of the canopy

resistance (rc), which varied with crop type, growth stage, and

environmental conditions (Irmak et al., 2013). Therefore, a

thorough understanding of the canopy resistance was a crucial

step when applying the PM equation.

Canopy resistance represented the combined resistance to water

vapor through crop leaf stomata, soil resistance to evaporation, and

vapor flux resistance under the crop canopy (Lovelli et al., 2008).

Parameterizing and directly measuring rc was extremely difficult, as

it could be influenced by many factors, including solar radiation, air

temperature, vapor pressure deficit, soil moisture content, and leaf

area (Irmak and Mutiibwa, 2010). Current efforts to parameterize rc
mainly included the upscaling method (Xu et al., 2018), the inverse

method (Niyogi et al., 2008), and the environmental factor function

method (Wu et al., 2022).

Various rc parameterization models have been proposed.

Using hourly BREB measurements data from four typical sunny

days, Yan et al. (2020) recalibrated the Katerji-Perrier (KP)

parameters and compared the KP and Todorovic (TD) model in

the PM, demonstrating satisfactory accuracy. Perez et al. (2005)

selected 3 days of 1 year’s data for calibration and Katerji et al.

(2011) chose two daytime hourly datasets; they also compared

these models on a grass surface and reported that the KP model

performed better, while the TD model was not suitable for

irrigated grass. Chen et al. (2022) used 1-year data for

recalibration and 1-year data for validation and evaluated five rc
models in estimating maize ET. They found that the Jarvis (JA)

model tended to underestimate, with the threshold for over- to
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underestimation occurring at LAI = 2. When LAI was less than 2,

the KP model performed the best. However, when LAI was greater

than 2, the KP model underestimated ET. Liu et al. (2011)

observed temporal variations in the TD model performance over

winter wheat fields. Hourly assessments revealed limited

concordance when the field was not fully vegetated, contrasting

with strong agreement under full coverage. Li et al. (2015)

investigated 11 rc models whose parameters were calibrated by

1-year data, to estimate long-term ET for maize and grapevine

under sparse and full coverage, indicating that the Coupled

surface resistance (CO) model was the most accurate. The

calibration of three rc models (the KP, TD, and JA) using the

PM equation to estimate maize ET showed that the TD and JA

models produced reliable results, while the KP model could be

used as an alternative (Srivastava et al., 2018).

As described above, knowledge gap remained regarding how

they affect the accuracy of the PM estimates and how to select a

suitable rc model among the numerous models, as evidenced by

inconsistent results in literatures. Clearly, the applicability of the rc
models in the PM equation varies across different regions and under

different crops covered. Furthermore, it was common for the same

rc model that applied the PM equation with the same crop to have

different model parameters adopted by different researchers (Xu

et al., 2017). For example, Yan et al. (2020) suggested KP model

parameters of 0.59 and 0.12 for the winter wheat, while Wang et al.

(2016) suggested values of 1.4 and 0.8, respectively. Moreover, most

previous studies employed limited datasets, such as a few days or

daytime periods, for both parameter calibration and model

validation, raising concerns about the model’s applicability,

particularly when used across the whole growing season under

varied experimental conditions (Spank et al., 2016; Yan et al., 2020;

Chen et al., 2022). Previous studies have all directly calculated ET

and compared it with the measured ET after calibrating the

parameters when using the rc models, without calibrating the

existing model parameters (Gharsallah et al., 2013; Li et al., 2015;

Yan et al., 2020). Verifying whether the previous model parameters

can be used may be an indispensable process, because if the previous

model parameters are still applicable, parameter calibration may be

a redundant process. In order to ensure accuracy in simulating ET

when applying rc models to the PM equation, long-term data should

be used for calibration and verification. At the same time, four

criteria were considered in selecting rc models: simple form, easily

accessible input data, wide applicability, and good performance in

previous studies.

The overall objective of this research was to evaluate the

performance of nine rc models, with both original and calibrated

parameters, in applying the PM equation to estimate winter wheat ET

at two time scales, i.e., daily and seasonal, using long-term

observations from the BREB from a semiarid site. Specifically, the

aims were (i) to evaluate the performance of the rc models with

original parameters to test their universality, and (ii) to examine if

parameter calibration could improve the accuracy of the PM equation.
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2 Materials and methods

2.1 Experimental site description

The experiment was conducted at the research base of the

Institute of Environment and Sustainable Development in

Agriculture, Chinese Academy of Agricultural Sciences, located in

Shunyi District, Beijing in northern China (40.09°N, 116.92°E, 33 m

a.s.l). The region had a semiarid climate characterized by four

distinct seasons. The whole base covered an area of 1,000 ha and

was dominated by a homogeneous planting pattern of winter

wheat–summer maize rotation. The long-term yearly averaged

elements included the following: precipitation of 584 mm, air

temperature of 12.6°C, sunshine duration of 7 h, wind speed of

1.60 m·s−1, and approximately 200 frost-free days. The soil type was

fluvo-aquic, with a field water holding capacity averaging 0.38

cm3·cm−3 within a soil depth of 1.8 m.
2.2 Bowen ratio energy balance method

The BREB was an indirect method for measuring ET, proposed

by Bowen in 1926 based on the theory that one-dimensional fluxes

of sensible and latent heat could be described in terms of flux–

gradient relationships (Bowen, 1926). The one-dimensional surface

energy balance equation was as follows:

Rn = LE +H + G (1)

where Rn is the net radiation flux on the crop surface (W·m−2);

LE is the latent heat flux (W·m−2); H is the sensible heat flux

(W·m−2); and G is the soil heat flux (W·m−2).

Bowen defined the Bowen ratio (b) as:

b =
H
LE

=
raCpKh DT=D z

lraeKw D e=Dz
= g

Kh D T=D z
Kw D e=D z

(2)

where ra is the air density (kg·m−3); Cp is the air heat capacity; e
is the ratio of the molecular weight of water to that of dry air

(0.622); Kw and Kh are the eddy transfer coefficient for latent

turbulent and sensible heat (m2·s−1); DT and De are the difference
of potential temperature and water vapor pressure difference

between the two measurement altitudes, respectively; Dz is the

difference in height; g is the psychrometric constant (kPa·°C−1);

and l is the latent heat of vaporization (MJ kg−1).

