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Soil organic carbon plays an important role in climate change mitigation, and can

be strongly affected by plant diversity. Although a positive effect of plant diversity

on soil organic carbon storage has been confirmed in grasslands and forests, it

remains unclear whether this effect exists in wetlands. In this study, we

investigated plant diversity, soil properties and soil organic carbon across five

typical wetlands of northern China, to test the effect of plant diversity on soil

organic carbon and clarified the regulators. Increasing plant diversity significantly

increased belowground biomass of wetland plant communities, and both soil

organic carbon content and storage were significantly positively related to

wetland plant diversity. The positive effect of plant diversity was influenced by

belowground biomass of wetland plant communities, soil microbial biomass

carbon, and soil properties, especially soil water content and bulk density. The

structural equation model showed that soil organic carbon storage was

dominantly affected by microbial biomass carbon, plant diversity and biomass,

with standardized total effects of 0.66 and 0.47, respectively, and there was a

significant positive relationship between soil organic carbon and microbial

biomass carbon. These results suggest that increasing plant diversity can

potentially promote the ability of wetlands to store organic carbon in soils. The

findings highlight the importance of plant diversity on soil organic carbon in

wetland ecosystems, and have implications for managing wetlands to increase

carbon sinks and to mitigate global climate change.
KEYWORDS

microbial biomass carbon, plant species diversity, soil organic carbon, semi-arid region,
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1 Introduction

Wetland ecosystems stored more than 30% of terrestrial soil

organic carbon (SOC) despite occupying less than 6% of land area

(Poulter et al., 2021). As one of the highest carbon sinks and

carbon-dense ecosystems, wetland ecosystems can significantly

affect global carbon cycling (Zhang et al., 2023). Plant diversity

plays an important role in community structuring and ecosystem

functioning such as carbon sequestration (Hector et al., 1999; Xue

et al., 2022; Huang et al., 2023; Liu et al., 2024). Increasing plant

diversity has been shown to enhance soil organic carbon storage

(SOCS) in forests (Chen et al., 2023), grasslands (Steinbeiss et al.,

2008; Cong et al., 2014; Chen et al., 2018), and agricultural

ecosystems (Chen et al., 2020). However, the relationship between

plant diversity and SOCS in natural wetland ecosystems remains

unknown. Understanding such a relationship can potentially help

manage wetland ecosystems to promote carbon sequestration and

thus to mitigate global climate change.

Plant diversity can influence SOCS through plant biomass and

plant-derived carbon inputs (Gould et al., 2016; Li et al., 2022; Xi

et al., 2023), because high plant diversity may promote the

complementarity among species and the selection of some highly

productive plant species (Loreau and Hector, 2001; Allan et al., 2011;

Adomako et al., 2019; Wang X. et al., 2022). Previous studies have

confirmed that increasing plant diversity promotes plant biomass

(Chen et al., 2018; Bai et al., 2021; Wang et al., 2023), although there

are still inconsistent conclusions (Gherardi and Sala, 2015; Zou et al.,

2024). Plant diversity can affect SOCS by influencing soil labile

organic carbon and soil properties in forest ecosystems (Ratcliffe

et al., 2017; Adair et al., 2018). Additionally, increasing plant diversity

has been found to promote dissolved organic carbon (DOC) and

microbial biomass carbon (MBC) (Thakur et al., 2015; Mellado-

Vazquez et al., 2016; Lange et al., 2021), thereby increasing SOCS in

grassland ecosystems (Prommer et al., 2020). For wetland ecosystems,

plant diversity can also impact SOC accumulation through changing

plant detritus inputs (Gould et al., 2016; Li et al., 2022; Xi et al., 2023).

A previous study demonstrated that root biomass was significantly

correlated with plant richness in freshwater wetlands (Schultz et al.,

2011). Thus, it is likely that there is also a positive effect between plant

diversity and SOCS in wetland ecosystems. The effect of plant

diversity on SOCS can vary with environmental conditions such as

climate (Spohn et al., 2023). In semi-arid grasslands, for instance,

mean annual temperature (MAT) and precipitation (MAP)

significantly regulate the effect of plant diversity on SOCS (Tian

et al., 2016). Furthermore, in wetland ecosystems, there were

significant correlations between plant diversity and soil properties,

which maybe complexly drive SOC sequestration (Ma et al., 2021;

