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Introduction: Belowground bud banks (or bud-bearing organs) underlie

grassland regeneration and community succession following ecosystem

perturbations. Disturbances of nitrogen (N) enrichment, overgrazing, wildfire,

and drought substantially affect grassland ecosystem succession and

aboveground productivity.

Methods: To understand the magnitude and direction of the disturbances on the

belowground bud banks, we conducted a meta-analysis on 46 peer-reviewed

studies published from 1980 to 2023. The meta-analysis comprises 231

observations of bud bank density per unit area and 410 observations of bud

bank density per tiller.

Results: Results indicate that N addition remarkably promotes bud banks

densities and plant functional groups of grass in the belowground bud banks.

While drought negatively affects bud banks densities and functional groups of

grasses and forbs. We found that effects of the N addition and drought on the bud

banks depend on the bud type, e.g., root sprouting buds, bulb buds, and dormant

buds. However, grazing and wildfire have no significant effect on the bud banks.

Discussion:Our results suggest that the N addition and drought may significantly

exert promotional and inhibitory effects, respectively, on belowground bud

banks, critically altering plant regrowth, community succession, and grassland

community dynamics.
KEYWORDS

aboveground productivity, anthropogenic disturbances, belowground bud banks,
clonal growth, clonal organs, global change
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Introduction

Globally, grassland communities are increasingly faced with

disturbances, including nitrogen (N) addition, overgrazing, wildfire,

and drought, critically underlying the loss of grassland community

stability (Dawson et al., 2011; Pecl et al., 2017; Schulte to Bühne

et al., 2021). Grassland ecosystems provide crucial ecosystem

functions and services despite being very sensitive to the

disturbances (Luo et al., 2023). This underscores the significance

of belowground bud banks, serving as ecological insurance for

grassland recovery and community succession following periods

of environmental perturbation (Hoover et al., 2014; Ott et al., 2019;

Qian et al., 2023; Wu et al., 2024). Although these environmental

stressors critically impose damaging effects on individual plant

species, their sensitivity and response to these effects may differ

among plant functional types, including grasses and forbs (Qian

et al., 2022; Song et al., 2011; Wang et al., 2019). However, it

remains unclear how such disturbances – N addition, drought,

grazing, and wildfire − affect belowground bud banks and the

mechanisms driving such impacts.

Belowground bud banks are commonly associated with a suite

of bud-bearing organs (e.g., rhizomes, tillers, and ramets) and the

capacity to balance resource allocation to ensure the growth,

stability, and maintenance of plant populations and communities

(Klimesǒvá et al., 2023; Qian et al., 2021; Wu and Yu, 2022).

Belowground bud banks also represent a pool of carbohydrate

storage structures tightly linked with their resilience and capacity

to resprout under favorable environmental conditions (Klimesǒvá

et al., 2021; Ru et al., 2023). Given the frequent droughts, wildfires,

and grazing in grassland ecosystems, belowground bud-bearing

organs remain crucial for such ecosystems for their ultimate

aboveground regrowth following the period of perturbation

(Donovan et al., 2020; Twidwell et al., 2016). For example,

Donovan et al. (2020) found no evidence of a persistent wildfire

in North America’s grassland biome due to the rapid regrowth of all

vegetation functional types, suggesting the importance of active

belowground bud banks. On the contrary, Twidwell et al. (2016)

observed that extreme drought following a period of wildfire

significantly decreased the resprouting densities of woody shrubs

and aboveground recruitment by 35−55% compared to areas that

did not burn in the southern Great Plains of North America. This

suggests that belowground bud-bearing organs represent a vital

determining factor for aboveground recruitment and regeneration

rate (Ott et al., 2019; Qian et al., 2021). However, such attributes of

belowground bud banks can be constrained by serious disturbances,

with cascading negative impacts on ecological restoration and

community succession (Klimesǒvá et al., 2021).

Indeed, serious disturbances negatively affect grasslands via a

decrease in the density and regeneration capacity of belowground

bud banks (Fischer and Knutti, 2014; Ru et al., 2023). Such impacts

on grassland ecosystems have been reported at regional and global

scales (Ciais et al., 2005; Leys et al., 2018; Zhao and Running, 2010).