By invoking Reynold’s analogy, assuming Kw = Kh, and steady-

state conditions, the Bowen ratio reduced to:

b =
Cp

l
DT
De

= g
DT
De

(3)

Combining Equations 1 and 3 results in the following equation

to calculate LE and H by:

LE = (Rn − G)=(1 + b) (4)

H = (Rn − G)b=(1 + b) (5)
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2.3 Bowen ratio system and data collection

The winter wheat field plot covered an area of 0.33 ha, with the

BREB system installed near the center of the whole base. The

experimental block was surrounded by the same crop (winter wheat

and summer maize crop rotation), ensuring that the required fetch

was fully satisfied in all directions. The meteorological parameters

required in the models were measured by the BREB, and all sensors

were installed on a stable tripod. The atmospheric temperature (Ta)

and humidity (RH) were measured by two combined polymer

capacitive humidity and temperature sensors (HMP 155A-L,

Vaisala) mounted at 0.5 m and 2.0 m on two masts extending

westward. The canopy temperature (Tc) was measured by the

canopy temperature sensor (Apogee, SI-111) mounted on a

southward mast at a height of 2 m. The net radiation (Rn) and

total radiation (Rs) were measured using the radiation sensor

(CNR4, Kipp & Zonen) installed in the same direction and height

as the canopy resistance sensors. The wind speed (u) was measured

by an anemometer (05103L, R.M. Young) installed at the top of the

tripod. The sunshine hours, atmospheric pressure (P), and rainfall

were measured by the sunshine duration sensor (CSD3, Kipp &

Zonen), air pressure sensor (PTB110, Vaisala), and tipping bucket

rain gauge sensor (TE525MM, Texas Electronics), respectively,

erected below the wind speed sensor at a height of 2 m. The soil

heat flux and soil temperature were measured by the soil heat flux

sensor (HFP01SC, Hukse flux) and soil temperature sensor (109SS,

Campbell Scientific) buried 0.1 m underground. The soil water

content was measured using soil moisture sensors (CS616,

Campbell Scientific) buried at depths of 0.1, 0.25, 0.50, 0.75, and

1.0 m underground, respectively. All meteorological sensors were

calibrated at the National Meteorological Center before installation.

The data logger (CR1000, Campbell Scientific) was mounted at the

midpoint of the tripod. It sampled sensors every 2 s and recorded

the 30-min averages, with the system being supervised once a week.

The measured data were used to calculate LE (i.e., winter wheat ET)

using Equation 4 and recorded as ET-(BREB) for comparison with

other methods. The data were filtered by the quality control based

on the criteria proposed by Unland et al. (1996), and gaps were filled

according to the method outlined by Qiu et al. (2019).

Measurements were conducted from 24 March 2018 to 31 July

2023, covering five growing seasons.
2.4 Winter wheat characteristics

The winter wheat (Triticum aestivum L. of ZHONGMAI 36) was

seeded around 1 October and harvested around 15 June of the

following year, from 2018 to 2023. The winter wheat was

mechanically seeded with a row spacing of 15 cm and a planting

density of 300 kg·ha−1. The cultural practices such as fertilization,

weeding, and pesticide were kept uniform throughout the study

period, but irrigation varied across the five seasons (see Section 3.1).

The physiological indicators used to estimate winter wheat ET

included plant height (h), leaf area index (LAI), and leaf stomatal

conductance (rI), measured every 5–7 days using a ruler, the SS1
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Sunscan Canopy Analysis System (Delta-T Devices, England), and

the SC-1 Leaf Porometer (Meter, USA), respectively.

Daily data of winter wheat variables (h, LAI, and rI) were needed

for daily evaluation, but these were measured at longer time

intervals as mentioned above. In order to obtain daily values,

nonlinear regressions were performed, as shown in Figures 1

and 2. Daily h was interpolated using a logistic growth model,

which demonstrated high accuracy, with all the coefficients of

determination (R2) exceeding 0.96 (Figure 1A). The maximum

heights (73.6, 65.2, 61.7, 66.9, and 67.9 cm for each season,

respectively) were reached at the flowering stage and remained

nearly constant thereafter. Daily LAI followed a downward-opening

parabolic curve, with maximum values of 4.5, 4.46, 5.2, 4.2, and 4.3

m2 m−2 for the five seasons, respectively (Figure 1B), occurring

approximately at the flowering stage. rI showed the strongest

regression relationship with Rs among the examined, including

Rn, Ta, and Tc (Figure 2). Note that the relationship used for 2019–

2020 and 2020–2021 was the average from the other three seasons

due to missing measurements.
2.5 Penman–Monteith equation

The estimation of winter wheat ET was based on the PM

equation (Penman, 1948). It could be described as follows:

lET =
D (Rn − G) + raCpVPD=ra

D +g (1 + rc=ra)
(6)

where lET is the crop ET (Wm−2);D is the slope of the curve when

the saturated water vapor pressure is at air temperature (kPa °C−1);

g is the psychrometric constant (kPa °C−1); Rn is the net radiation flux

on the crop surface (W m−2); G is the soil surface heat flux (W m−2);

ra is the air density (kg m−3); Cp is the specific heat capacity of air

constant pressure (J kg−1 °C−1); VPD is the water vapor pressure deficit

(kPa); ra is the aerodynamic resistance (s m−1); and rc is the crop

canopy resistance (s m−1), calculated by rc models.
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The aerodynamic resistance (ra) can be described as Perrier (1975):

ra =
ln½(z − d)=z0� ln½(z − d)=(h − d)�

k2uz
(7)

where uz is wind speed of zmeters (m s−1); z is measuring height

(z = 2 m); k is the Von Karman constant with a value of 0.41; and d,

z0, and h are zero plane displacement, roughness length of

controlling momentum transfer, and crop canopy height (m),

respectively. Following Allen et al. (1998), their relationship was:

d = 2=3 h; z0 = 0:123 h (8)
2.6 Canopy resistance models

In this paper, nine rc models were applied to the PM equation to

simulate ET of winter wheat. These models included the upscaling

method [Monteith (MT), Idso (IS), Farias (FA), KP, and TD] and

the environmental factor function method [COmodel, JA, Stannard

(ST), and Garcίa-Santos (GA)]. Six of the rc models (expect FA, MT,

and TD) required the parameter recalibration, which used only

daytime (9:00–15:00) data (n = 3,549) measured by the BREB. All

parameters were optimized using the least squares method through

the MATLAB. The 30-min all-day data from four seasons were used

to calculate rc, which was then brought into the PM equation

(Equation 6) to estimate wheat ET, denoted as the PM-rc model, for

example, PM-MT and PM-CO. These estimates were compared

with the BREB measurements. Both the original and calibrated

parameters of the rc models are provided in Table 1.

