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based biostimulants improved
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Sweet cherry is a high-value crop, and strategies to enhance production and

sustainability are at the forefront of research linked to this crop. The improvement

of plant status is key to achieving optimum yield. Biostimulants, such as glycine

betaine (GB) or seaweed-based biostimulants [e.g., Ecklonia maxima (EM)], can

represent a sustainable approach to improving plant conditions, even under adverse

environmental circumstances. Despite their potential, few studies have focused on

the effects of GB or EM exogenous application on sweet cherry tree physiology. To

address this lack of research, a study was conducted in a Portuguese sweet cherry

commercial orchard, using Lapins and Early Bigi cultivars. Trees were treated with

products based on GB and EM at two different concentrations [GB 0.25% (v/v) and

GB 0.40% (v/v); EM 0.30% (v/v) and EM 0.15% (v/v)], a combination of the lowest

concentrations of both biostimulants (Mix—GB 0.25% and EM 0.15%), and a control

group (C) treated with water. Applications were performed over three consecutive

years (2019, 2020, and 2021) at three different phenological stages, according to the

BBCH scale: 77, 81, and 86 BBCH. Results showed, in general, that the application of

biostimulants led to improvements in water status as well as significantly lower

values of electrolyte leakage and thiobarbituric acid reactive substances compared

to C samples. Additionally, biostimulants reduced pigment loss in the leaves and

enhanced their biosynthesis. The Chlorophylla/Chlorophyllb ratio, ranging from 2 to

4, indicated a greater capacity for light absorption and lower stress levels in treated

leaves. Soluble sugar and starch content decreased during fruit development in both

cultivars and years; however, biostimulants increased these contents, with

increments of approximately 15% to 30% in leaves treated with EM. Soluble

protein content also showed the same pattern for treated leaves. Biostimulants,

especially EM, demonstrated a significant positive effect (p ≤ 0.001) on total phenolic
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content, with increases of approximately 25% to 50% in treated leaves. In conclusion,

the application of biostimulants, especially algae-based, significantly improved tree

performance by enhancing physiological parameters and stress resilience and could

represent a novel approach in fruit production systems.
KEYWORDS

Prunus avium L., spray treatments, glycine betaine, Ecklonia maxima, leaf gas exchange,
leaf metabolites, water status
1 Introduction

Climate change, driven by human activities, is one of the greatest

challenges of the current century, as it threatens agricultural

production and human wellbeing (Bantis and Koukounaras, 2022).

The latest Assessment Report of the Intergovernmental Panel on

Climate Change (IPCC) projects a continued increase in global

average surface temperatures and a decrease in annual precipitation,

particularly affecting southern European countries such as Portugal

(IPCC and Core Writing Team, 2023). This scenario, coupled with

the rising global trade of plants and fruits, driven by population

growth and consumer demand for a consistent supply of high-quality

products, underscores the urgent need to adopt sustainable

agricultural practices. Implementing resource-efficient strategies that

align with the principles of the circular economy can help address

these challenges (Afonso et al., 2022; Asif et al., 2023; Zulfiqar

et al., 2024).

In this context, biostimulants are gaining recognition within the

scientific community and businesses alike as a sustainable and eco-

friendly alternative to conventional agrochemicals (du Jardin, 2015;

Rouphael and Colla, 2020; Basile et al., 2021; Muhie, 2023). When

used with good agricultural practices, biostimulants can enhance crop

development and productivity and resilience against biotic and abiotic

stresses (Moreno-Hernández et al., 2020). Among the seven categories

of biostimulants identified by du Jardin (2015), glycine betaine (GB)

and seaweed extracts are noteworthy, though their use in cherry tree

cultivation remains relatively unexplored (Correia et al., 2020a;

Correia et al., 2020b; Serapicos et al., 2022). Given the susceptibility

of cherry trees to adverse weather conditions, studying these

biostimulants offers a promising approach to improving resilience

and productivity, even in challenging environmental circumstances

(Rojas et al., 2021; Tudela et al., 2023; Salvadores and Bastıás, 2023).

GB, a quaternary amine, plays a role in maintaining membrane

integrity under abiotic stress, as it is recognized for its osmoregulatory

and osmoprotective functions against drought, salinity, and extreme

temperatures (Khalid et al., 2015; Rasheed et al., 2018; Dutta et al.,

2019; Fedotova, 2019; Sharma et al., 2023). Its exogenous application

in crops has been linked with increased yield potential and improved

quality (Shan et al., 2016; Gonçalves et al., 2020; Khalid et al., 2022;

Zulfiqar et al., 2022). Similarly, the foliar application of brown
02
macroalgae Ascophyllum nodosum and Ecklonia maxima seaweed-

based biostimulants has been shown to promote plant growth,

increase yields, and enhance fruit protein and nutrient content

(Jolayemi et al., 2023). Furthermore, it improves leaf health and

enhances plant tolerance to abiotic and biotic stress (Parađiković

et al., 2019; Ali et al., 2021), due to their complex composition, rich in

plant hormones, proteins, amino acids, sugars, vitamins, and

phenolic compounds (Gonçalves et al., 2020; Afonso et al., 2022).

Despite extensive research on the application of biostimulants in

various fruit tree species (Basile et al., 2020; Mones Sardrodi et al.,

2022; Serapicos et al., 2022), scientific evidence on the effects of such

application on cherry tree performance is scarce. To the best of our

knowledge, there is no available information regarding studies on the

effects of E. maxima seaweed-based biostimulants on cherry tree

physiology. Additionally, limited studies are focusing on the

application of GB.

In this regard, this study aims to fill this research gap by evaluating

the effect of pre-harvest treatments with GB and E. maxima seaweed

extracts on the physiological and biochemical responses of Early Bigi

and Lapins cherry cultivars grown in northern Portugal.
2 Materials and methods

2.1 Experimental site and plant material

The study was carried out at Quinta da Alufinha, municipality

of Resende, Portugal (latitude 41°06′ N and longitude 7°54′ W), on

a 7-year-old sweet cherry commercial orchard, located at a low

altitude (140 m above sea level), in the years of 2019, 2020, and

2021. Trees were trained under a vertical axis system with a spacing

of 3.0 m between rows and 2.5 m in the row. Between March and

August, trees were drip-irrigated daily, ensuring a uniform water

supply. In addition, trees were also periodically fertilized. Standard

meteorological variables [air temperature (°CC), rainfall (mm), and

solar radiation (W m−2)] for the 3 years were recorded by an

automatic weather station set up near the experimental site

(Figure 1). In 2019, the average air temperature between March

and May was approximately 1.42°C lower than that of 2020, and

1.09°C higher than that of 2021. Based on the annual precipitation
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data, the year 2019 recorded the highest annual rainfall (1,163 mm),

followed by 2020 (1,091 mm), and 2021 (1,076 mm). Furthermore,

the mean solar radiation until May was also higher in 2019 than in

the other 2 years. Compared to climate normals available

(1971–2000), all 3 years were drier (especially 2021, with 20% less

rainfall), while, regarding temperature, all 3 years were all hotter

than the 30-year average, namely, 2020 (average hotter by 1°C).

The early cultivar (cv.) Early Bigi and the late cv. Lapins, both

grafted onto “Santa Lucia 64”, were selected for this trial, due to its

economic importance of this region.
2.2 Experimental design and treatments

Eight trees from each cultivar, homogeneous, and in good

phytosanitary conditions, were chosen for each treatment, resulting

in a total of 48 trees per cultivar. Six treatments (expressed as % of

volume/volume) were foliar sprayed, using a mechanical sprayer, and

they included two concentrations of GB (97%) (GB 0.25% and GB

0.40%), two concentrations of E. maxima seaweed-based

biostimulants (EM 0.30% and EM 0.15%), a combination of the

lowest concentrations of both biostimulants (Mix—GB 0.25 and EM

0.15), and a control (C) group (water). Foliar treatments were
Frontiers in Plant Science 03
repeated at three different dates during the phenological stages of

the cherry tree, according to the BBCH scale [Biologische

Bundesantalt, Bundessortenamt und Chemische Industrie (Fadon

et al., 2015)]: stage 77 (70% of final fruit size), stage 81 (beginning of

fruit coloring), and stage 86 (coloring advanced, 3 days before fruit

harvesting). To achieve more accurate results, treatments (Table 1)

were applied for three consecutive years (2019, 2020, and 2021), in a

windless morning (Table 2).