In Europe, for instance, an intense drought-induced decline in net

primary productivity in 2003 has been reported (Ciais et al., 2005),

while a global-level decrease in terrestrial primary productivity

caused by drought between 2000 and 2009 has been documented
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(Zhao and Running, 2010). Prolonged impacts of these disturbances

have caused the degradation of many temperate grasslands in Asia

and North America and tropical grasslands in South America and

Africa (Bardgett et al., 2021; Stevens et al., 2004). It is worth noting

that these disturbances complement each other, thereby

maximizing their gross impacts on ecosystems. For instance,

chronic N additions have been found to exacerbate drought

effects on grassland productivity (Meng et al., 2021). Across many

field and controlled studies, variation in individual plant

vulnerability has been implicated as the key limiting factor for

ecosystem recovery after these disturbances (Debinski et al., 2010;

Qian et al., 2023; Wang et al., 2012; Xu et al., 2021). One reason for

such variation could relate to the differential responses among plant

functional types, especially grasses and forbs (Qian et al., 2023; Xu

et al., 2017). As a confirmation, Qian et al. (2023) have reported a

consistent decrease in the density of the belowground bud bank of

forbs but not grasses in response to drought. Besides the individual

differences, however, mechanisms underlying such variation in

plant functional type responses to disturbances, including N

addition, drought, grazing, and wildfire, remain inadequate.

Understanding such disparities in bud bank responses among

plant functional types is crucial for predicting future climate and

human-derived impacts on grassland communities. Belowground

bud banks of different plant functional types may vary in their

responses to environmental stress (Carter et al., 2012; Dalgleish and

Hartnett, 2009; Klimesǒvá and Klimes,̌ 2007; Zhao et al., 2019).

Therefore, plant functional types well-adapted to a given

disturbance may exhibit a more pronounced regrowth after

periods of disturbance (Hoover et al., 2014; Mackie et al., 2019).

Most previous studies have demonstrated that grasses often show

higher resistance to intense drought and grazing owing to their

resource-use strategies compared to forbs (Carter et al., 2012; Xu

et al., 2021, 2017). In an experimental study, forbs exhibit less

resistance to long-term drought than grasses. However, the

belowground organs of forbs had the quickest recovery rate in

that study (Carter et al., 2012). While an annual wildfire least

affected the belowground bud bank of grasses, it remarkably

decreased that of forbs by 125% (Dalgleish and Hartnett, 2009).

These differential responses of plant functional types are relevant

for understanding ecosystem-level consequences of plant

communities, especially those ecosystems that are dominated by a

peculiar functional type.

The duration of occurrence and intensity of a disturbance

regime primarily modulate the severity of impacts driven by

climate change and human activities (Tonkin et al., 2017; White

and Hastings, 2020). While an extreme drought condition is tightly

linked with frequent and intense wildfires (Chikamoto et al., 2017;

Pontes-Lopes et al., 2021; Wragg et al., 2018), increasing N addition

promotes the growth of grasses and modifies their palatability,

ultimately determining grazing preference and intensity. Therefore,

we hypothesize that environmental stressors, including N addition,

drought, grazing, and wildfire, may impose divergent effects on

belowground bud banks and that such differences may vary

depending on the severity, bud types, and plant functional types.

We conducted a meta-analysis of existing studies to test these

hypotheses and specifically asked whether (1) disturbances of N
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addition, drought, grazing, and wildfire affect belowground bud

bank densities in similar ways; (2) differences in plant functional

types mediate belowground bud banks’ responses to the

disturbances; (3) bud type differences mediate belowground bud

banks’ responses to the disturbances. It was predicted that N

addition and drought effects on bud banks may exhibit divergent

patterns in many prominent ecosystems, e.g., grasslands.
Materials and methods

Data compilation

We compiled data from studies that have reported

belowground bud bank responses to N addition, drought,

grazing, and wildfire disturbances by conducting a literature

search for peer-reviewed publications in the Web of Science

(http://apps.webofknowledge.com/) and Google Scholar. We used

the following search string: ‘climate change’ OR ‘global change’ OR

‘human disturbance’ OR ‘drought*’ OR ‘N addition’ OR ‘increased

precipitation’ OR ‘fire’ OR ‘grazing’ OR ‘clipping’ OR ‘herbivory’