The uncalibrated rc models (i.e., using original parameters) were

first evaluated using data from four seasons (expect 2020–2021),

aiming to test their universality. Then, models were then calibrated

using data from 2020 to 2021 to examine whether parameter

calibration could improve the PM’s estimation accuracy of winter

wheat ET. In the second-round comparisons with calibrated

parameters, the same four-season dataset was used.
FIGURE 1

Nonlinear regression of (A) plant height (h) and (B) leaf area index (LAI) of winter wheat from the 2018 to 2023 growth period.
frontiersin.org
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2.7 Evaluation of model performance

The performance of the rc models was evaluated using statistical

indicators including root mean square error (RMSE), mean bias

error (MBE), the determination coefficient (R2), and index of

agreement (d). They were calculated as:

MSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Ei − Oi)

2

r
(9)

MBE =
1
no

n
i=1(Ei − Oi) (10)

R2 =
(on

i=1(Oi − �O)(Ei − �E))2

on
i=1(Oi − �O)2on

i=1(Ei − �E)2
(11)

d = 1 − on
i=1(Ei − Oi)

2

on
i=1( Ei − �Oj j + Oi − �Oj j)2 (12)

where Oi and Ei are the observed and estimated values,

respectively; �O and �E are their respective average; the subscript i

is the ith value; and n is total record of data. Lower values of MBE

and RMSE indicate better model performance, and vice versa for

the R2 and d.
3 Results and discussion

3.1 Meteorological and water condition
during experiment

The interannual variation of water conditions during the 5-year

growth period of winter wheat is shown in Figure 3. The weather was

typically semiarid, and precipitation varied significantly each year,

with values of 107.8, 135.6, 84.3, 41.7, and 54.9 mm, over the five

growing cycles. Compared with the long-term mean precipitation of
Frontiers in Plant Science 05
96.4 mm, the years fell into the categories of normal toward wet

(2018–2019), nearly wet (2019–2020), normal toward dry (2020–

2021), and extremely dry (2021–2023). The soil moisture (q) within 1
m varied from 23.8 to 36.2 cm3 cm−3, averaging 30.4 cm3 cm−3 over

the five seasons, primarily driven by irrigation and rainfall. Irrigation

varied across experimental years, i.e., one irrigation of 70 mm at the

active growing stage for the former two seasons (2018 to 2020) and

three irrigations totaling 270 mm, respectively, at seedling (10

November 2020), jointing (13 April 2021), and flowering (5 May

2021) for the last three seasons (2020 to 2023).

The variation in meteorological factors during the 5-year growth

period of winter wheat is shown in Figure 4. They showed a similar

trend, decreasing first till January and then starting to increase

thereafter. The 30-min daily mean Rn and Ta changed from −44 to

233 w m−2 and −15 to 36°C with a mean of 71 w m−2 and 8.9°C,

respectively, during 2018–2023, all of which peaked in June

(Figures 4A, C). The daily VPD varied from 0 to 3.6 kPa, averaged

0.7 kPa over the five seasons (Figure 4D), and turned flat in winter and

started to rise in the greening period. The daily G and u ranged from

−48 to 41 w m−2 and from 0 to 4.3 m s−1, respectively, and averaged

0.83 w m−2 and 1.2 m s−1 over the five seasons (Figures 4B, E).
3.2 Comparison of daily ET

3.2.1 rc models with original parameters
The scatter plot of daily ET in Figure 5 showed a significant

correlation (p < 0.001) between the PM estimated from nine rc
models with original parameters and the BREB measured values.

The R2 values ranged from 0.7 to 0.83, with the PM-KP obtaining

the highest correlation and the PM-IS being the lowest. However,

the slope of the linear relationships varied significantly, ranging

from 0.51 to 1.75 with the PM-MTmodel being closest to 1. Clearly,

four rc models (the PM-ST, PM-KP, PM-GA, and PM-FA)

underestimated daily ET, as indicated by their regression slopes

(0.51–0.81) of less than 1 (Figures 5A, C, F, H). This was also

reflected in their daily mean difference (MBE), ranging from −0.59

to 0.02 mm d−1 (Figure 6), with the PM-FA having the largest value

and the PM-ST having the smallest. The PM-GA had the largest

underestimation at only half of the true value. An MBE of less than

0 meant underestimation and vice versa. However, the MBE for the

FA model was greater than 0, likely because it generally

overestimated ET when the daily ET was less than 2 mm d−1

(e.g., sparse vegetation cover) (Li et al., 2015). The index of

agreement (d) of these rc models was greater than 0.85 (Figure 6),

with the PM-GA having the highest value and the PM-FA having

the lowest. The RMSE values for these four rc models ranged from

1.07 to 1.47 mm d−1, averaging 1.21 mm d−1 (Figure 6), suggesting a

performance order of PM-FA > PM-KP > PM-ST > PM-GA.

Notably, the PM-KP performed similarly to the PM-FA,

producing values of slope, R2, MBE, RMSE, and d within 0.04,

0.01, 0.08 mm d−1, 0.06 mm d−1, and 0.01 of each other.

Five rc models, i.e., the PM-CO, PM-JA, PM-IS, PM-MT, and

PM-TD, overestimated daily ET, as indicated by their regression

slope (Figures 5B, D, E, G, I) of larger than 1. The slope of the PM-

MT was closest to 1 (1.02), and that of the others were greater than
FIGURE 2

Relationship between leaf stomatal resistance (rI) and solar
radiation (Rs).
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TABLE 1 The list of canopy resistance models, original parameters, and calibrated parameters.