Healthy, fully expanded, sun-exposed, and mature leaves in a

similar position were carefully chosen for the assessment of gas

exchange, electrolyte leakage (EL), and relative water content

(RWC). These assessments were carried out at solar noon in both

cultivars, 3 days after the application of the biostimulants, for the

years 2019 and 2021. Additionally, about seven leaves per tree and

treatment were collected for biochemical analyses and were

immediately frozen in liquid nitrogen, ground to a fine powder,

and then stored at −80°C for further analysis. In 2020, despite the

foliar applications of the treatments being carried out, it was

impossible to conduct these assessments due to the COVID-

19 pandemic.
2.3 Leaf gas exchange

Leaf gas exchange measurements were accomplished using a

portable infrared gas analyzer system (LC Pro+, ADC, Hoddesdon,

UK). The IRGA was equipped with a 2. 5-cm2 leaf chamber (ADC-

PLC) and operated in open mode. Incident photosynthetic photon

flux density (PPFD) on the leaves was always greater than 1,500

mmol m−2 s−1. The measurements were performed on cloudless

days, under natural light conditions, and at solar noon. Through the

formulas proposed by von Caemmerer and Farquhar (1981), the net

photosynthetic rate (A, mmol m−2 s−1), transpiration rate (E, mmol

m−2 s−1), stomatal conductance (gs, mmol m−2 s−1), and

intercellular CO2 concentration (Ci, μmol mol−1) were calculated.

The intrinsic water use efficiency was calculated as the ratio of A/gs
(A/gs, μmol mol−1), to dismiss the potential effects of air humidity

and temperature on transpiration (Iacono et al., 1998).
TABLE 1 Experimental treatments and their corresponding concentrations.

Treatment
code

Product and concentration

C Water only

GB 0.25% Glycine betaine applied at a concentration of 0.25% (v/v)

GB 0.25% Glycine betaine applied at a concentration of 0.40% (v/v)

EM 0.15% Ecklonia maxima applied at a concentration of 0.15%
(v/v)

EM 0.30% Ecklonia maxima applied at a concentration of 0.30%
(v/v)

MIX Glycine betaine at a 0.25% (v/v) + Ecklonia maxima
0.15% (v/v)
FIGURE 1

Monthly mean air temperature (°C), precipitation (mm), and mean solar radiation (W m−2) in 2019, 2020, and 2021.
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Measurements were only performed in the year 2019 (for cv. Early

Bigi on April 14, April 22, andMay 3, and for cv. Lapins on April 14,

May 19, and May 27), as the portable infrared gas analyzer system

was unavailable in 2021. Results are expressed as the mean ±

standard deviation (SD) of eight replicates.
2.4 Leaf water status

For water status analysis, detached sweet cherry leaves were

immediately placed into airtight containers with the petiole facing

downwards. Fresh weight (FW, g) was measured, and after immersing

leaf petioles in demineralized water for 48 h in the dark at 4°C, turgid

weight (TW, g) was measured. Dry weight (DW, g) was determined

after drying at 70°C until a constant weight was achieved. Leaf area

(LA, cm2) was also measured using theWinDias image analysis system

(Delta-T Devices Ltd., Cambridge, UK). Furthermore, the RWC was

calculated as:

RWC (% ) =
(FW − DW)
(TW − DW)

  x   100

Leaf mass per unit area (LMA) (g m−2) was calculated by the

ratio between leaf area and DW. Results are expressed as the mean ±

standard error (SE) of eight replicates.
2.5 Metabolite composition determination

2.5.1 Photosynthetic pigments
The chlorophylls and carotenoids were extracted with 80%

acetone by weighing 25 mg into a screw tube and adding 4 mL of

80% acetone solution. The mixture was then homogenized using a

vortex and sonicated for 5 min at 30 Hz. Subsequently, the mixture

was centrifuged at 4,000 rpm at 4°C for 10 min. Next, 200 mL of each

sample was transferred to a 96-well microplate, and absorbance

readings were taken at 470, 645, and 663 nm against a blank.

Chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll
Frontiers in Plant Science 04
[Chl(a+b)] were determined according to Arnon (1949) and Sestak

et al. (1971), and total carotenoids (Cartotal) were determined

according to Lichtenthaler (1987). Additionally, ratios Chla/Chlb and

Chl(a+b)/Cartotal were also determined. All procedures were performed

under dim light to prevent photodegradation, isomerization, and

structural changes of photosynthetic pigments, and results were

expressed as mg g−1 DW, as the mean ± SD of eight replicates.

2.5.2 Total soluble sugars and starch
Total soluble sugars (SS) were quantified using the

spectrophotometry method described by Irigoyen et al. (1992).

Samples were heated in ethanol/water (80/20, v/v) for 1 h at 80°

C. TSS were measured, at 625 nm, after the alcoholic extract reacted

with fresh anthrone in a boiling water bath for 10 min. The soluble

fractions were then separated from the solid fraction. Starch (St)

was extracted from the same solid fraction by heating it in 30%

perchloric acid for 1 h, at 60°C, following the method of Osaki et al.

(1991). The St concentration was determined by the anthrone

method, as previously described, and both SS and St are

expressed as mg g−1 DW, using glucose as a standard, presented

as the mean ± SD of eight replicates.
2.5.3 Soluble proteins
Total soluble protein (TP) quantification followed the Bradford

(1976) method. Total soluble proteins were extracted using a phosphate

buffer (pH 7.5) containing 0.1 mM ethylenediaminetetraacetic acid

(EDTA), 100 mM phenyl-methylsulfonyl fluoride (PMSF), and 2% (w/

v) polyvinylpyrrolidone (PVP), followed by centrifugation at 12,000×g

at 4°C, for 30 min. Absorbance was measured at 595 nm using bovine

serum albumin (BSA) as a standard. The results, expressed as mg g−1

DW, were the mean ± SD of eight replicates.

2.5.4 Total phenolics
For the quantification of total phenolics, a previous extraction

was performed, as previously described by Serapicos et al. (2022): 40

mg of each sample (DW) was added to 1.5 mL of 70% (v/v)
TABLE 2 Foliar application dates of biostimulants on sweet cherry trees over the 3 years of trial.

BBCH scale

77 81 86

Phenological stage

70% of final fruit size Beginning of fruit coloring Coloring advanced (3 days before fruit harvesting)

Year Cultivar

2019
Early Bigi 11 April 19 April 30 April

Lapins 11 April 16 May 24 May

2020
Early Bigi 1 April 11 April 16 April

Lapins 1 April 4 May 12 May

2021
Early Bigi 6 April 15 April 24 April

Lapins 6 April 11 May 31 May
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methanol, mixed thoroughly on a vortex for 30 min, and

centrifuged at 5,000 rpm at 4°C for 15 min. The supernatant was

collected into a 10-mL volumetric flask. This procedure was

repeated three more times, with the final volume adjusted to 10

mL using methanol. Total phenolics were then determined using

the method by Singleton and Rossi (1965) and Dewanto et al.