AND ‘buds’ OR ‘bud bank’ OR ‘bud density.’ All published records

from 1980 to 2023 were included in the search. We then screened all

the studies for publications that met the criteria: (i) the publication

reported effects of manipulating at least one of the following

disturbances − N addition, drought, wildfire, and grazing − as

well as clipping on bud bank densities of the whole plant

community and/or different plant functional types; (ii) the

publications that reported mean values, sample sizes, and

variances for bud bank densities. In total, 46 publications met the

criteria (see Materials and Methods in S1), with 246 observations on

the bud bank density per unit area, 410 observations on the bud

bank density per tiller, and 174 observations for the wildfire
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moderator, 281 observations for the grazing moderator, 149

observations for the drought moderator, as well as 52

observations for the N addition moderator. The biomes and study

sites of all 46 publications across the world covered in this dataset

are shown (Figure 1). Also, detailed information on studies,

including classification of disturbances, ecosystem, plant

functional type, and bud type, as well as the disturbances and the

subsequent effects are shown in the Supplementary Material

(Supplementary Table S1).

We extracted mean values of the bud bank density and their

corresponding variances (standard deviations, standard errors, or 95%-

confidence intervals) and sample sizes directly from the text, tables, or

figures using IMAGE J 1.47 v (Rasband, 2013). For the studies

involving N addition, water addition, wildfire, grazing, and/or

clipping, we considered the ambient level (i.e., no treatment) as the

‘control’ and ‘treatment’ for level(s) such as the N addition, water

addition, wildfire, grazing, and/or clipping. For the studies with

decreased water availability relative to the ambient level (without

decreased water availability), the treatment with decreased water

availability was considered as the ‘control’ and ‘treatment’ using the

ambient level. When more than one factor was manipulated in an

experiment, we kept the other factors at the ambient level and then

extracted the data on treatments for the focal factor.
Bud bank type classification

We classified the various bud banks based on their bud-bearing

organs’ morphological characteristics. Thus, rhizome buds (axillary

buds and apical buds on hypogeogenous rhizomes), tiller buds

(axillary buds at the shoot bases of caespitose species and

rhizomatous grasses), root-sprouting buds (adventitious buds

formed mainly endogenously on roots of forb or shrub), and bulb
FIGURE 1

The biomes and study sites over the world covered in the analyzed dataset.
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buds, i.e., buds originating from the swollen bases of bulb-type

species (see Figure 2). It is worth noting that buds on rhizomes and

roots could be counted directly. In contrast, shoot bases need to be

dissected for tiller bud counting.

According to papers or publications used in this meta-analysis,

we classified bud into three viability classes, i.e., those that were

metabolically active, dormant, or dead. Previous-year stem base

halves were incubated in colorless triphenil tetrazolium chloride

[TTC, 0.6% (w/v)] at 30°C in darkness for 15 h. Bud apexes that

stained either red or pink were considered metabolically active.

Change from colorless to either red or pink indicates an enzymatic

reduction from TTC to insoluble red formazan. Buds unstained

with TTC were tested using the vital stain Evan’s Blue [0.25% (w/

v)], which does not penetrate intact semi-permeable membranes.

Thus, unstained or dark blue-stained tissues using the vital stain

were considered dormant or dead, respectively.
The degree criteria for each moderator

We define the extent of the wildfire by the frequency (number of

times). Less than 5 wildfires per year were considered low, less than

10 and more than 5 were considered moderate, and more than 10

were considered high. We defined the intensity of grazing according

to the number of livestock per unit or the proportion of clipping,
Frontiers in Plant Science 04
with less than 10 per hectare considered low, more than 10 and less

than 30 considered moderate, and more than 30 considered high. A

clipping ratio of less than 30% is considered low, between 30% and

50% is considered moderate, and greater than 50% is considered

high. This definition follows the literature collected for the meta-

analysis (see Supplementary Table S2).

To ensure consistency, we define the intensity of nitrogen

addition by the amount and concentration added. Less than or

equal to 20g per square meter was categorized as low, less than 20

mmol/L-1 as low, more than 20 mmol/L-1 but less than 40 mmol/L-1

as moderate, and more than 40 mmol/L-1 as high. We defined the

intensity of drought according to the amount and proportion of

rainfall intercepted as mentioned in literature. Less than 200 mm

was categorized as low, greater than 200 mm and less than 500 mm

was categorized as moderate, and greater than 500 mm was

categorized as high. The proportion of intercepted rainfall less

than 30% was considered low, greater than 30%, but less than

60% was considered moderate, and greater than 60% was

considered high (see Supplementary Table S2).
Effect size and variance computation