Model Formula Original parameter Resource Corrected parameter

CO

rCOc = ½(a0LAI + a1)=r
JA
c + a2=rs�−1

rs = a3 + exp½a4 + a5f (q)�f g−1

f (q) = (qi − qW )(qF − qW )−1

a0 = −0.15, a1 = 0.14
a2 = 0.01, a3 = 1.57
a4 = −2.14, a5 = −8.96

Li et al. (2014)
a0 = 0.32, a1 = −0.75
a2 = −1.76, a3 = −0.003
a4 = −1,192.4, a5 = 5.27

FA

rFAc = rif (q)−1

ri = racpVPD½D (Rn − G)�−1

f (q) = (qi − qW )(qF − qW )−1

– Ortega-Farias et al. (2004) –

MT

rFAOc = rILAI
− 1

active

LAIactive =

LAI     LAI ≤ 2

2 2 < LAI < 4

LAI=2     LAI ≥ 4

8>>>><
>>>>:

rFAOc =70 Monteith (1965) Calibrated by Figure 3

GA rGAc = b1
(1100 + b2)Rn

1100(Rn + b2)
exp ( − b3VPD)

� �−1 b1 = 11.8
b2 = 433.1
b3 = 0.084

Garcıá-Santos et al. (2009)
b1 = 9.34
b2 = 325.42
b3 = 0.35

IS

rISc = ½1 − c2(D+g )�(1 − c2 D )−1(c1rCp)(c2g Rn)
−1

Tc − Ta = c1 − c2VPD

c1 = 1.08
c2 = 2.09

Idso (1983)
c1 = 1.53
c2 = 0.62

JA

rJAc = rcmin½LAIf (Rn)f (VPD)f (Ta)f (q)�−1

f (Rn) = 1 − exp ( − Rnd
−1
1 )

f (Ta) = 1 − d2(25 − Ta)2

f (VPD) = 1 − d3VPD

f (q) = (qi − qW )(qF − qW )−1

d1 = 161.8
d2 = 0.013
d3 = 0.001

Zhao et al. (2015)
d1 = 618.96
d2 = 0.0013
d3 = 0.001

KP

rKPc = (e1r*r
−1
a + e2)ra

r∗ = (D+g )(D g )−1rCp(es − ea)(Rn − G)−1
e1 = 0.54
e2 = 0.61

Yan et al. (2020)
e1 = 0.85
e2 = −0.29

ST

rSTc = ½f (LAI)f (VPD)f (Rn)�−1

f (LAI) = f1LAI(LAImax)
−1

f (VPD) = f2(f2 + VPD)−1

f (Rn) = Rn(Rnmax + f3)½Rnmax(Rn + f3)�−1

f1 = 0.711
f2 = 0.00804
f3 = 41

Stannard (1993)
f1 = 0.77
f2 = 0.089
f3 = 1171

TD

rTDc = Xri

aX2 + bX + c = 0

a = (D+g rir−1a )(D+g )−1rir−1a VPD

b = −g rir−1a gVPD½D (D+g )�−1

c = −(D +g )gVPD½D (D+g )�−1

ri = racpVPD½D (Rn − G)�−1

– Todorovic (1999) –
F
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CO, FA, MT, GA, IS, JA, KP, ST, and TD represented the Coupled surface, Farias, Monteith, Garcίa-Santos, Idso, Jarvis, Katerji-Perrier, Stannard, and Todorovic canopy resistance models,
respectively. rc with different superscripts represented the canopy resistance of different models. a–f with numerical subscripts represented the parameters in the canopy resistance models, and the
numerical subscripts represent the number of parameters required for the canopy resistance models. rs, ri, rI, and r* represented soil resistance, modified climatological resistance, leaf resistance,
and climatic resistance (s·m−1), respectively. qi, qW, and qF represented soil moisture content, wilting coefficient, and field capacity (cm3·cm−3), respectively. LAIactive and LAImax represented
effective leaf area index and maximum leaf area index (m2·m−2), respectively. Tc represented canopy temperature (°C). Rnmax represented maximum net radiation (W·m−2). X represented the ratio
of canopy resistance to climatological resistance. – meant the rc model did not need to calibrate. The other symbols were consistent with those shown above.
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1.4. Meanwhile, the PM-MT obtained the smallest MBE at 0.32 mm

d−1, while the others ranged from 0.98 to 2.05 mm d−1, averaging

1.33 mm d−1 (Figure 6). The PM-CO model had the largest

overestimation. The d values of these models were lower than

those of the underestimated models, ranging from 0.68 to 0.85

with an average of 0.77. Among these, PM-IS performed the worst

and PM-TD performed the best. The RMSE values for the

overestimated models ranged from 1.6 to 2.97 mm d−1, averaging

2.52 mm d−1. Performance decreased in the following order: PM-

MT > PM-TD > PM-JA > PM-CO > PM-IS (Figure 6).
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The accuracy of PM-ST, PM-KP, and PM-FA models without

parameterization was acceptable in this study. The PM-KP model

performed aligning with the estimation results of Yan et al. (2020)

for winter wheat ET in humid regions. However, the RMSE

increased by 38.3% compared to their value of 0.81 mm d−1. The

FA model did not require parameter correction and needed fewer

meteorological factors, making it suitable for widespread

application. Its simulation results differed from those of Li et al.

(2015) for maize and grape under partial and dense canopy stages,

where their RMSE was much high at 7 mm d−1. The ST model, a JA-
FIGURE 4

Changes in (A) net radiation (Rn), (B) soil heat flux (G), (C) air temperature (Ta), (D) vapor pressure difference (VPD), and (E) wind speed (u) in winter
wheat measured by the Bowen ratio energy balance (BREB) system from 2018 to 2023. DOY means day of years.
FIGURE 3

Winter wheat 2018–2023 water conditions, including soil volumetric moisture content (q), irrigation (I), and rainfall (P).
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type model, ranked behind the KP and FA models, requiring LAI

values during the calculation process. Having more parameters and

complex calculation processes did not improve the accuracy.

The other six rc models (CO, JA, IS, GA, MT, and TD)

presented great error (RMSE > 1.5 mm d−1) without

parameterization (Figure 6). Historically, the MT model was the

most widely used in PM equation (rc =70 s m−1) to estimate

grassland ET (Gharsallah et al., 2013). The MT model performed

best in regression slope but significantly overestimated in 2022–

2023 and underestimated in 2021–2022, resulting in a 4-year total

slope of 1.02 (Figure 5G). This inconsistency may be due to rc being

assigned a fixed value that did not match the actual situation. The

TD model, which did not require parameter correction, showed

good results in Liu et al. (2011) and Yan et al. (2020) with RMSE

values of 0.79 and 0.85 mm d−1, respectively. They were much lower

than those in our study. This discrepancy may be because these

studies used only daytime data, whereas using data from the entire

day can introduce uncertainty in daily ET. When VPD and Rn-G

were less or near zero, and when rI and r* in the TD model had

negative or uncertain values, X had no solution (the solution of the
Frontiers in Plant Science 08
TD method equation, Table 1). Thus, the TD model was only

applicable when rI was precise (Perez et al., 2005). In another study,

Katerji et al. (2011) compared the KP and TD models over four

crops and found that the TD model’s overestimation was attributed

to the theoretical limitations, neglecting the effect of aerodynamic

resistance. The inability of ST, CO, JA, IS, and GA rc models to

estimate daily ET with original parameters was due to the

inadequacy of these parameters, attributed to differences in crop

types and significant variations in environmental factors, especially

regional climatic water conditions (Forster et al., 2022). Therefore,

using these models to estimate ET required parameter calculation.