(2002), with some modifications. In each well of a 96-well

microplate, 20 μL of each leaf extract, 100 μL of Folin-Ciocalteu

reagent (1:10 in bidistilled water), and 80 μL of 7.5% Na2CO3 were

mixed. The microplate was incubated in the dark for 15 min at 45°

C. Absorbance values were measured at 765 nm against a blank. The

colorimetric response of total phenols measurements was compared

to a standard curve based on gallic acid, and the results were

expressed as mg gallic acid equivalents (GAE) g−1 DW, as the mean

± SD of eight replicates.
2.6 Cell membrane damage

2.6.1 Electrolyte leakage
Leaf EL was measured to assess cell membrane permeability,

based on the method described by Mena-Petite et al. (2001) with

modifications. After collecting the leaves, they were washed in

deionized water to remove surface ions. Foliar discs with a

diameter of 0.8 cm were then punched out from each leaf and

placed in test tubes with 10 mL of deionized water. Incubation at 25°

C was carried out for 24 h on a rotary shaker. After incubation, the

electrical conductivity of the solution (CE1) was measured using a

conductivity meter (Mettler Toledo). The samples were autoclaved

at 120°C for 20 min, and a new reading of electrical conductivity

(CE2) was taken, after cooling to 25°C. The EL (%) was calculated as

follows:

EL =
CE1
CE2

x   100:

The values are presented as the mean ± SD of eight replicates.

2.6.2 Lipid peroxidation
To assess cell membrane lipid peroxidation, thiobarbituric acid

reactive substances (TBARS) were quantified according to Hodges

et al. (1999), with some adaptations. Briefly, the lyophilized samples

were frozen in liquid nitrogen and ground in 20% (w/v)

trichloroacetic acid with mortar and pestle. The absorbance of the

supernatant was measured at 532 and 600 nm. TBARS were

calculated using the malondialdehyde (MDA) extinction

coefficient of 155 mM cm−1. Lipid peroxidation was expressed in

mmol MDA equivalents g−1 DW, as the mean ± SD of

eight replicates.
2.7 Statistical analysis

The statistical analysis was conducted using the SPSS V.27

software (SPSS-IBM, Corp., Armonk, New York, USA). After

testing for analysis of variance (ANOVA) assumptions, namely,

the homogeneity of variances with Levene’s mean test and
Frontiers in Plant Science 05
normality with the Shapiro–Wilk’s test, statistical differences

among treatments within each variety and year were evaluated by

one-way ANOVA, followed by the post-hoc Tukey’s test. To assess

the effects of treatment, year, phenological stage, and their

interactions, a multivariate analysis of variance (MANOVA) was

performed using Pillai’s trace statistic in SPSS V.27 software.

Differences were considered statistically significant at a

significance level of p ≤ 0.05.

Correlations between measured gas exchange parameters were

assessed using Pearson correlation coefficients.

Data are presented as the mean ± SD of eight replicates, and the

results are presented by dry weight, for photosynthetic pigments.

For leaf water status, total soluble sugars, starch and protein, total

phenolics, and cell membrane damage, data are presented as the

mean ± SD of eight replicates.
3 Results and discussion

3.1 Leaf gas exchange parameters

The application of biostimulants affected the two tested

cultivars differently regarding leaf gas exchange parameters

(Tables 3, 4). For cv. Early Bigi, the general trend in leaf gas

exchange parameters showed an increase as the season progressed

(Table 3). The effect of spraying biostimulants appears to have some

influence, as C leaves always presented the lowest values, even

though significant effects of treatments were not recorded on all

sampling dates. Indeed, at the first sampling date, significant effects

were not recorded for Ci and A/gs, while for other parameters,

higher values were observed in trees treated with GB 0.25%, even

though these values were similar to other treatments (for A, similar

to GB 0.25% and Mix treatments; for E and gs, similar to EM 0.3%

and Mix). In the second sampling moment, a different trend was

found, with differences between treatments only recorded for Ci,

and only when comparing EM 0.3% to C leaves. At fruit harvest,

significant changes were only recorded for E and gs. For the former

parameter, lower values were recorded for the C treatment, while

the transpiration rate increased in all other treatments, namely, in

the lower dosages of EM and GB. The effects recorded on stomatal

conductance follow a similar pattern, although significant

differences were only observed between the C and GB

0.25% treatments.

Regarding cv. Lapins, and in contrast to cv. Early Bigi, there is

no noticeable major trend in leaf gas exchange as the season

progresses. For instance, A is lower at harvest than during the

first sampling, whereas E is higher (Table 4). Regarding the

application of biostimulants, no significant effects were recorded

on the first sampling date, as the data were similar among

treatments for all analyzed parameters. On the second sampling

date, significant differences were noted for all leaf gas exchange

parameters, with lower values recorded for C in almost all of them,

except for A/gs. The influence of the applied treatments was also

evident at harvest, as only Ci and A/gs values were statistically

similar across all samples (Table 4). Indeed, values of A, E, and gs
were significantly different among treatments, with higher values
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recorded for EM 0.15% for A (significantly different from C and EM

0.30%), E (significantly different from C), and gs (also significantly

different from C).

Some correlations were found between the measured gas

exchange parameters. Indeed, for cv. Early Bigi, the photosynthetic

rate (A) presented correlations with Ci (r = −0.595, p ≤ 0.001), gs
(r = 0.220, p = 0.043), and E (r = 0.215, p = 0.048). Similarly, for cv.

Lapins, correlations were also found, namely, for A and gs (r = 0.697,

p ≤ 0.001) and between A and E (r = 0.433, p ≤ 0.001). These

relationships have been previously reported in sweet cherries

(Gonçalves et al., 2005, 2007; Correia et al., 2020b; Houghton et al.,

2023). Furthermore, the positive effects on leaf gas exchange

parameters due to the application of biostimulants have been

documented in various crops. For example, the application of E.

maxima has sowed beneficial effects in melon, cucumber, and tomato

(Lefi et al., 2023); Cucurbita pepo L (Rouphael et al., 2017); or Vigna

unguiculata (Gyogluu Wardjomto et al., 2023). The use of GB as a

biostimulant has improved leaf gas exchange parameters in olive

(Denaxa et al., 2020), Lactuca sativa (Lin et al., 2020) or Solanum

lycopersicum (Annunziata et al., 2019).

This improvement in leaf gas exchange parameters can be

linked to several factors. Enhanced photosynthesis may lead to

increased dry matter accumulation (Carvalho et al., 2019; Mateus-

Cagua and Rodrı ́guez-Yzquierdo, 2019), by enhancement of

mineral nutrient availability and uptake (Caruso et al., 2019),

plant hormone regulation, and an increase in metabolites that

benefit the electron transport chain (Sorrentino et al., 2022).

Furthermore, biostimulants can also potentially improve water-

use efficiency in plants (Burghardt and Riederer, 2006; Jiménez-
Frontiers in Plant Science 06
Arias et al., 2022), increasing turgor pressure in leaf guard cells and

enhancing gaseous exchange attributes.
3.2 Leaf water status

The leaf water status of both cultivars was affected by different

factors (years, phenological stage, treatment, and their interaction),

although in different ways (Supplementary Table S1). Regarding cv.