To examine the effects of N addition, drought, grazing, and

wildfire disturbance on belowground bud bank density, we
FIGURE 2

Belowground bud-bearing organ types covered in the analyzed dataset.
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calculated the log response ratio (ln R) as the effect size of bud bank

density for each component of N addition, drought, grazing, and

wildfire disturbances for each study (Hedges et al., 1999):

lnR = ln
�Xt
�Xc

� �
= ln(�Xt) − ln(�Xc)

where �Xt and �Xc are the mean values of the individual bud bank

density in the treatment (t) and control (c), respectively. The

variance of ln R was calculated, following Hedges et al. (1999), as

vlnR =
(SDc)

2

Nc(�Xc)
2 +

(SDt)
2

Nt(�Xt)
2

where Nc and Nt are sample sizes, SDt and SDc are standard

deviations, and Xt and Xc are mean values for the bud bank density

in the treatment (t) and control (c), respectively. To avoid pseudo-

replication, we pooled the multiple effect sizes (weighted by the

inverse variance) and corresponding variances per study (Leimu

et al., 2006). Pooling was done using the fixed-effect model (using

the rma function in the R package METAFOR) because we assumed

a single true underlying effect size in a study.
Data analysis

All meta-analytical calculations and analyses were performed in

R 3.1.3 (R Core Team, 2015) using the package METAFOR v1.9-7

(Viechtbauer, 2010). First, to test whether the bud bank densities of

different plant functional types, on average, exhibited significant

positive or negative responses to N addition, drought, grazing, and

wildfire, we performed a general meta-analysis using a random-

effect model (Gurevitch and Hedges, 2001). We computed weighted

mean effect sizes and 95% confidence intervals (CIs) for each model

for the moderator levels. We considered a mean effect size estimate

significantly different from zero if the 95% CI around the mean did

not include zero. For each of the disturbance, we compared mean

effect sizes of different bud types (i.e., rhizome bud, tiller bud, root

sprouting bud, and bulb bud; active bud and dormant bud) and

plant functional type (i.e., forb, grass, sedge, shrub, and total plants).

We also compared mean effect sizes of bud bank densities among

different treatment levels (i.e., low, moderate, and high). In these

models, total heterogeneity (QT) in effect sizes can be partitioned

into heterogeneity explained by the model structure (QM) and

unexplained heterogeneity (QE); we used the QT test (Koricheva
Frontiers in Plant Science 05
et al., 2013) to test for a significant difference in the mean effect size

among levels or groups for the moderator.
Results

Disturbance effects on belowground
bud banks

The analysis of 48 studies indicated that the effect size of N

addition and drought was higher than that of wildfire and grazing

disturbances. Thus, drought and N addition significantly affected

bud bank density but not wildfire and grazing (P < 0.05, Table 1;

Figure 3). However, as drought imposed significantly negative

effects on the belowground bud bank density (Table 1; Figure 3),

N addition had significantly positive impacts on the belowground

bud bank density (P < 0.05, Table 1; Figure 3). Neither wildfire nor

grazing had significant effect on average belowground bud bank

density (P < 0.05, Table 1; Figure 3).
Effect of different degrees of disturbance
on bud bank

Considering the level of the measured disturbance on bud

banks, i.e., drought, N addition, fire, and grazing, we found that

higher N addition and grazing levels negatively affected

belowground bud bank densities. Both high-level and moderate-

level of N addition significantly affected the belowground bud bank

densities. However, moderate-level disturbances of drought,

grazing, and fire had no significant effects on the belowground

bud bank densities (P < 0.05, Table 2). Although both moderate and

high-level of drought had no effect on the belowground bud bank

density, surprisingly, low levels of drought had a minimal effect (i.e.,

indicated by a marginally significant effect) on it (P < 0.1,

see Table 2).
Disturbance effects on different bud types

Results also indicate that different bud types showed different

responses to disturbances of N addition, drought, wildfire, and

grazing (Table 3; Figure 4). Both rhizome buds and bulb buds
TABLE 1 Results of meta-analysis comparing bud bank densities in responses to disturbances of wildfire, grazing, drought, and N addition.