3.2.2 rc models with calibrated parameters
The scatter plot of the daily ET estimated by the PM equation

with seven rc models (excluding the FA and TD) with calibrated

parameters against BREB measurement is shown in Figure 7. It

could be clearly seen that scatter plots of rc models were closer to the

1:1 line after calibration, indicating a significant correlation between

measured values. Compared to using original parameters, seven rc
models (except the FA and TD) performed better after
FIGURE 5

Scatter plot of daily ET (mm d−1) between nine PM-rc models ((A) PM-ST, (B) PM-CO, (C) PM-KP, (D) PM-JA, (E) PM-IS, (F) PM-GA, (G) PM-MT, (H)
PM-FA and (I) PM-TD model) with original parameter estimation against BREB measurement.
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FIGURE 6

Comparison of the mean bias error (MBE, mm d−1), mean root square error (RMSE, mm d−1), and index of agreement (d) of winter wheat daily ET by
different rc models with original parameters and after parameter calibration.
FIGURE 7

Scatter plot of daily ET (mm d−1) between seven PM-rc models ((A) PM-ST, (B) PM-CO, (C) PM-KP, (D) PM-JA, (E) PM-IS, (F) PM-GA and (G) PM-MT
model) after calibration estimation against BREB measurement (except for FA and TD models).
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recalibration. d increased from 0.69–0.93 to 0.86–0.93 with the

average d value increasing by 13.8%. R2 increased from 0.7–0.83 to

0.78–0.85, with the average R2 increasing by 19%, indicating

improved stability and reliability of the rc models. The PM-KP

obtained the highest correlation, while the PM-MT had the lowest.

Five rc models (PM-CO, PM-JA, PM-IS, PM-GA, and PM-MT)

underestimated the daily ET values, with the regression slopes

ranging from 0.62 to 0.96, averaging 0.81 (Figures 7B, D–G).

MBE values ranged from −0.70 to 0.01 mm d−1, averaging −0.26

mm d−1, with the PM-MT having the largest underestimation and

the PM-CO having the smallest (Figure 6). The underestimated rc
models produced RMSE values ranging from 1.12 to 1.34 mm d−1,

averaging 1.25 mm d−1 (Figure 6), according to their RMSE ranked

as PM-CO > IS > GA > JA > MT. The RMSE values were 16.25%–

91.64% lower than using the original parameters, averaging 41.16%,

indicating that the accuracy of rc models has been improved.

PM-ST and PM-KP showed a light trend of overestimation with

regression slopes of 1.14 and 1, respectively (Figures 7A, C). The

PM-ST model obtained a better MBE value, while the PM-KP

model performed better in terms of RMSE. Their MBEs were 0.00

and 0.29 mm d−1, and the RMSE values were 1.20 and 1.12 mm d−1,

respectively (Figure 6). It was worth noting that the RMSE of PM-

ST model increased by 3.4%, while the PM-KP model only

decreased RMSE by 0.88%, suggesting that the accuracy has

not improved.

As described above, the performance of the nine rc models,

based on RMSE values (Figure 6), was ranked as PM-FA > CO > KP

> ST > IS > GA > JA > MT > TD. The performance of the first eight

models was acceptable. Although parameter recalibration could

reduce the RMSE value of the rc model, they were still higher than

that of the PM-FA model. However, this process significantly

improved the regression slope of the models. The FA model’s

RMSE still performed better than others after parameter

correction. Ortega-Farias et al. (2004) and Ortega-Farias et al.

(2006) also indicated that the PM-FA model accurately estimated

ET for soybean and tomato. However, the regression slope of the

PM-FA was the second to last among the eight acceptable models,

possibly because it was an empirical method and failed to consider

the effect of water stress condition. Unlike with the previous

research (Li et al., 2015), the FA model systematically

overestimated maize and grapevine ET, with RMSE exceeding 7

mm d−1 during both low and high LAI stages. This overestimation

was primarily due to the underestimating canopy resistance,

particularly during the sparse canopy stage. While the model

accounted physiological control on resistance, it failed to consider

the restrictive effects of soil.

The PM-CO, IS, and JA rc models exhibited significant errors

before parameterization but achieved satisfactory accuracy

afterward (Figures 5–7). The PM-CO simulated maize and

vineyards more accurately than in Li et al. (2015), with an RMSE

31.3% lower than theirs. Although the PM-CO model had good

accuracy, it involved the most complicated calculation process

among all rc models and required the most meteorological

parameters. The difficulty of obtaining these data should be

considered in practical applications. The successful application of

the PM-IS model in this study was consistent with Howell et al.
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(1997) for wheat, with an RMSE reduction of 18.3%. However, the

RMSE for corn and sorghum increased by 29.2% and 57.5%,

respectively. This may indicate that the PM-IS model was more

suitable for estimating ET of crops with higher plant height and

greater canopy temperature differences.

Compared with Zhang et al. (2008) and Li et al. (2015), the

accuracy of the PM-JA model has improved, but it was still inferior

to other models and ranked last among all acceptable models.

Zhang et al. (2008) indicated that the PM-JA model overestimated

the vineyard daily ET in an arid desert region of northwest China

and was inaccurate after rainfall. The JA model presented uncertain

results during the partial canopy stage but simulated ET accurately

under the full canopy (Li et al., 2015). This may explain the larger

overall RMSE, which also showed that the accuracy of model

estimation was not related to the model’s complexity.

For both the PM-KP and STmodels, parameterization appeared

to be unnecessary. The reduction in RMSE after calibrating the KP

model calibration was not negligible, with only a 0.01 difference

before and after calibration. This indicated that parameter

recalibration did not enhance the KP model’s accuracy, though it

did achieve an optimal linear regression slope (value = 1), consistent

with Rana et al. (2012). Compared to the simulations of tomato,

maize, canola, and tea by Rana et al. (2012); Srivastava et al. (2018);

Liu et al. (2012), and Zhang et al. (2022a), the RMSE increased by

43.8%, 66.9%, −3.6%, and 8.9%, respectively, indicating that

parameter calibration did not improve accuracy. The PM-ST

model’s RMSE was identical to that reported by Xing et al. (2024)

for the kiwifruit. However, parameter correction did not improve its

accuracy; instead, it slightly increased the RMSE. Nevertheless, the

regression slope, d, and MBE values were improved. This may be

due to significant annual variations, with 2 years of overestimation

and 2 years of underestimation, leading to a slight increase

in RMSE.