Early Bigi, significant influence of the RWC was recorded for all

factors, apart from the year and the interaction of treatment, year,

and phenological stage, while for cv. Lapins, influence was found for

all factors and their interaction. For cv. Early Bigi, the RWC trend

was similar in both 2019 and 2021, with an increase in values during

fruit development (Figure 2). However, in 2019, significant changes

were more noticeable in the last sampling date (at fruit harvest),

with differences in treatments C and Mix, both with lower values,

while treatment GB 0.25% had higher values. In 2021, significant

differences were observed in all sampling moments, with a clear

difference recorded for the C treatment (always lower values), while

higher values were observed when using the EM 0.15% treatment

(even though it does not differ significantly from other treatments,

except for the abovementioned C). For cv. Lapins, there is also a

similar trend in both years, with an increase of RWC from the first

to the second sampling date. However, the values recorded at

harvest differed: in 2019, there was a reduction, while in 2021, the

water content remained almost the same (Figure 2). In 2019, and at

the first sampling date, no differences were observed between

treatments, but in the following analyses, C samples recorded the
TABLE 3 Photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), intercellular CO2 concentration (Ci), and intrinsic water use
efficiency (A/gs) recorded in leaves of cv. Early Bigi, recorded in 2019.

cv. Early Bigi Date C EM 0.15% EM 0.30% GB 0.25% GB 0.40% Mix p

A
(μmol m−2 s−1)

14/4 8.69 ± 0.87b 9.82 ± 0.89b 9.75 ± 0.83b 11.11 ± 1.53a 12.8 ± 1.54a 10.59 ± 1.31a ***

22/4 6.39 ± 1.71 12.21 ± 5.12 8.53 ± 2.85 13.84 ± 4.19 9.02 ± 2.31 14.21 ± 4.82 n.s.

3/5 7.56 ± 1.55 12.31 ± 5.29 11.51 ± 2.26 12.55 ± 2.26 10.42 ± 3.45 11.39 ± 2.82 n.s.

E
(mmol m−2 s−1)

14/4 1.67 ± 0.17c 2.94 ± 0.89b 1.81 ± 0.24c 2.44 ± 0.52b 3.79 ± 0.31a 2.81 ± 0.18b ***

22/4 1.72 ± 0.24 2.01 ± 0.22 1.94 ± 0.14 1.80 ± 0.08 1.72 ± 0.33 2.02 ± 0.22 n.s.

3/5 3.14 ± 0.92b 5.36 ± 0.82a 4.59 ± 0.67ab 5.53 ± 0.50a 4.18 ± 0.51ab 4.79 ± 0.91a ***

gs
(mmol m−2 s−1)

14/4 106.29 ± 17.23b 124.78 ± 48.41b 156.84 ± 20.49ab 108.40 ± 9.75b 190.01 ± 25.99a 167.83 ± 29.15a ***

22/4 154.73 ± 38.86 195.60 ± 43.36 209.04 ± 23.06 174.08 ± 9.13 206.57 ± 43.58 194.78 ± 31.04 n.s.

3/5 158.52 ± 14.49b 213.81 ± 60.47ab 228.79 ± 94.01ab 349.54 ± 71.52a 259.58 ± 75.89ab 210.78 ± 74.06b *

Ci
(μmol mol−1)

14/4 219.64 ± 49.54 228.79 ± 9.89 271.20 ± 29.57 222.69 ± 45.71 253.58 ± 12.81 270.52 ± 29.57 n.s.

22/4 228.99 ± 56.22b 273.79 ± 77.91ab 348.29 ± 52.11a 337.34 ± 29.89ab 324.22 ± 11.54ab 251.97 ± 76.98ab **

3/5 265.83 ± 11.19 301.51 ± 29.86 302.27 ± 42.67 324.14 ± 73.05 283.09 ± 15.02 281.52 ± 52.58 n.s.

A/gs
(μmol mol−1)

14/4 81.13 ± 9.24a 79.54 ± 7.07a 35.21 ± 15.75c 102.86 ± 11.32a 67.92 ± 9.99b 67.19 ± 9.59b ***

22/4 41.14 ± 5.69b 63.86 ± 29.57ab 40.29 ± 13.65ab 80.39 ± 26.97a 44.57 ± 10.34ab 72.83 ± 29.57ab **

3/5 48.38 ± 14.03 57.34 ± 8.13 50.14 ± 18.63 35.42 ± 21.37 46.85 ± 13.51 57.12 ± 15.59 n.s.
fro
Data are mean ± SD of eight replicates. Different lowercase letters represent significant differences between treatments. The absence of letters indicates no significant differences between
treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05).
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lowest RWC, with leaves from EM 0.15% sprayed trees recording

the higher values (even though statistically similar to other

treatments). In 2021, C leaves recorded the lowest values even at

the first sampling date, with leaves from the EM 0.30% treatment

presenting increased water content. Water stress can influence

RWC values, which can result in growth limitations and changes

in physiological and metabolic processes (Irigoyen et al., 1992), with

the benefits of high RWC arising from greater resistance of cell walls

and their ability to endure tissue destruction or mechanical damage

caused by dehydration. However, in the present study, no water

stress situation appears to be occurring, as RWC values are usually

above 90%, suggesting sufficient drip irrigation, except for those

recorded for the C treatment, in 2021. Even so, the application of

both biostimulants on either cultivar results in increased RWC

values, with a more pronounced effect for cv. Early Bigi, in 2021, a

year that was hotter and dryer than 2019. The use of GB or algae-

based biostimulants has demonstrated positive effects on sweet

cherry, as reviewed by Afonso et al. (2022), including an increase

in RWC (Correia et al., 2020b; Serapicos et al., 2022), corroborating

our findings.

Data for leaf mass per unit area (LMA) show, again, different

behavior for the two cultivars under study (Figure 3). This variable

was affected by all factors, with the exception of the interaction of

the treatment, year, and phenological year for both cultivars, and

the interaction of treatment and year was only recorded for cv.

Lapins (Supplementary Table S1). Values recorded for cv. Early Bigi

shows an overall increase of LMA with fruit development, in both
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years of study. Interestingly, no differences in LMAwere recorded at

the first sampling date in either year. However, at subsequent stages,

C leaves exhibited lower LMA compared to the other treatments,

particularly EM 0.15% and GB 0.40%. Regarding cv. Lapins, a

similar trend was observed, with an increase in LMA with fruit

development. Nonetheless, C leaves consistently had lower values,

except for the first sampling date of 2019 and at harvest, in 2021. In

contrast, algae-based biostimulants, specifically the EM 0.15%

treatment, resulted in increased LMA throughout all sampling

dates. High values of LMA have been associated with a higher

density of mesophyll or thickness of total lamina, reflecting an

increased tolerance to adverse conditions (Centritto, 2002; de la

Riva et al., 2016), with improved photosynthetic capacity often

related to higher LMA (Reich et al., 2000).
3.3 Metabolite composition determination

3.3.1 Photosynthetic pigments
Leaf photosynthetic pigment content was influenced by the

application of either biostimulant (p ≤ 0.001) (Tables 5, 6, and

Supplementary Table S1) yet remained within the range recorded

for sweet cherry leaves (Gonçalves et al., 2006, 2008). Conversely,

the effect of the factors (year, phenological stage, and treatment and

their interactions) presented a complex behavior depending on the

studied cultivar (Supplementary Table S1). Furthermore,

chlorophyll content increased as the season progressed, a pattern
TABLE 4 Photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), intercellular CO2 concentration (Ci), and intrinsic water use
efficiency (A/gs) recorded in leaves of cv. Lapins, recorded in 2019.

cv. Lapins Date C EM 0.15% EM 0.30% GB 0.25% GB 0.40% Mix p

A
(μmol m−2 s−1)

21/4 10.34 ± 1.92 8.22 ± 2.21 9.36 ± 2.28 9.22 ± 1.06 10.96 ± 2.43 10.06 ± 0.73 n.s.

19/5 7.68 ± 2.51ab 7.38 ± 1.96b 10.54 ± 2.02a 10.97 ± 2.51a 11.15 ± 3.29a 12.19 ± 1.84a *

27/5 6.40 ± 1.20b 10.67 ± 1.96a 7.13 ± 1.82b 7.79 ± 1.59a 10.48 ± 1.17a 8.47 ± 1.88ab ***

E
(mmol m−2 s−1)

21/4 3.00 ± 0.45 2.82 ± 0.42 2.98 ± 0.29 2.88 ± 0.09 3.13 ± 0.50 3.23 ± 0.15 n.s.