Moderator Number of
effect sizes

Mean Lower
95% CI

Upper
95% CI

P Qtotal Mean Study
variance

Wildfire 174 0.0366 -0.076 0.1493 0.5297
838.827 0.3216

Grazing 281 -0.0687 -0.1538 0.0164 0.1137

Drought 149 -0.1747 -0.3228 -0.0267 0.0207*
217.929 0.2911

N addition 52 0.2143 0.0117 0.4169 0.0382*
The asterisk (*) indicates a statistically significant effect on the belowground bud bank density (P < 0.05).
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showed significantly negative responses to grazing (P < 0.05,

Table 3; Figure 4A). However, active and dormant bud showed

significantly negative and positive responses, respectively, to

wildfire (P < 0.05, Table 3; Figure 4B). Moreover, rhizome and

tiller buds showed significantly positive responses to N addition, but

the N addition imposed significantly negative effect on root

sprouting, bulbs, and dormant buds (P < 0.05, Table 3; Figure 4).
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Additionally, the N addition had significantly positive effect on

other buds that were not specifically grouped (i.e., ungrouped) in

our dataset (P < 0.05, Table 3; Figure 4). Moreover, results showed

that rhizome and tiller buds showed significantly negative responses

to drought (P < 0.05, Table 3; Figure 4A). However, the drought had

neither positive nor negative effect on the other buds

(Table 3; Figure 4).
Disturbance effects on plant functional
type on bud banks

Results indicate that different plant functional types showed

different responses to the disturbances of N addition, drought,

wildfire, and grazing (Table 4; Figure 5). Neither wildfire nor

grazing had a significant positive or negative effect on plant

functional type (grasses, forbs, and shrubs) (Table 4; Figure 5).

However, ungrouped plant functional types showed significantly

positive response to wildfire (Table 4; Figure 5). Unlike wildfire and

grazing, N addition and drought significantly affected grasses and

forbs but not shrubs. Thus, grasses and forbs showed significantly

negative responses to drought. However, N addition significantly

promoted the bud bank density of grasses (Table 4; Figure 5).
Discussion

Results of this meta-analysis provide empirical evidence that N

addition and drought impose significantly divergent effects, which

depend on the degree and frequency of disturbances, plant

functional types, and bud types. Overall, our results confirmed

the findings of most previous studies reporting that drought

(Adomako et al., 2020b; Buttler et al., 2019; Lei et al., 2020; Xu
TABLE 2 Results of meta-analysis comparing bud bank densities in responses to disturbances of wildfire, grazing, drought, and N addition.

Moderator Level Number of
effect sizes

Mean Lower
95% CI

Upper
95% CI

P Qtotal Mean Study
Variance

Wildfire Low 103 0.0205 -0.117 0.2181 0.5544

322.009 0.5798Moderate 4 0.5068 -0.3463 1.3598 0.2443

High 67 -0.0281 -0.2662 0.2101 0.8173

Grazing Low 65 0.0403 -0.0849 0.1655 0.5258

338.211 0.2009Moderate 169 -0.0533 -0.1369 0.0302 0.2108

High 47 -0.2306 -0.4043 -0.057 0.0092*

Drought Low 90 0.2620 -0.0275 0.5515 0.0761†

74.010 0.0868Moderate 14 0.2029 -0.4410 0.8468 0.5368

High 45 -0.0271 -0.6669 0.6126 0.9338

N addition Low 36 -0.0027 -0.1635 0.1581 0.9739

115.689 0.3812Moderate 8 -0.4199 -0.7596 -0.0802 0.0154*

High 8 -0.4257 -0.6800 -0.1715 0.0010*
The asterisk (*) indicates a statistically significant effect on the belowground bud bank density (i.e., P < 0.05), and † indicates a marginally significant effect on the belowground bud bank density
(i.e., P < 0.1).
FIGURE 3

Responses (indicated by log response ratio mean effect sizes) of
belowground bud bank densities to disturbances of wildfire, grazing,
drought, and N addition. Error bars represent 95%-confidence
intervals around the mean effect size estimates. The asterisk (*)
indicates a statistically significant effect on the belowground bud
bank density (i.e., P < 0.05), while ns denotes no significant effect.
Sample sizes (i.e., the number of effect sizes) are given in
parentheses. The dashed vertical line indicates zero effect of the
global environmental change drivers.
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et al., 2021) and N addition (Gough et al., 2012; Ren et al., 2019,

2023; Zheng et al., 2019) affect plant growth and productivity.