The PM-GA and MT models still exhibited some significant

errors even after parameter calibration, but their results were better

than those of the TDmodel, which did not require correction. In the

GA model, the maximum stomatal conductance was set as a

constant value. However, in the natural environment, this

parameter dynamically fluctuated in response to climatic

variations. This discrepancy may contribute to the observed

significant underestimation of the GA model (Garcıá-Santos

et al., 2009; Xu et al., 2021). Similar to the GA model, the MT

model also underestimated ET due to its overestimation of rc and

the uncertainty of nighttime rc. Therefore, these two models should

be used with caution.

Although the PM-FA, KP, and ST models can estimate daily ET

of winter wheat regardless of whether they were calibrated or not,

they each had limitations. Without parameterization, these three

models noticeably underestimated daily ET. In this study,

calibrating the KP and ST models appeared redundant, as the

RMSE of the KP model decreased by only 0.01 mm d−1, while

that of the ST model increased by 0.04 mm d−1 after calibration. In

comparison, the errors did not improve and even worsened in some

cases. Based on the results of Yan et al. (2020), the KP model,

originally applied in humid conditions, can still be effectively used

under the semiarid conditions of this study. Additionally, the PM-
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CO, IS, ST, GA, JA, and MT models, similar to previous studies,

required parameter calibration before they were used to estimate

ET. However, these models required more parameters or

meteorological data compared to the KP model. The FA model

did not require parameterization, which often demanded extensive

soil moisture data, making it useful when parameter calibration was

not feasible without measured ET values.
3.3 Comparison of seasonal ET

3.3.1 rc models with original parameters
In order to analyze the seasonal cumulative ET of winter wheat

simulated by PM with different rc models, this study divided the

entire growth period of winter wheat into three stages: the seeding

period in October and November, the wintering period from

December to February of the following year, and the rapid

growth period from March to June. The seasonal ET of winter

wheat during the seeding, wintering, and rapid growth periods over

four growth years, observed using the BERB method, ranged as

follows: 50.07 to 98.35 mm with an average of 79.42 mm for the

seeding period, 12.56 to 44.2 mm with an average of 27.05 mm for

the wintering period, and 251.8 to 409.7 mm with an average of
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359.34 mm for the active growing period. Throughout the entire

reproductive period, the proportion of total ET was 10.6% to

25.69% during the seeding period, with an average of 17.37%;

2.66% to 9.10% during the wintering period, with an average of

5.91%; and 65.80% to 86.74% during the rapid growth period, with

an average of 76.72%.

To compare winter wheat seasonal ET across different growth

stages, the differences between BREB observations and PM

combined rc model estimations over 4 years are shown in

Figures 8 and 9. Over the entire growth period, the PM-ST and

PM-GA rc models consistently underestimated seasonal ET. The

total ET differences between the two rc models applied in PM and

the BREB measurements varied from −197.12 to 12.27 mm, with an

average of −103.59 mm (Figure 8). The MBE and RMSE for the PM-

ST and GA models were −152.06 and −115.79 mm, and 157.05 and

121.23 mm, respectively (Table 2). The other seven rc models (i.e.,

PM-CO, KP, JA, IS, MT, FA, and TD) overestimated seasonal ET.

The differences in ET between these seven rc models applied in PM

and the ET determined by the BREB ranged from −95.33 to 603.52

mm, with an average of 257.65 mm (Figure 8). The MBE values

varied from 2.83 to 530.47 mm (Table 2), with the PM-MT model

performing the best and the PM-CO model performing the worst.

The RMSE values ranged from 29.79 to 535.26 mm (Table 2), based
FIGURE 8

The difference between the seasonal ET measured by BREB and estimated by the PM equation combined with nine rc models of winter wheat using
original parameters in (A) 2018-2019, (B) 2019-2020, (C) 2021-2022 and (D) 2022-2023 growth season.
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on performance that decreased according to FA > MT > KP > JA >

TD > IS > CO.

During the seeding period, the PM-ST, KP, JA GA, MT, and FA

models underestimated ET, with MBE ranging from −63.88 to

−8.64 mm (averaging −29.19 mm) and RMSE ranging from 18.63 to

67.05 mm (averaging 35.55 mm). The PM-CO, IS, and TD models

overestimated ET, with MBE values of 48.64, 84.51, and 79.33 mm,

and RMSE values of 52.57, 60.13 and 89.75 mm, respectively

(Table 2). The average RMSE values during the seeding period

were nearly half of the measured ET. This funding was similar to

that of Sun et al. (2007), who suggested that rc models showed large

errors during the sparse canopy stage or when the LAI was less than

2. However, in this study, the errors were even larger.

During the wintering period, when ET was at its lowest, the ST,

JA, and MT models underestimated ET, while the other models

overestimated it. The MBE values ranged from −3.68 to 135.47 mm,

with an average of 44.46 mm, and the RMSE values ranged from

12.98 to 139.04 mm, with an average of 56.29 mm (Table 2).

Although these average values were larger than the measured

values, the accuracy of the rc models without parameter

calibration did not rely heavily on this stage, as ET during this
Frontiers in Plant Science 12
period accounted for only an average of 5.91% of the total ET, which

was consistent with the findings of Gharsallah et al. (2013).

All rc models recorded their highest RMSE during the rapid

growth period, ranging from 57.93 to 375.27 mm, with an average

of 186.87 mm. Among these, the FA model performed best and the

COmodel performed worst, indicating that the rapid growth period

was the stage with the least accuracy in estimating ET. Over- or

underestimation at this stage did not determine the overall ET

estimation trend, as seen with the MT model. The ST, FA, and GA

models underestimated ET during this period, with MBE values of

−71.31, −21.80, and −123.10 mm, respectively. Among these, the FA

model performed the best and the GA performed the worst. The

other six rc models overestimated ET, with MBE values ranging

from 54.62 to 371.6 mm (Table 2).