19/5 3.67 ± 0.82bc 4.78 ± 0.78ab 5.39 ± 1.09a 4.42 ± 0.55a 5.74 ± 1.07a 3.52 ± 0.64c ***

27/5 2.95 ± 0.81b 4.49 ± 0.54a 3.35 ± 1.04ab 3.87 ± 0.70ab 4.45 ± 0.81a 3.06 ± 0.36ab **

gs
(mmol m−2 s−1)

21/4 132.39 ± 27.16 115.25 ± 23.17 132.26 ± 21.34 114.94 ± 3.71 163.19 ± 35.07 144.99 ± 11.69 n.s.

19/5 91.23 ± 29.62b 140.74 ± 41.17ab 199.96 ± 70.59ab 213.00 ± 48.96 251.12 ± 87.59a 213.76 ± 59.87a **

27/5 65.06 ± 9.44b 134.02 ± 27.58a 83.43 ± 33.42ab 121.92 ± 24.01ab 123.74 ± 37.52ab
116.58

± 47.56ab
*

Ci
(μmol mol−1)

21/4 244.41 ± 18.97 270.12 ± 19.97 267 ± 24.94 254.04 ± 11.04 255.89 ± 34.40 262.34 ± 18.72 n.s.

19/5 234.18 ± 17.66b 287.34 ± 23.96a 283.32 ± 19.11a 279.25 ± 16.23a 288.12 ± 18.45a
262.31

± 22.01ab
***

27/5 214.63 ± 28.17 217.43 ± 38.84 223.53 ± 26.13 271.33 ± 23.59 218.94 ± 24.89 240.06 ± 52.34 n.s.

A/gs
(μmol mol−1)

21/4 79.16 ± 11.69 71.12 ± 9.77 69.87 ± 9.34 80.31 ± 9.73 71.57 ± 20.35 69.97 ± 8.85 n.s

19/5 83.92 ± 9.89a 53.44 ± 11.01b 55.25 ± 10.22b 51.86 ± 7.19b 45.72 ± 9.82b 59.39 ± 12.65b ***

27/5 98.81 ± 14.71 89.15 ± 22.06 89.83 ± 16.59 59.35 ± 11.66 89.04 ± 14.05 81.12 ± 29.73 n.s
fro
Data are mean ± SD of eight replicates. Different lowercase letters represent significant differences between treatments. The absence of letters indicates no significant differences between
treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05).
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previously recorded in sweet cherries (Flore and Layne, 1999;

Sytykiewicz et al., 2013).

In almost all situations, C leaves from cv. Early Bigi (Table 5)

exhibited lower values of total chlorophyll and carotenoids, with an

inverse behavior recorded mainly for GB 0.25% and Mix

treatments. The Chla/Chlb and Chl(a+b)/Car ratios reflect the

variations in the individual components. For cv. Lapins (Table 6),
Frontiers in Plant Science 08
this pattern is also evident, even though other treatments present

statistically similar values to those of the C treatment.

This increase in photosynthetic pigments after the application

of biostimulants has been previously documented in sweet cherry

(Correia et al., 2020b; Serapicos et al., 2022) and in other plants

(Yakhin et al., 2017; Afonso et al., 2022). This increase may be

attributed to biostimulants reducing the amount of pigment loss
FIGURE 2

Relative water content (RWC, %) of cv. Early Bigi (A) and cv. Lapins (B) cherry leaves after spray treatment application in 2019 and 2021. Data are presented
as mean ± SD of eight replicates. Different lowercase letters indicate significant differences between treatments. The absence of letters indicates no
significant differences between treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001).
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due to peroxidation and pigment decomposition by oxygen radicals

or by boosting pigment biosynthesis (Navari-Izzo et al., 1990;

Hojjati et al., 2023).

Other possible explanations for the observed effects include

improved water and ion use efficiency, enhanced stomatal

conductance, increased photosynthetic capacity, and the presence of

bioactive compounds (Ali et al., 2020; Bahmani Jafarlou et al., 2022;

Jafarlou et al., 2022). These factors contribute to inducing sink capability
Frontiers in Plant Science 09
by facilitating the supply and translocation of photoassimilates from

leaves to other parts of the plant (Arif et al., 2023).

The Chla/Chlb ratio has been reported to vary from 2 to 4,

depending on the plant (Filimon et al., 2016), and serves as an

indicator of functional pigment equipment and photosynthetic

apparatus light adaptation (Lichtenthaler and Buschmann, 2005).

For both studied cultivars, all recorded values were above 2, and

higher Chla/Chlb values are often related to a greater capacity to
FIGURE 3

Leaf mass per unit area (LMA, g m−2) of cv. Early Bigi (A) and cv. Lapins (B) cherry leaves after spray treatment application in 2019 and 2021. Data are
presented as mean ± SD of eight replicates. Different lowercase letters represent significant differences between treatments. The absence of letters indicates
no significant differences between treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001).
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absorb light and consequently higher photosynthetic rates.

However, this ratio can be affected by the growth habit of trees,

where low light microenvironment can point to an increase in light-

harvesting complexes of photosystem II and consequently a

decrease of Chla/Chlb (Demmig-Adams, 1998).

The chlorophyll - to-carotenoid ratio (Chltotal/Cartotal) was also

influenced by the studied biostimulants, with a more pronounced

effect observed for cv. Early Bigi (Table 5). Carotenoids not only are

considered accessory pigments but also play an essential role in

photoprotection by accepting energy from chlorophyll and

dissipating it as heat, thus preventing chloroplast and tissue

damage (Hashimoto et al., 2016). Their increase in the use of

biostimulants is well-documented (Mones Sardrodi et al., 2022),

including in sweet cherries, as recently demonstrated by Correia

et al. (2020b). The lower values of Chltotal/Cartotal might indicate

that trees were under higher stress, with samples showing higher
Frontiers in Plant Science 10
values probably more able to be protected by carotenoids against

photooxidation (Barthod et al., 2007; Loggini et al., 1999).

3.3.2 Total soluble sugars and starch
Soluble sugars and starch content present, for both cultivars and

across both years, a very similar trend, with a decrease in their

content as fruit development progressed (Figure 4). Moreover, their

content was clearly influenced by the application of biostimulants,

year, phenological stage, and the interactions between all the factors

(apart from the interaction of treatment, year, and phenological

stage in cv. Early Bigi and interaction of treatment and phenological

stage of cv. Lapins, regarding starch content) (Supplementary Table

S1). For soluble sugars (SS) (Figure 4), lower contents were observed

in the control (C) treatment, a trend also recorded for starch

content. These metabolites are generally associated with responses

to different types of stress (Thalmann and Santelia, 2017), with
TABLE 5 Total chlorophyll [Chl(a+b)], carotenoids (Car), and related ratios [Chla/Chlb, Chl(a+b)/Car] of cv. Early Bigi leaves in 2019 and 2021.

cv. Early Bigi Date C EM 0.15% EM 0.30% GB 0.25% GB 0.40% Mix p

Chl(a+b)
(μg g−1 DW)

2019

14/4 3.13 ± 1.54 b 3.25 ± 0.23 b 3.58 ± 1.02 b 5.19 ± 0.91 a 3.78 ± 0.79 ab 4.58 ± 1.07 ab ***

22/4 3.33 ± 0.23 c 3.80 ± 1.11 bc 3.35 ± 0.38 c 5.41 ± 0.60 a 3.92 ± 0.69 bc 4.69 ± 0.94 ab ***

3/5 3.42 ± 0.23 c 3.66 ± 0.79 bc 3.45 ± 0.34 c 5.64 ± 0.50 a 4.32 ± 0.36 b 5.33 ± 0.48 a ***

2021

9/4 2.15 ± 0.53 c 2.24 ± 0.40 c 2.47 ± 0.35 bc 3.00 ± 0.47 ab 3.02 ± 0.34 ab 3.70 ± 0.66 a ***

18/4 2.32 ± 0.49 c 2.47 ± 0.28 c 2.64 ± 0.44 bc 3.02 ± 0.41 b 3.13 ± 0.30 b 3.94 ± 0.23 a ***

27/4 2.89 ± 0.41 b 3.43 ± 0.74 ab 3.41 ± 0.69 ab 4.14 ± 0.60 a 3.20 ± 0.48 b 3.31 ± 0.63 ab **

Car
(μg g−1 DW)

2019

14/4 0.82 ± 0.41 0.77 ± 0.08 0.84 ± 0.19 1.11 ± 0.17 0.93 ± 0.24 1.00 ± 0.18 n.s.