Zhao et al., 2021). Increasing plant diversity may enhance SOCS

through increasing the availability of labile carbon from plants to

microbes (Lange et al., 2015; Mellado-Vazquez et al., 2016; Chen

et al., 2018; Prommer et al., 2020). Previous studies have

demonstrated that increased plant litter inputs provide more

substrate for soil microorganisms, enhancing SOCS through

increased microbial residue accumulation (Eisenhauer et al., 2010;

Liang et al., 2011; Lange et al., 2015). Additionally, high plant richness
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and biomass have been shown to increase microbial enzyme activity

in wetlands, which maybe affect SOCS, similar to those observed in

other terrestrial ecosystems (Kim et al., 2022). Moreover, SOCS is also

significantly affected by soil properties, i.e., the soil water content and

pore size distribution (Fukumasu et al., 2022). As these biotic and

abiotic factors are closely linked with SOCS, increasing plant diversity

would theoretically enhance SOCS in wetland ecosystems. However,

few studies have tested the potential mechanisms underlying the

relationship between plant diversity and SOCS in wetlands.

Here, we conducted a field experiment in five typical wetlands

(Daihai, Chagannor, Dalinor, Horqin and Wulagai) in a semi-arid

region of northern China. We tested the effects of increasing plant

diversity on SOCS and biomass, and clarified the key determinant

regulating SOCS. Given that SOCS is influenced not only by plant

carbon input but also by soil properties and mineralization

processes, we hypothesized that: (1) increasing plant diversity

would increase plant community biomass, and thereby enhance

SOC and its fractions (DOC and MBC) in wetlands; (2) SOCS is

jointly regulated by plant diversity and biomass, soil properties such

as soil water content and MBC.
2 Materials and methods

2.1 Site description

We selected five typical wetlands (Daihai, Chagannor, Dalinor,

Horqin and Wulagai) with minimal anthropogenic interference in

Inner Mongolia, semi-arid region in northern China (40°13’-45°54’ N,

115°27’-121°57’ E; 179 m-1242 m a.s.l.; Figure 1). This region has a

typical continental monsoon climate, with MAP of approximately 350-

500 mm and MAT of around 3-7 °C (Yao et al., 2023). The growing

season spans from May to September, with about 70% of the yearly

rainfall occurring during June to August (Wu et al., 2010; Fang et al.,

2018). The dominant plant species are Equisetum hyemale, Leymus

chinensis, Potentilla anserina and Phragmites australis (Table 1).
2.2 Field surveys and experimental analyses

In each wetland, we set up 12 plots of 2 m × 2 m with different

plant species richness, totaling 60 plots for all five wetlands. In each

plot, we recorded the name of each plant species, measured its height,

and counted its individuals (Table 1). We then harvested aboveground

and belowground parts in a randomly selected 20 cm × 20 cm quadrat

in each plot.

In each plot, we collected soil samples from 0-10 cm, 10-20 cm

and 20-30 cm soil depth using the five-point sampling method for

physicochemical analysis. We also collected three soil cores (100 cm3)

at each depth in each plot to measure soil water content and bulk

density. Plant and soil samples were placed in self-sealing bags and

transported to the laboratory. Plant samples were oven-dried at 65°C

for 48 h, and weighed to obtain aboveground biomass

and belowground biomass. One half of each soil sample was stored

at -18 °C for subsequent measurements of DOC and MBC. The other
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half of the soil sample was air-dried at room temperature and then

sieved through a 2-mm sieve. We measured pH and electrical

conductivity (EC) using a pH meter (PHB-3, China) and a

conductivity meter (FE30, USA) with a soil:water ratio of 1:5 (w:w),

respectively (Zhao et al., 2020). DOC, MBC and SOC were measured

by TOC-analyzer (N/C 3100, Germany). Specifically, DOC was

extracted with a mass ratio of 1:5 (soil/purified water) and

subsequently analyzed by TOC-analyzer (N/C 3100, Germany).

MBC was determined by the chloroform fumigation method with

TOC-analyzer (N/C 3100, Germany) (Vance et al., 1987). SOC was

measured using a high-temperature combustion method with the

solid module of TOC-analyzer (N/C 3100, Germany) after inorganic

carbon was removed (Bisutti et al., 2004; Liang et al., 2021).
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2.3 Calculations

Diversity indices (species richness, Shannon-Wiener index, and

Simpson’s dominance index) were used to characterize plant species

diversity (Fang et al., 2009).