Drought events hamper the regeneration of belowground bud

banks (Qian et al., 2023; Wang et al., 2019), profoundly affecting

ecosystem succession and community composition and dynamics

(Buttler et al., 2019; Lei et al., 2020; Qian et al., 2022; Wang et al.,

2019). In the present analysis, drought significantly impacts forbs
Frontiers in Plant Science 07
and grasses, key plant functional types in many grassland

ecosystems worldwide (Petermann and Buzhdygan, 2021; Qian

et al., 2023; Wang et al., 2019). This observation could underlie

the significant losses and degradation of global grassland

ecosystems, particularly in temperate grasslands of Asia and

North America and tropical grasslands of South America and

Africa. For instance, about 99% of North America’s aboveground
TABLE 3 Results of meta-analysis comparing bud bank densities to disturbances of wildfire, grazing, N addition, and drought.

Moderator Group Number of
Effect sizes

Mean Lower
95% CI

Upper
95% CI

P Qtotal Mean Study
Variance

Wildfire Rhizome bud 7 0.1853 -0.4496 0.8203 0.5673

326.952 0.5798

Tiller bud 3 0.3098 -0.6314 1.2510 0.5189

Root sprouting bud – – – – –

Buld bud – – – – –

Ungrouped bud 52 0.1236 -0.1094 0.3566 0.2986

Active bud 56 -0.3164 -0.5429 -0.0899 0.0062*

Dormant bud 29 0.56 0.1849 0.9352 0.0034*

Dead bud 27 0.2544 -0.2209 0.7296 0.2942

Grazing Rhizome bud 52 -0.2599 -0.4084 -0.1113 0.0006*

501.094 0.1747

Tiller bud 50 0.1292 -0.0170 0.2754 0.0834

Root sprouting bud 16 -0.1610 -0.5996 0.2776 0.4718

Buld bud 12 -0.5077 -0.9505 -0.0649 0.0246*

Ungrouped bud 105 -0.0568 -0.1509 0.0373 0.2369

Active bud 18 0.0253 -0.1905 0.241 0.8185

Dormant bud 13 -0.0685 -0.4583 0.3213 0.7304

Dead bud 15 0.3677 -0.0129 0.7462 0.0583

N addition Rhizome bud 4 0.9161 0.3413 1.4909 0.0018*

97.712 0.0868

Tiller bud 4 0.6954 0.1366 1.2542 0.0147*

Root sprouting bud 2 -1.047 -1.8098 -0.2842 0.0071*

Buld bud 2 -1.2349 -2.0583 -0.4114 0.0033*

Ungrouped bud 30 0.5537 0.3519 0.7554 <0.0001*

Active bud – – – – –

Dormant bud 10 -0.8779 -1.2609 -0.4948 <0.0001*

Dead bud – – – – –

Drought Rhizome bud 12 -0.9829 -1.6122 -0.3536 0.0022*

152.364 0.3812

Tiller bud 11 -2.5872 -3.7289 -1.4454 <0.0001*

Root sprouting bud – – – – –

Buld bud – – – – –

Ungrouped bud 65 -0.1162 -0.2703 0.038 0.1397

Active bud 28 -0.0339 -0.3421 0.2743 0.8292

Dormant bud 33 -0.1081 -0.3794 0.1632 0.4348

Dead bud – – – – –
The asterisk (*) indicates a statistically significant effect on the belowground bud bank density (P < 0.05). The asterisk (*) indicates a statistically significant effect on the belowground bud bank
density (i.e., P < 0.05).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1464973
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1464973
regrowth of tallgrass ecosystems is recruited from the belowground

bud banks (Benson and Hartnett, 2006). Moreover, a reduction of

66% of annual precipitation, indicating a severe drought,

significantly reduced the bud density, consequently impacting the

community’s aboveground shoot productivity (Qian et al., 2023).

Although in a short term, a 90-day drought significantly reduced

the net productivity (the sum of aboveground and belowground

biomass) of rhizomatous grass Leymus chinensis by 69% and

decreased belowground bud bank density by 56% (Wang et al.,

2019). This suggests that L. chinensis, which is native to China and

is dominant in the Eurasian steppe ecosystems, can easily be lost

due to prolonged drought regimes (Adomako et al., 2021; Wang

et al., 2019). Our results suggest that drought is critical to grassland

ecosystems owing to its immediate reduction effects on net primary

productivity and future productivity of grassland due to its impacts

on belowground bud bank density.