22/4 0.76 ± 0.10 c 0.85 ± 0.27 bc 0.79 ± 0.07 bc 1.14 ± 0.12 a 0.96 ± 0.21 abc 1.02 ± 0.14 ab ***

3/5 0.79 ± 0.21 b 0.80 ± 0.06 b 0.84 ± 0.05 b 1.09 ± 0.15 a 1.06 ± 0.11 a 1.11 ± 0.08 a ***

2021

9/4 0.45 ± 0.10 c 0.70 ± 0.17 a 0.56 ± 0.10 abc 0.70 ± 0.06 a 0.66 ± 0.08 ab 0.53 ± 0.10 bc ***

18/4 0.47 ± 0.09 c 0.73 ± 0.05 a 0.60 ± 0.05 abc 0.69 ± 0.10 ab 0.63 ± 0.07 ab 0.58 ± 0.15 bc ***

27/4 0.49 ± 0.05 b 0.62 ± 0.11 ab 0.61 ± 0.11 ab 0.66 ± 0.11 a 0.56 ± 0.07 ab 0.61 ± 0.13 ab **

Chla/Chlb

2019

14/4 3.03 ± 0.11 3.03 ± 0.20 3.07 ± 0.13 3.09 ± 0.16 3.01 ± 0.21 3.09 ± 0.26 n.s.

22/4 3.04 ± 0.51 2.77 ± 0.91 3.08 ± 0.12 3.04 ± 0.08 2.93 ± 0.31 3.09 ± 0.26 n.s.

3/5 3.14 ± 0.22 ab 2.18 ± 0.68 b 3.52 ± 1.06 a 3.14 ± 0.95 ab 2.77 ± 0.42 ab 2.84 ± 0.47 ab ***

2021

9/4 3.73 ± 0.74 2.91 ± 1.22 2.82 ± 0.49 3.35 ± 0.29 2.76 ± 0.25 2.97 ± 0.60 n.s.

18/4 3.74 ± 1.13 abc 2.78 ± 0.45 bc 2.75 ± 0.53 c 3.96 ± 0.73 a 2.78 ± 0.26 bc 3.88 ± 1.03 ab ***

27/4 2.46 ± 0.14 ab 2.47 ± 0.05 ab 2.49 ± 0.11 ab 2.51 ± 0.10 ab 2.42 ± 0.08 b 2.57 ± 0.11 a **

Chl(a+b)/Car

2019

14/4 3.84 ± 0.35 c 4.21 ± 0.22 bc 4.21 ± 0.24 bc 4.66 ± 0.17 a 4.11 ± 0.41 c 4.55 ± 0.31 ab ***

22/4 4.41 ± 0.59 ab 4.57 ± 0.65 ab 4.21 ± 0.23 b 4.13 ± 0.43 b 4.75 ± 0.27 a 4.57 ± 0.32 ab ***

3/5 4.27 ± 0.28 b 4.75 ± 0.84 ab 4.13 ± 0.29 b 5.26 ± 0.79 a 4.09 ± 0.41 b 4.80 ± 0.32 ab **

2021

9/4 4.01 ± 0.29 c 5.08 ± 0.96 ab 4.51 ± 0.79 abc 4.26 ± 0.42 bc 4.63 ± 0.60 abc 5.39 ± 0.74 a **

18/4 4.34 ± 0.92 5.35 ± 0.91 4.47 ± 0.56 4.45 ± 0.85 4.98 ± 0.71 5.46 ± 0.62 n.s.

27/4 5.41 ± 0.29 b 5.47 ± 0.31 b 5.62 ± 0.34 b 5.94 ± 0.51 ab 5.72 ± 0.39 b 6.31 ± 0.38 a ***
frontiers
Data are presented as mean ± SD of eight replicates. Different lowercase letters represent significant differences between treatments. The absence of letters indicates no significant differences
between treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001; **p ≤ 0.01).
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soluble sugars being osmoprotectants (Chaves et al., 2002), while

starch is mostly a reservoir for future use, depending on the source–

sink dynamics (Brito et al., 2018). Overall, higher values were

recorded for EM-treated leaves. These higher values might be

linked to higher photosynthetic activity in leaves treated with

biostimulants, leading to increased production of sugars and

starch (Correia et al., 2020b; Serapicos et al., 2022). Additionally,

biostimulant application can upregulate gene expression associated

with carbohydrate metabolism (Contartese et al., 2016).

Nonetheless, carbohydrate dynamics is very complex, influenced

not only by plant growth conditions but also by genotype and even

the specific types of sugars involved. Some sugars, such as sucrose

and glucose, function as osmolytes or are involved in cellular

respiration, while others (fructose) are crucial for secondary

metabolite synthesis (Rosa et al., 2009). The key differences

observed between C and treated samples are a lower amount of

reduction (starch in 2019, in cv. Lapins, or sugars, in 2019, for both

cultivars) or an increased initial content. However, the overall
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decreases in sugars and starch content in leaves during fruit

growth have been previously recorded (Quentin et al., 2013),

influenced by the presence of fruit, which indicates that sweet

cherry fruits are strong sinks (Falchi et al., 2020).

3.3.3 Total soluble protein
Soluble protein content (SP) follows a similar pattern to that of

carbohydrates, with lower values in C treatment across both years

and cultivars (Figure 5). In leaves of both cultivars, the

concentration of total soluble protein was affected by treatment (p

≤ 0.001), year (p ≤ 0.001), and phenological stage (p ≤ 0.001).

Furthermore, the interaction between treatment and year (p ≤

0.001) for cv. Early Bigi and the interaction of treatment and

phenological stage (p ≤ 0.001) and the interaction year and

phenological stage (p ≤ 0.001) for cv. Lapins also influenced the

total soluble protein content (Supplementary Table S1).

The accumulation of proteins after the foliar application of

biostimulants has been recorded elsewhere (Yakhin et al., 2017;
TABLE 6 Total chlorophyll [Chl(a+b)], carotenoids (Car), and related ratios [Chla/Chlb, Chl(a+b)/Car] of cv. Lapins leaves in 2019 and 2021.

cv. Lapins Date C EM 0.15% EM 0.30% GB 0.25% GB 0.40% Mix p

Chl(a+b)
(μg g−1 DW)

2019

14/4 3.13 ± 1.54 b 3.25 ± 0.23 b 3.58 ± 1.02 b 5.19 ± 0.91 a 3.78 ± 0.79 ab 4.58 ± 1.07 ab ***

22/4 3.33 ± 0.23 c 3.80 ± 1.11 bc 3.35 ± 0.38 c 5.41 ± 0.60 a 3.92 ± 0.69 bc 4.69 ± 0.94 ab ***

3/5 3.42 ± 0.23 c 3.66 ± 0.79 bc 3.45 ± 0.34 c 5.64 ± 0.50 a 4.32 ± 0.36 b 5.33 ± 0.48 a ***

2021

9/4 2.15 ± 0.53 c 2.24 ± 0.40 c 2.47 ± 0.35 bc 3.00 ± 0.47 ab 3.02 ± 0.34 ab 3.70 ± 0.66 a ***

18/4 2.32 ± 0.49 c 2.47 ± 0.28 c 2.64 ± 0.44 bc 3.02 ± 0.41 b 3.13 ± 0.30 b 3.94 ± 0.23 a ***

27/4 2.89 ± 0.41 b 3.43 ± 0.74 ab 3.41 ± 0.69 ab 4.14 ± 0.60 a 3.20 ± 0.48 b 3.31 ± 0.63 ab **

Car
(μg g−1 DW)

2019

14/4 0.82 ± 0.41 0.77 ± 0.08 0.84 ± 0.19 1.11 ± 0.17 0.93 ± 0.24 1.00 ± 0.18 n.s.