Without parameter calibration, the PM-FA, PM-MT, and PM-

KP models were acceptable on a seasonal scale, mainly due to their

excellent performance during the rapid growth period. They

exhibited both over- and underestimation across the three growth

periods, resulting in the total ET errors offsetting each other. The

FA model performed perfectly in all years (Figure 8) and achieved

the best RMSE values (Table 2). The FAmodel relied on the climatic
FIGURE 9

The difference between the seasonal ET measured by BREB and estimated by the PM equation combined with seven rc models of winter wheat
after parameter calibration (except for FA and TD models) in (A) 2018-2019, (B) 2019-2020, (C) 2021-2022 and (D) 2022-2023 growth season.
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factors and soil water, which was a function of soil moisture and ri,

and was defined as the water vapor transfer from the soil and plants

to the atmosphere (Chen et al., 2022). Due to the inclusion of the

moisture content factor, it better reflected the early stage of soil ET.

The RMSE of the KP and MT models were acceptable; however, the

differences between KP model and BREB for the 2019–2020 and

2022–2023 periods were 112.71 and 99.35 mm, respectively.

Additionally, the differences between the MT model and BREB

for the 2021–2022 and 2022–2023 periods were −95.33 and 95.11

mm, respectively. These discrepancies seemed unacceptable for

practical estimation applications (Figure 8). Therefore, the KP

and MT models without calibration should be used with caution

in seasonal ET assessments.

It was noteworthy that the MT model was rejected on the

uncalibrated daily scale, while the ST was accepted on the daily

scale but rejected on the seasonal scale. This suggested that the rc
model, which estimated ET on the daily scale, may not be suitable for

estimating seasonal ET, as the same model performed differently at

different scales (Howell et al., 1997). This phenomenon may be

attributed to variations in climate conditions across years and the

differing performance of models at various growth stages of winter

wheat. Interestingly, over- and underestimation at different stages can

offset each other, improving the overall reproductive cycle results.

The MT model performed well on the seasonal scale because it
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underestimated seeding period daily ET and overestimated it during

the rapid growth period (Figure 8), causing the total ET errors to

cancel each other out. The ST model significantly underestimated the

daily ET across all three growth stages (Figure 8 and Table 2). The

accumulation of these large errors resulted in total seasonal ET

estimation, indicating that consistent estimation trends across

growth stages can lead to larger errors in total ET.

The rejection of the six unacceptable models (i.e., ST, CO, JA,

IS, GA, and TD) was primarily due to their poor performance

during the rapid growth period (Figure 8 and Table 2). Unlike in

previous studies, Liu et al. (2011); Chen et al. (2022); Xing et al.

(2024); Li et al. (2015); Garcıá-Santos et al. (2009), and Xing et al.

(2024), the TD, JA, IS, and CO models significantly overestimated

ET during this stage, while the GA and ST models significantly

underestimated it. All of the unacceptable models exhibited the

worst accuracy during the rapid growth stage, with severe

overestimation or underestimation sometimes exceeding twice the

ET value at this stage (Table 2). This indicated that the accuracy of

seasonal ET estimation primarily depended on this period.

3.3.2 rc models with calibrated parameters
After parameter calibration, six rc models (i.e., ST, KP, JA, IS,

GA, and MT) underestimated the total seasonal ET. The total ET

differences between these models and the direct determination
TABLE 2 Comparison of the mean bias error (MBE, mm) and root mean square error (RMSE, mm) of seasonal accumulated ET of winter wheat by
different rc models with original parameters and after parameter calibration at different growth stages.

Model Stage

Original parameter Parameter calibration

Seeding
period

Wintering
period

Rapid
growth
period

Total ET
Seeding
period

Wintering
period

Rapid
growth
period

Total ET

ST
MBE −63.88 −16.87 −71.31 −152.06 −57.44 −11.69 68.00 −1.13

RMSE 67.05 21.25 78.44 157.05 60.56 18.01 80.41 55.92

CO
MBE 48.64 110.22 371.60 530.47 −27.59 13.65 16.31 2.36

RMSE 52.57 115.17 375.27 535.26 28.59 19.22 30.96 32.18

KP
MBE −8.64 25.46 58.50 75.32 −16.76 12.98 −10.96 −14.74

RMSE 18.63 29.85 77.01 82.38 22.30 18.49 59.20 41.68

JA
MBE −26.87 −6.48 287.39 254.03 −61.80 −15.97 13.40 −64.37

RMSE 33.46 12.98 296.26 263.54 65.15 22.81 42.67 76.35

IS
MBE 54.51 95.02 329.71 479.25 −21.34 9.47 −24.73 −36.59

RMSE 60.13 101.40 336.75 482.23 27.06 15.76 67.38 55.60

GA
MBE −17.51 24.82 −123.10 −115.79 −17.37 6.70 −44.43 −55.11

RMSE 25.29 28.40 134.05 121.23 30.07 22.98 58.57 70.58

MT
MBE −48.12 −3.68 54.62 2.83 −60.83 −17.00 −102.10 −179.93

RMSE 49.88 17.47 74.36 69.63 62.27 21.41 109.08 184.50

FA
MBE −10.16 36.18 −21.80 4.22 – – – –

RMSE 19.01 41.04 57.93 29.79 – – – –

TD
MBE 79.33 135.47 242.68 457.48 – – – –

RMSE 89.75 139.04 251.79 460.98 – – – –
fr
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method ranged from −235.31 to 74.88 mm, with an average of

−68.76 mm. Among them, the ST model obtained the best average

value, while the MT model had the worst (Figure 9). The MBE

values varied from −179.93 to −1.13 mm (Table 2), with the ST

model performing the best and the MT model performing the

worst. The positive and negative MBE values on the seasonal scale

were entirely consistent with the regression slope. Unlike on the

daily scale, there was no instance where the MBE was greater than 0

but the slope was less than 1. The RMSE values ranged from 41.68

to 184.50 mm, with an average of 80.77 mm (Table 2). The models

ranked by RMSE were as follows: KP > IS > ST > GA > JA > MT.

Only the CO model generally overestimated the seasonal total ET,

with differences from the BREB method ranging from −51.84 to

28.11 mm and an average of 2.36 mm (Figure 9). Its MBE value of

2.36 mm was second only to the ST model, and its RMSE of 32.18

mm was the best among all rc models (Table 2).

Parameter calibration did not improve the accuracy of all rc
models across all growth stages. The RMSE values of the KP, JA,

GA, and MT models during the seeding period, JA and MT models

during the wintering period, and ST and MT models during the

rapid growth period were 2.51%–94.74% higher than those of the

uncorrected models. In contrast, the accuracy of the rc models

improved in other situations, with RMSE values decreasing by

9.69% to 91.75%. Except for the MT model, the MBE values for

the three growth stages improved, indicating that the degree of

overestimation or underestimation was reduced, resulting in more

accurate estimation.