However, effects of the drought largely depend on its magnitude

or severity, coupled with plant functional and bud types. For example,

in a grassland experimental community in Central Texas, severe

drought profoundly reduced biomass productivity by 82% (Xu et al.,

2017). Such negative effects on grasses were primarily attributed to

reduced growth, tiller number, and rhizome buds (Zhuang et al.,

2017), as well as ramets, root sprouting, and dormant buds for forbs

(Saud et al., 2017). Previous studies have consistently reported that

bud bank density and bud types of forbs showed the highest

vulnerability to drought compared to grasses (Li et al., 2021; Qian
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et al., 2021, 2023). These differential responses may explain the

disparities in ecosystem-level responses to the ongoing

environmental disturbance (Bobbink et al., 2010; Stevens et al.,

2004). Thus, ecosystems in which grasses are key dominant species

may show stronger resistance than where forbs dominate (Li et al.,

2016; You et al., 2017). However, in a long-term drought event, how

bud banks of grasses may respond and their impact on the wider

grassland vegetation require further experimental clarification.

Furthermore, results suggest that N addition significantly

promoted bud bank density and aboveground growth (Qian et al.,

2021). One key mechanism underpinning such observations is that

N addition enhances litter quality and accumulation, promoting soil

physico-chemical characteristics and their positive feedback on

belowground bud banks (Hou et al., 2021; Wu et al., 2024). N

enrichment and litter addition jointly enhanced bud numbers and

aboveground growth, suggesting that N addition may be tightly

linked with ecosystem-level growth and productivity (Li et al., 2021;

Ren et al., 2024). However, N addition mostly exhibits positive

effects at the plant species level under short-term conditions but

cascades profound negative effects on population- and community-

level diversity and dynamics (Adomako et al., 2020a; Gao et al.,

2022; Li et al., 2022). Thus, increasing N addition promotes large

canopy formation of species (e.g., grasses) with high nutrient use

efficiency, decreasing light entry and water availability to understory

plants (Wu and Yu, 2022; Xing et al., 2022), as well as decreasing

soil temperature and respiration (Li et al., 2018; Yang et al., 2022).
FIGURE 4

Responses of belowground bud bank densities of different bud types to disturbances of wildfire, grazing, drought, and N addition. Error bars represent 95%-
confidence intervals around the mean effect size estimates. The asterisk (*, **, and ***) indicates a statistically significant effect on the belowground bud bank
density (i.e., P < 0.05), while ns denotes no significant effect. Sample sizes (i.e., the number of effect sizes) are given in parentheses. The dashed vertical line
indicates zero effect of the global environmental change drivers. (A) denotes the density of bud bank per unit area, (B) denotes the density of bud bank of
per tiller, respectively.
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TABLE 4 Results of meta-analysis comparing bud bank densities of different plant functional groups to disturbances of wildfire, grazing, N addition,
and drought.

Moderator Group Number of
Effect sizes

Mean Lower
95% CI

Upper
95% CI

P Qtotal Mean Study
Variance

Wildfire Forb 10 0.0814 -0.7041 0.8669 0.8391

326.952 0.5798
Grass 132 0.0134 -0.1477 0.1746 0.8702

Shrub 16 -0.3177 -0.7575 0.122 0.1567

Ungrouped 16 0.491 0.0833 0.8987 0.0182*

Grazing Forb 30 -0.2756 -0.5636 0.0123 0.0606

501.094 0.1747
Grass 220 -0.0396 -0.1126 0.0334 0.2876

Shrub – – – – –

Ungrouped 31 -0.0534 -0.2363 0.1296 0.5675

N addition Forb 2 0.6444 -0.432 1.7208 0.2406

97.712 0.0868
Grass 20 0.5893 0.2462 0.9324 0.0008*

Shrub 20 0.1096 -0.2569 0.4761 0.5577

Ungrouped 10 -0.4807 -0.9784 0.0171 0.0584†

Drought Forb 10 -0.5414 -1.0095 -0.0734 0.0430*

152.364 0.3812
Grass 124 -0.1603 -0.2574 -0.0632 0.0492*

Shrub – – – – –

Ungrouped 15 -0.1555 -0.8006 0.4896 0.6365
F
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The asterisk (*) indicates a statistically significant effect on the belowground bud bank density (P < 0.05). The asterisk (*) indicates a statistically significant effect on the belowground bud bank
density (i.e., P < 0.05).
FIGURE 5