22/4 0.76 ± 0.10 c 0.85 ± 0.27 bc 0.79 ± 0.07 bc 1.14 ± 0.12 a 0.96 ± 0.21 abc 1.02 ± 0.14 ab ***

3/5 0.79 ± 0.21 b 0.80 ± 0.06 b 0.84 ± 0.05 b 1.09 ± 0.15 a 1.06 ± 0.11 a 1.11 ± 0.08 a ***

2021

9/4 0.45 ± 0.10 c 0.70 ± 0.17 a 0.56 ± 0.10 abc 0.70 ± 0.06 a 0.66 ± 0.08 ab 0.53 ± 0.10 bc ***

18/4 0.47 ± 0.09 c 0.73 ± 0.05 a 0.60 ± 0.05 abc 0.69 ± 0.10 ab 0.63 ± 0.07 ab 0.58 ± 0.15 bc ***

27/4 0.49 ± 0.05 b 0.62 ± 0.11 ab 0.61 ± 0.11 ab 0.66 ± 0.11 a 0.56 ± 0.07 ab 0.61 ± 0.13 ab **

Chla/Chlb

2019

14/4 3.03 ± 0.11 3.03 ± 0.20 3.07 ± 0.13 3.09 ± 0.16 3.01 ± 0.21 3.09 ± 0.26 n.s.

22/4 3.04 ± 0.51 2.77 ± 0.91 3.08 ± 0.12 3.04 ± 0.08 2.93 ± 0.31 3.09 ± 0.26 n.s.

3/5 3.14 ± 0.22 ab 2.18 ± 0.68 b 3.52 ± 1.06 a 3.14 ± 0.95 ab 2.77 ± 0.42 ab 2.84 ± 0.47 ab ***

2021

9/4 3.73 ± 0.74 2.91 ± 1.22 2.82 ± 0.49 3.35 ± 0.29 2.76 ± 0.25 2.97 ± 0.60 n.s.

18/4 3.74 ± 1.13 abc 2.78 ± 0.45 bc 2.75 ± 0.53 c 3.96 ± 0.73 a 2.78 ± 0.26 bc 3.88 ± 1.03 ab ***

27/4 2.46 ± 0.14 ab 2.47 ± 0.05 ab 2.49 ± 0.11 ab 2.51 ± 0.10 ab 2.42 ± 0.08 b 2.57 ± 0.11 a **

Chl(a+b)/Car

2019

14/4 3.84 ± 0.35 c 4.21 ± 0.22 bc 4.21 ± 0.24 bc 4.66 ± 0.17 a 4.11 ± 0.41 c 4.55 ± 0.31 ab ***

22/4 4.41 ± 0.59 ab 4.57 ± 0.65 ab 4.21 ± 0.23 b 4.13 ± 0.43 b 4.75 ± 0.27 a 4.57 ± 0.32 ab ***

3/5 4.27 ± 0.28 b 4.75 ± 0.84 ab 4.13 ± 0.29 b 5.26 ± 0.79 a 4.09 ± 0.41 b 4.80 ± 0.32 ab **

2021

9/4 4.01 ± 0.29 c 5.08 ± 0.96 ab 4.51 ± 0.79 abc 4.26 ± 0.42 bc 4.63 ± 0.60 abc 5.39 ± 0.74 a **

18/4 4.34 ± 0.92 5.35 ± 0.91 4.47 ± 0.56 4.45 ± 0.85 4.98 ± 0.71 5.46 ± 0.62 n.s.

27/4 5.41 ± 0.29 b 5.47 ± 0.31 b 5.62 ± 0.34 b 5.94 ± 0.51 ab 5.72 ± 0.39 b 6.31 ± 0.38 a ***
frontiersin
Data are presented as mean ± SD of eight replicates. Different lowercase letters represent significant differences between treatments. The absence of letters indicates no significant differences
between treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001; **p ≤ 0.01).
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Afonso et al., 2022). This increase may be associated with the rich

bioactive endogenous profile of seaweed, which includes hormones,

minerals, and vitamins that promote enzymatic actions responsible

for protein synthesis (Aslam et al., 2016), and is linked to the

increased expression of genes (Goñi et al., 2018; Baltazar et al.,

2021) or the N input present in the biostimulants (Afonso et al.,

2022). Additionally, the amino acid glycine, a reduced form of

nitrogen, can be directly assimilated by leaves, thereby accelerating

protein biosynthesis (Zargar Shooshtari et al., 2020). On the other

hand, the reduction of protein content with fruit development may

possibly be related to the onset of mobilization of foliar N towards

other plant parts (Thimann, 1980).

3.3.4 Total phenolics
Data for total phenolic content show an increase in all situations

as fruit development progresses (Figure 6). This pattern is commonly

observed in plants (Colaric et al., 2006), including sweet cherries

(Serapicos et al., 2022), and the average value is within the range

found in sweet cherry leaves (Gonçalves et al., 2008; Dziadek et al.,

2019; Nunes et al., 2021). In both cultivars, the effect of biostimulants

was evident (p ≤ 0.001), as well as the effect of the remaining factors.

However, only observed in cv. Early Bigi, the interactions between
Frontiers in Plant Science 12
treatment and year (p > 0.05) and between treatment, year, and

phenological stage (p > 0.05) did not significantly affect the total

phenolic content (Supplementary Table S1). Overall, the greatest

results were recorded with algae-based biostimulants, regarding cv.

Early Bigi, although differences can be observed with all treatments.

For cv. Lapins, algae-based biostimulants also led to increased

phenolic content, but with reduced variations when compared to

other treatments. The increased content of phenolic compounds in

spray samples might be linked to the ability of biostimulants to

enhance the activity of key enzymes, like phenylalanine ammonia

lyase and tyrosine aminotransferase, that are involved in phenolics

biosynthesis (Kulkarni et al., 2019; Afonso et al., 2022). On the other

hand, it may be attributed to the improved activity of endogenous

antioxidant enzymes, hence protecting existing phenolics form

oxidation (Pylak et al., 2019; Afonso et al., 2022).
3.4 Cell membrane damage

Biotic or abiotic stresses can cause the accumulation of reactive

oxygen species, causing damage to cell membranes through lipid

peroxidation, thereby changing their permeability (Sachdev et al.,
FIGURE 4

Soluble sugars (SS, mg g−1 DW) and starch contents (St, mg g−1 DW) of cvs. Early Bigi (A, C) and Lapins (B, D) leaf cherry after spray treatment
application in 2019 and 2021. Data are mean ± SD of eight replicates. Different lowercase letters represent significant differences. The absence of
letters indicates no significant differences between treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001; **p
≤ 0.01).
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2021). These changes in permeability can be monitored by

measuring the EL, an indicator of cell membrane integrity (Bajji

et al., 2001), or by detecting the presence of TBARS.