The ability of the rc model to estimate seasonal ET depended

on the simulation results during the rapid growth period. Six rc
models were accepted, with only the MT model being refused

based on the RMSE values. The performance of the rc models was

clearly better than before, with the RMSE value reduced by

68.18%, indicating that the recalibration process significantly

improved the accuracy of the rc models, except for the MT

model (Figure 9 and Table 2). This improvement was attributed

to better estimation results during the rapid growth period

compared to previous results (Li et al., 2014). It should be noted

that the underestimation occurred during the seeding stage, and

the estimation error during this stage was primarily attributed to

significant heterogeneity in water vapor transport within the

model (Li et al., 2015). Compared to the daily scale, the

accuracy of estimating seasonal ET was higher, consistent with

findings by Gharsallah et al. (2013). This may be because the high

and low ET estimation canceled each other out over the long-term

growth period, making the cumulative seasonal ET close to the

measured value (Irmak and Irmak, 2008).

The CO model showed better simulation results in the early

stages of growth. This improvement was primarily because the CO

followed the resistance law of fluid transfer, coupling the resistance

of plants and soil into the overall canopy resistance. It accounted for

the combined limiting effects of vegetation and soil on surface water

transfer, and providing an accurate estimate of average surface

resistance (Li et al., 2015). The FA model ranked second to the CO

model. Although it still underestimated seasonal ET as it did on the

daily scale, its results were better than those for daily ET estimation.
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During the calibration of KP and IS model parameters, VPD

had the greatest influence, making it the primary factor affecting the

model error. However, when the VPD value was less than 2 kPa, the

model error was minimal (Yan et al., 2020). During the seeding and

wintering period, the VPD was generally below 2, resulting in better

simulation results for these two models.

The GA model was rejected on the daily scale but accepted on

the seasonal scale. As a function of Rn and VPD, it performed well

during the seeding and wintering periods, and its results for the

rapid growth period were also acceptable. Therefore, it can be used

to estimate seasonal ET.

The accuracy of the ST model improved during the seeding and

the wintering periods. However, its RMSE value increased during

the rapid growth period, shifting from underestimation to

overestimation. The combined effects of the seeding and the

wintering periods improved the overall results, leading to a

64.39% reduction in RMSE.

The ST, JA, and MT models had large errors in estimating ET

during the seeding and wintering periods because they all belonged to

the JA-type model, which upscaled leaf-level resistance to canopy-level

resistance (Lhomme, 2001; Wei et al., 2013). However, during these

two growth periods, the LAI value was less than 1, leading to significant

underestimation of ET due to the exposed surface. The ST and JA

models slightly overestimated ET during the rapid growth period, but

the rapid development of winter wheat during this period led to higher

ET. The slight overestimation during this period essentially offset the

serious underestimation during the seeding and wintering periods,

resulting in a slight overestimation in the 4-year daily scale regression,

but a more accurate simulation of the seasonal accumulation.

Compared with the ET simulated by the JA-type rc models used by

Liu et al. (2020) in the seeding period, wintering period, green period,

and maturity period, MBE and RMSE increased.

The MT model consistently underestimated ET across all three

growth periods, while the TD model consistently overestimated it,

leading to significant overall errors. Therefore, these two models

were not suitable for studying winter wheat water consumption in

this region at seasonal scale. Notably, the MT method was rejected

after calibration due to its significant underestimation of ET during

the seeding and rapid growth periods. During the early stages of

crop development, the soil surface was nearly bare, and soil

evaporation dominated the entire ET process. The assumption of

the large leaf model led to significant errors (Wu et al., 2022). The

significant overestimation by the TD model may be due to its

sensitivity to VPD values, particularly when VPD ranged from 1.5

to 4 kPa. Additionally, research has shown that the TD model

cannot be reliably applied at night (Yan et al., 2022).

In summary, after calibration, only the CO model outperformed

the FA model, while the other models still performed worse.

However, when comparing the calculation processes, it was clear

that the FA model was much simpler than the COmodel and did not

require parameter calibration. The FA model was the most suitable

method for seasonal ET estimation unless extremely high accuracy

was required. When the FA and CO models lacked the necessary

meteorological factor, the IS, GA, JA, ST, and KP models can be used

to estimate seasonal ET based on known meteorological data.
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4 Conclusions and recommendations

The parameter calibration process significantly improved the

stability and reliability of rc models in estimating ET on both daily

and seasonal scales. After calibration, the average RMSE was

reduced by 29.03% and 68.18%, respectively, with the rc model

showing greater accuracy in simulating ET on a seasonal scale

compared to a daily scale.

The rapid growth period was the primary stage of winter wheat

water consumption. Although overestimation or underestimation

during this period did not solely determine the overall trend, the

accuracy of rc model estimation heavily depended on this period.

The estimation of ET during the wintering period had little impact

on overall accuracy. Underestimation of ET typically occurred

during the seeding stage.

The simulation effects of nine canopy resistance models on winter

wheat ET were examined. Among the models that did not require

parameter calibration, the FA model provided accurate ET estimated

on both daily and seasonal scales, while the TD model exhibited large

errors and was not recommended. Without parameter calibration,

the KP and ST models were suitable for daily scale use, while the KP

and MTmodels were suitable for seasonal scale use. After calibration,

the CO, KP, ST, IS, GA, JA, and MT can be used at the daily scale,

while the CO, KP, IS, ST, GA, and JA were suitable for the seasonal

scale (listed in order of increasing RMSE values). Model complexity

did not directly correlate with the accuracy of ET estimation; a more

complex model did not necessarily yield better results. Whether using

original parameters or after calibration, the FA model consistently

ranked in the top two and could be used in any scenario due to its

simpler calculation process. It was recommended to select the most

suitable model based on known meteorological data, model

complexity, and simulation accuracy. This study demonstrated that

the FA and KP models, after calibration, were recommended for

estimating daily and seasonal ET in semiarid regions using the PM

equation. The CO, GA, ST, IS, and JA models can also be considered

as alternatives when sufficient meteorological data were available.

Nonetheless, this study also presented some limitations. It did not

thoroughly explore the relationship between rc simulated by the

canopy resistance model and rc inferred from that measured by

BREB. Additionally, further investigation was needed to understand

the inaccuracies of the rc models and identify the key factors

influencing the accuracy of canopy resistance models.
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