Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.
Sec. Sustainable and Intelligent Phytoprotection
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1468676
This article is part of the Research Topic AI, Sensors and Robotics in Plant Phenotyping and Precision Agriculture, Volume III View all 15 articles

Integrating AI Detection and Language Models for Real-Time Pest Management in Tomato Cultivation

Provisionally accepted
  • 1 Bursa Uludağ University, Bursa, Türkiye
  • 2 Bursa Technical University, Yıldırım, Bursa, Türkiye

The final, formatted version of the article will be published soon.

    Tomato (Solanum lycopersicum L.) cultivation is crucial globally due to its nutritional and economic value. However, the crop faces significant threats from various pests, including Tuta absoluta, Helicoverpa armigera, and Leptinotarsa decemlineata, among others.These pests not only reduce yield but also increase production costs due to the heavy reliance on pesticides. Traditional pest detection methods are labor-intensive and prone to errors, necessitating the exploration of advanced techniques. This study aims to enhance pest detection in tomato cultivation using AI-based detection and language models. Specifically, it integrates YOLOv8 for detection and segmentation tasks and ChatGPT-4 for generating detailed, actionable insights on the detected pests. YOLOv8 was chosen for its superior performance in agricultural pest detection, capable of processing large volumes of data in real-time with high accuracy. The methodology involved training the YOLOv8 model with images of various pests and plant damage. The model achieved a precision of 98.91%, recall of 98.98%, mAP50 of 98.75%, and mAP50-95 of 97.72% for detection tasks. For segmentation tasks, precision was 97.47%, recall 98.81%, mAP50 99.38%, and mAP50-95 95.99%. These metrics demonstrate significant improvements over traditional methods, indicating the model's effectiveness. The integration of ChatGPT-4 further enhances the system by providing detailed explanations and recommendations based on detected pests. This approach facilitates real-time expert consultation, making pest management accessible to untrained producers, especially in remote areas. The study's results underscore the potential of combining AI-based detection and language models to revolutionize agricultural practices. Future research should focus on training these models with domain-specific data to improve accuracy and reliability.Additionally, addressing the computational limitations of personal devices will be crucial for broader adoption. This integration promises to democratize information access, promoting a more resilient, informed, and environmentally conscious approach to farming.

    Keywords: Pest detection, precision agriculture, ChatGPT, YOLOv8, sustainable agriculture

    Received: 22 Jul 2024; Accepted: 23 Oct 2024.

    Copyright: © 2024 Şahin, Gençer and Şahin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: yavuz selim Şahin, Bursa Uludağ University, Bursa, Türkiye

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.