In the current study, both indexes of membrane damage exhibit

a very similar tendency (Figure 7). In leaves of both cultivars, these

indexes were affected by year (p ≤ 0.001), phenological stage (p ≤

0.001), treatments (p ≤ 0.001), and the interaction of treatment and

phenological stage (p ≤ 0.001). The EL was also influenced by the
Frontiers in Plant Science 13
interaction between year and treatment (p ≤ 0.001) and the

interaction between treatment, year, and phenological stage (p ≤

0.01) only for cv. Early Bigi. The interaction between year and

phenological stage affected the EL (p ≤ 0.001 for both cultivars) and

TBARS (p ≤ 0.001 and p ≤ 0.01, for cv. Early Bigi and Lapins,

respectively) (Supplementary Table S1).

Results for cv. Early Bigi (Figure 7) in both years show a similar

trend, with an overall decrease in EL with the advance of fruit
FIGURE 5

Total soluble protein content (SP, mg g−1 DW) of cvs. Early Bigi (A) and Lapins (B) leaf cherry after spray treatment application in 2019 and 2021. Data
presented are mean ± SD of eight replicates. Different lowercase letters represent significant differences. The absence of letters indicates no
significant differences between treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001; **p ≤ 0.01).
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development, observed in both 2019 and 2021. The application of

biostimulants appears to affect this specific parameter, as

significantly higher values were recorded for C leaves in all

sampling dates of both years (the only exception on the first

sampling of 2019). This same pattern was recorded in leaves of

cv. Lapins, with a decrease of EL with fruit development, and higher

values were recorded for C treatment (with exceptions noted in the

first sampling of both years).
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The lower EL observed with the application of biostimulants

might point out a positive effect with the use of these compounds in

preserving cell membranes during dehydration (Savé et al., 1999),

even in the absence of severe stress, as in the current work.

The evaluation of TBARS allows an overview regarding

peroxidation of membrane lipids mediated by reactive oxygen species,

which can lead to cellular damage (Sofo et al., 2004; Beis and Patakas,

2012), and typically, higher TBARS values indicate a higher exposure to
FIGURE 6

Total phenolics content (TP, mg GAE g−1 DW) of cvs. Early Bigi (A) and Lapins (B) leaf cherry after spray treatment application in 2019 and 2021. Data
presented are mean ± SD of eight replicates. Different lowercase letters represent significant differences. The absence of letters indicates no
significant differences between treatments (n.s., not significant). Asterisks represent significant differences (***p ≤ 0.001; **p ≤ 0.01).
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stress. The results of the present work underscore the significant effect of

the use of biostimulants in this specific parameter (Figure 7). The overall

trend of TBARS is a decrease of their content with fruit development, in

all situations. However, the use of biostimulants presented two different

effects: firstly, in all samples, the decrease in TBARS content was

significantly higher than that recorded in the C samples; in addition,

in the 2021 dataset, the initial TBARS content was already considerably

lower in leaves from sprayed trees. This pronounced effect of

biostimulants on TBARS data has previously been recorded in sweet

cherry leaves (Correia et al., 2020b).
3.5 Conclusion

This study evaluated the impact of biostimulants on leaf water

status, photosynthetic pigments, soluble sugars, starch, soluble

proteins, and leaf gas exchange parameters in two cultivars of

sweet cherries.

Results revealed significant differences between cultivars and

years, with notable effects observed in 2021, a hotter and dryer year

compared to 2019. Despite variations, the application of

biostimulants generally led to an improved leaf water status,

enhanced photosynthetic pigment content, and increased

photosynthetic activity (Jolayemi et al., 2023). Furthermore, the
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application of biostimulants also contributed to the preservation of

cell membrane integrity.

These improvements were most evident after the application of

both concentrations of the seaweed-based biostimulant E. maxima

and treatment GB 0.40%, which positively influenced the

performance of cherry trees.

These findings indicate the potential of biostimulants to

mitigate the impact of environmental stressors and enhance

physiological processes in sweet cherry cultivation, contributing

to improved crop performance. Further research is warranted to

elucidate the underlying mechanisms and optimize biostimulant

applications for sustainable cherry production.
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Muñoz-Rueda, A. (2001). Storage duration and temperature effect on the functional
integrity of container and bare-root Pinus radiata D. Don stock-types. Trees 15, 289–
296. doi: 10.1007/s004680100104

Mones Sardrodi, M., Biglari Quchan Atigh, Z., Dehghanian, Z., Balilashaki, K., Asgari
Lajayer, B., and Astatkie, T. (2022). “Chapter 2—Application of biostimulants to
improve agronomic and physiological responses of plants: A review,” in New and
Future Developments in Microbial Biotechnology and Bioengineering. Sustainable
Agriculture: Revisiting Green Chemicals. Eds. H. B. Singh and A. Vaishnav (Elsevier,
Amsterdam, The Netherlands), 31–44. doi: 10.1016/B978-0-323-85581-5.00012-4
frontiersin.org

https://doi.org/10.1093/aob/mcf105
https://doi.org/10.4141/P05-195
https://doi.org/10.17660/ActaHortic.2016.1148.4
https://doi.org/10.1016/j.scienta.2019.109147
https://doi.org/10.3390/plants9040410
https://doi.org/10.1371/journal.pone.0148788
https://doi.org/10.1093/oxfordjournals.pcp.a029394
https://doi.org/10.1093/oxfordjournals.pcp.a029394
https://doi.org/10.1016/j.scienta.2019.108812
https://doi.org/10.1021/jf0115589
https://doi.org/10.1016/j.scienta.2015.09.021
https://doi.org/10.1016/B978-0-12-816451-8.00029-0
https://doi.org/10.1007/s00217-018-3198-x
https://doi.org/10.1016/j.scienta.2015.05.027
https://doi.org/10.3389/fpls.2020.573982
https://doi.org/10.1016/j.molliq.2019.111339
https://doi.org/10.21548/37-1-753
https://doi.org/10.21273/HORTSCI.34.6.1015
https://doi.org/10.1016/j.scienta.2008.02.013
https://doi.org/10.1016/j.scienta.2008.02.013
https://doi.org/10.1007/s00468-006-0102-2
https://doi.org/10.1007/s00468-006-0102-2
https://doi.org/10.1016/j.foodchem.2020.126713
https://doi.org/10.1093/treephys/26.1.93
https://doi.org/10.17660/ActaHortic.2008.795.98
https://doi.org/10.1016/j.plaphy.2018.02.024
https://doi.org/10.3389/fagro.2023.1138263
https://doi.org/10.1007/978-3-319-39126-7_4
https://doi.org/10.1007/s004250050524
https://doi.org/10.1007/s00344-023-11085-x
https://doi.org/10.1139/cjps-2022-0201
https://doi.org/10.1016/S0304-4238(98)00113-7
https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
https://doi.org/10.1007/s11756-021-00996-3
https://doi.org/10.3390/agronomy12030571
https://doi.org/10.3390/ijms24119720
https://doi.org/10.3390/ijms232112913
https://doi.org/10.5073/JABFQ.2015.088.011
https://doi.org/10.1016/j.nbt.2018.08.004
https://doi.org/10.3390/agronomy13112745
https://doi.org/10.1016/0076-6879(87)48036-1
https://doi.org/10.1016/0076-6879(87)48036-1
https://doi.org/10.1002/0471142913.faf0403s01
https://doi.org/10.21273/HORTSCI14518-19
https://doi.org/10.1104/pp.119.3.1091
https://doi.org/10.1104/pp.119.3.1091
https://doi.org/10.17584/rcch.2019v13i2.8460
https://doi.org/10.1007/s004680100104
https://doi.org/10.1016/B978-0-323-85581-5.00012-4
https://doi.org/10.3389/fpls.2024.1467376
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Afonso et al. 10.3389/fpls.2024.1467376
Moreno-Hernández, J. M., Benıt́ez-Garcıá, I., Mazorra-Manzano, M. A., Ramıŕez-
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