Shannon-Wiener index (H) measures the degree of diversity in

plant communities (Shannon andWeaver, 1949) and was calculated

as:

H = −os
i=1Pi ln (Pi) (1)

where S represents the total number of plant species in a given

plot, Pi represents the relative abundance of plant species i within

that plot.
FIGURE 1

Study area and detailed location of the sampling sites.
TABLE 1 Mean annual precipitation (MAP), mean annual temperature (MAT) and plant communities at sampling sites.

Site
MAP
(mm)

MAT
(°C)

Longitude
(°N)

Latitude
(°W)

Plant species

Daihai 450.56 6.71 121.95 45.14
Phragmites australis, Cyperus pygmaeus, Schoenoplectus tabernaemontani, Schoenoplectus triqueter,
Suaeda salsa, Alisma plantago-aquatica, Knorringia sibirica, Aster tataricus, Inula japonica,
Typha orientalis

Chgannor 410.49 2.95 115.46 43.49
Phragmites australis, Agropyron cristatum, Potentilla anserina, Artemisia, Ranunculus japonicus,
Leymus chinensis, Scirpus triqueter, Saussurea amara

Dalinor 432.11 3.76 116.72 43.25
Suaeda salsa, Phragmites australis, Potentilla anserina, Parnassia palustris, Inula japonica, Cyperus
rotundus, Melilotus officinalis, Calamagrostis epigeios

Horqin 466.67 6.44 112.63 40.57
Phragmites australis, Equisetum hyemale, Leymus chinensis, Artemisia, Lespedeza bicolor, Echinochloa
crusgalli, Poaceae, Setaria viridis, Gramineae, Allium senescens, Parthenocissus Planch

Wulagai 532.45 1.67 119.49 45.90
Phragmites australis, Polygonum hydropiper, Vicia sepium, Cicuta virosa,Lactuca indica, Equisetum
hyemale, Potentilla anserina, stertataricus, Sanguisorba officinalis, Swertia bimaculate,
Poaceae Gramineae
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Simpson’s dominance index (D) reflects evenness in

distribution among species (Simpson, 1949) and was calculated as:

D = 1 −os
i=1(ni=N)2 (2)
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The variable ni represents the number of individuals belonging

to plant species i, while N is the total number of individuals across

all plant species within a given plot.

Soil organic carbon storage (SOCS, kg·m-2) in a given soil layer

(Satdichanh et al., 2023) was calculated as:
FIGURE 2

Relationships between plant diversity (Richness index, Shannon-Wiener index, Margalef index and Simpson's dominance index) and soil organic
carbon storage (SOCS). R2, and P-values of linear regressions are presented, and the shaded areas represent the 95% confidence intervals (P < 0.05).
SOCS, soil organic carbon storage.
FIGURE 3

Relationships between plant diversity (Richness index, Shannon-Wiener index, Margalef index and Simpson's dominance index) and soil carbon (SOC,
MBC and DOC). R2, and P-values of linear regressions are presented, and the shaded areas represent the 95% confidence intervals (P < 0.05). SOC,
soil organic carbon; MBC, microbial biomass carbon; DOC, dissolved organic carbon.
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SOCS = SOCi � BDi �H� (1 − CF=100)� 0:01 (3)

where SOCi is SOC contents of the soil layer i (mg·g-1), BDi is

the soil bulk density of soil layer i (g·cm-3), H is the layer thickness

(cm), CF is the percentage of coarse fragments > 2 mm, and 0.01 is a

unit conversion coefficient.
2.4 Statistical analyses

Regression analyses was used to explore the relationships

between plant diversity (species richness, H and D), plant

biomass (total biomass, aboveground biomass, and belowground

biomass) and soil carbon (DOC, MBC, SOC and SOCS). Random

forest model (RF) was used to explore the relative effects of each

variable on SOC. We used the “rfPermute” package to determine

the significance of variables (Jiao et al., 2018). The importance of

factors was estimated by calculating the percentage increases in the

MSE (mean squared error) of variables. For instance, higher values

of MSE% indicate more significant variables (Breiman, 2001). Based

on the expected relationship between SOC and potential drivers as

well as the results of the RF analysis, we developed a structural
Frontiers in Plant Science 05
equation model (SEM) to analyze the direct and indirect SOC

determinants by using the “lavaan” package. Path diagrams are

commonly used in SEM analysis to illustrate directional

relationships between different variables. We used the maximum

likelihood method to estimate path coefficients, and fit indices were

utilized to evaluate model fit (c2/df< 3, GFI > 0.9 and RMSEA<

0.08). All statistical analyses were conducted using R 4.2.1 (https://

www.r-project.org/).
3 Results

3.1 Effects of plant diversity on soil
organic carbon

SOCS of the wetland had a significant positive relationship with

species richness and Shannon-Wiener index, but a negative

relationship with Simpson’s dominance index (Figures 2A-C).

Similarly, there was a significantly positive correlation between

plant diversity (species richness and Shannon-Wiener index) and

SOC (Figures 3A, B), MBC (Figures 3D, E). Simpson’s dominance

index is significantly negatively related to SOC and MBC
FIGURE 4

Relationships between plant diversity (Richness index, Shannon-Wiener index, Margalef index and Simpson's dominance index) and plant community
biomass (AGB, BGB and TB). R2, and P-values of linear regressions are presented, and the shaded areas represent the 95% confidence intervals (P <
0.05). AGB, aboveground biomass; BGB, belowground biomass; TB, total biomass.
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(Figures 3C, F). DOC had no significant relationship with species

richness and Simpson’s dominance index, but a positive

relationship with Shannon-Wiener index (Figures 3G-I).
3.2 Effects of plant diversity on
community biomass

Belowground biomass of the wetland plant communities had a

significant positive relationship with species richness and Shannon-

Wiener index, but a negative relationship with Simpson’s

dominance index (Figures 4D-F). Conversely, aboveground

biomass of the wetland plant communities was significantly

negatively related to species richness and Shannon-Wiener index

and positively related to Simpson’s dominance index (Figures 4A-

C). There was no significant relationship between plant diversity

and total biomass of the wetland communities (Figures 4G-I).
3.3 Dominant determinants of SOC

The results of RF analysis showed that MBC was the most

important determinant influencing SOC, followed by soil bulk

density and soil water content (Figure 5A). DOC, plant diversity
Frontiers in Plant Science 06
and climate had similar contributions in regulating SOC across the

study region. SOC was significantly and positively related to MBC

(R2 = 0.46, P< 0.001), soil water content (R2 = 0.25, P< 0.001),

significantly and negatively related to bulk density (R2 = 0.29, P<

0.001, Figure 5B).

The SEM analysis results showed that SOCS was dominantly

and directly affected by MBC, soil, and plant, with standardized

direct effects of 0.66, 0.25, and 0.17, respectively (Figure 6).

Furthermore, plant and DOC indirectly affected SOCS, with

standardized indirect effects of 0.30 and 0.47 (Figure 6).

Moreover, soil water content and bulk density significantly and

indirectly affected SOCS through a positive path of MBC (path

coefficient = 0.47). Thus, increasing soil MBC resulted in enhanced

SOCS with belowground biomass and soi l properties

changed (Figure 6).
4 Discussion

Plant diversity enhanced SOCS in typical wetlands of northern

China, consistent with previous studies in forest (Chen et al., 2023),

grassland (Steinbeiss et al., 2008; Cong et al., 2014), and agricultural

ecosystems (Chen et al., 2018; Spohn et al., 2023). Previous studies

indicated that plant diversity could indirectly affect SOCS by
FIGURE 5

Relative importance of Climate, plant (species richness, Shannon-Wiener index, Simpson’s Dominance, and Biomass), soil (BD, SWC, EC, pH and
DOC), as well as microorganisms (MBC) on SOC was measured by the percentage increase of the mean squared error (MSE%) using random forest
(RF) models (A). Relationships between SOC and MBC, BD and SWC (B). MBC, microbial biomass carbon; BD, soil bulk density; SWC, soil water
content; DOC, dissolved organic carbon; EC, electrical conductivity; SOC, soil organic carbon. R2, and P-values of linear regressions are presented,
and the shaded areas represent the 95% confidence intervals (P< 0.05).
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regulating soil labile carbon process (Chen et al., 2018; Lange et al.,

2021). In our study, plant diversity significantly increased

belowground biomass. This was consistent with previous studies

which showed that diversity effect enhanced belowground

productivity (Chen et al., 2018; Mylliemngap and Barik, 2019; Li

et al., 2022; Zhou et al., 2022). Generally, different plant species

exhibit diverse growth strategies and root structures, which

promote the accumulation of belowground biomass through

species complementarity (Loreau and Hector, 2001; Allan et al.,

2011). However, we found that plant diversity significantly

decreased aboveground biomass and had no significant effect on

total biomass. Previous studies showed that plant diversity could

promote aboveground biomass and total biomass in forests and

grasslands (Mylliemngap and Barik, 2019; Token et al., 2022; Wang

et al., 2023), which was not consistent with our results in wetlands.

In natural wetlands, monodominant community with less plant

species, such as Phragmites australis, tend to have high

aboveground biomass, supported by the relationship between

plant biomass and Simpson’s dominance index. Due to the

opposite effects of plant diversity on aboveground and

belowground biomass, there is no significant effect of plant

diversity on total biomass in this study.
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Our results showed that plant diversity increased soil carbon

storage by increasing belowground biomass, DOC and MBC.

Previous studies showed that plant biomass and MBC were

significantly correlated with plant residues carbon and microbial

necromass carbon, which were key sources crucial of SOC (Xu et al.,

2023; Zheng et al., 2024). High plant diversity may increase the

input of plant residues carbon by affecting the quantality and

quality of plant litter, and promote the cumulation of microbial

necromass carbon by regulating the structure and function of soil

microbial community and MBC (Lange et al., 2015; Shen et al.,

2022; Wang C. et al., 2022). In our study, both RF and SEM analyses

demonstrated that MBC was the most significant determinant, and

there was a significantly positive relationship between SOC and

MBC (Figure 5B). This may be due to the fact that increased plant

diversity with high belowground biomass and DOC transportation

enhanced microbial activity (Dietrich et al., 2017), thereby

promoting microbial-derived carbon contribution to SOCS

through microbial turnover processes (Thakur et al., 2015;

Prommer et al., 2020; Jia et al., 2021), consistent with a previous

research (Lange et al., 2021). The positive effect of plant diversity on

SOCS was also regulated by soil properties (Zhang et al., 2011; Yang

et al., 2020). In our study, the relationship between plant diversity
FIGURE 6

Structural equation modeling (SEM) for the effects of the variables on SOCS (A), direct, indirect, and total standardized effects of each variable on
SOCS from SEM (B). The Plant and Soil were indicated by the first axis of principal component analysis (PCA). Space includes Sites and Climate. Plant
includes Diversity index (species richness and Shannon-Wiener index) and Simpson’s Dominance index. Soil in this model includes SWC and BD.
Numbers adjacent to arrows are standardized path coefficients (* P< 0.05, ** P< 0.01, *** P< 0.001), with dotted lines indicates non-significant
pathways and solid lines indicates significant effects. The blue arrow indicates positive pathway, and the red arrow indicates negative pathway. The
width of arrows is proportional to the strength of path coefficients, and indicative of effect size of the relationship. R2 denotes the proportion of
variance explained. The goodness-of-fit (GFI) and root mean square error of approximation (RMSEA) are shown beside the model. BGB,
belowground biomass; DOC, dissolved organic carbon; MBC, microbial biomass carbon; SOCS, soil organic carbon storage; SWC, soil water
content; BD, soil bulk density.
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and SOCS might be related to the alternation of soil water content

and bulk density. There was a significantly positive relationship

between soil water content and SOC, and a negative relationship

between bulk density and SOC, which was consistent with previous

researches (Leimer et al., 2014; Fischer et al., 2015, 2019).

Appropriate soil water content is beneficial for high plant

diversity, enhancing plant residues carbon input, and also

conducive to microbial decomposition; however, excessive soil

water content can increase the anaerobic conditions in the soil,

tend to form a single plant community, reduces the decomposition

by aerobic microorganisms, thereby promoting carbon storage

(Martinez Richart et al., 2019; Wang S. et al., 2022; Yan et al.,

2020). Plant diversity may regulate soil water status by changing soil

structure via plant roots, thus affecting SOC dynamics through

microbial decomposition (Kammer et al., 2013; Wang et al., 2014;

Ma et al., 2020; Lange et al., 2021). Therefore, how to promote SOC

storage based on soil water regulation and plant diversity

protection, and clarify the microbial mechanisms in wetland

ecosystems still need further research. Given the nature of field

surveys and sampling, it is possible that we may have overlooked the

dynamic changes of plant diversity. In the future, long-term

monitoring of plant diversity, coupled with systematic soil

sampling, will be essential to reveal the complex mechanisms.
5 Conclusions

Plant diversity significantly enhanced SOC content and storage

in typical wetlands of northern China by increasing belowground

biomass and MBC, together with soil properties, especially soil

moisture and bulk density. This study strengthens our knowledge

about the positive effect of plant diversity on soil organic carbon

storage in wetlands, and underscores the importance of considering

plant diversity as a key component in the toolbox of wetland

management and climate change mitigation strategies. Continued

further research and long-term monitoring are necessary to

understand the regulatory mechanism and management strategies

of dynamic plant diversity and SOC storage under changing

climatic conditions.
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