Responses of belowground bud bank densities of different plant functional groups to disturbances of wildfire, grazing, drought, and N addition.
Error bars represent 95%-confidence intervals around the mean effect size estimates. The asterisk (*) indicates a statistically significant effect on the
belowground bud bank density (P < 0.05), The asterisk (***) indicates a statistically significant effect on the belowground bud bank density (P <
0.001), respectively, while ns denotes no significant effect. Sample sizes (i.e., the number of effect sizes) are given in parentheses. The dashed vertical
line indicates zero effect of the global environmental change drivers.
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Eventually, such species dominate their ecosystems by

competitively excluding weaker species (Gough et al., 2012; Liu

et al., 2021). This phenomenon partly explains the loss of many

species by elevated N deposition under the ongoing global

environmental change (Li et al., 2022; Ren et al., 2022; Stevens

et al., 2010). For example, earlier studies have attributed severe N

deposition as driving the loss of species richness of grasslands across

Europe and Great Britain (Stevens et al., 2004, 2010).

Indeed, N addition effects on belowground bud banks and

aboveground growth recruitments strongly correlate with the bud

type and degree of N availability, as observed from our analysis.

Previous studies have demonstrated that high N addition promotes

vegetative growth, including rhizomes, tillers, and ramets

(Adomako et al., 2022; Gough et al., 2012). Also, it has been

previously indicated that rhizomatous buds are highly vulnerable

to nutrient shortages and intense drought in grassland ecosystems

(Qian et al., 2017). For example, a recent long- and short-term

grassland study designed to test the N addition duration on

clumper, stoloniferous, and rhizomatous clonal growth forms

found that short-term N addition promoted the growth of the

clumper clonal growth form (Zheng et al., 2019). The authors,

however, reported that long-term N addition significantly

suppressed stoloniferous clonal growth but remarkably favored

rhizomatous clonal growth. A recent meta-analysis and some

studies found that grasses and forbs responded differently to N

addition (You et al., 2017). There has been a general recognition

that N addition promotes the aboveground and belowground

biomass of grasses but reduces that of forbs (Adomako and Yu,

2023; Cheng et al., 2023; Song et al., 2011; You et al., 2017). Our

results and previous findings suggest that drought and N addition

effects on bud banks and bud types depend on the magnitude of

disturbances and specific plant functional type.

Although wildfire and grazing did not affect belowground bud

bank densities, high grazing intensity significantly impacts bud types,

particularly active, dormant, rhizome, and bulb buds. Such bud-type-

specific effects can undermine ecosystems where these bud types

dominate the belowground structures. In the Eurasian regions where

these species dominate the ecosystem, the loss of below- and above-

ground biodiversity caused by extreme grazing has resulted in

grassland degradation (Liang et al., 2021). Perhaps overgrazing is

among the most important disturbances driving the loss of grassland

biomes worldwide (Liang et al., 2021; Osem et al., 2002; Ren et al.,

2018; Zhang et al., 2023), resulting from its multifaceted damaging

effects on below- and above-ground biodiversity (Cao et al., 2024;

Liang et al., 2021), soil respiration and organic carbon (Li et al., 2024),

and ecosystem multifunctionality (Zhang et al., 2023).

Similarly, while wildfire did not impact bud bank densities, it

significantly induced negative and positive impacts on active and

dormant buds. The majority of studies have documented drastic

effects of wildfire on belowground processes (Clarke et al., 2022; Kong

et al., 2022), nutrient availability (Kong et al., 2022), and plant

aboveground productivity (Roces-Dıáz et al., 2022; Wardle et al.,

2003), all of which positively correlate with regeneration of active

buds in ecosystems. Surprisingly, wildfire exerted promotional effects
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on dormant buds in the present analysis, which is consistent with few

previous studies that have documented positive impacts of wildfire on

grassland regrowth, especially in the semi-arid regions of Texas, USA

(Fultz et al., 2016) and as management strategy of protected forest in

Northeast Portugal (Fonseca et al., 2011). Our analysis indicated that

N addition and drought would differentially impact specific attributes

of belowground bud banks, such as plant functional types and

bud types.
Conclusions

Results of our meta-analysis suggest that N addition and drought

significantly impact bud bank density, potentially affecting plant

populations, community-level productivity, and ecosystem stability.

This analysis confirms many predictions of N deposition effects on

global ecosystems in the coming decades. Results consistently

replicated most previous findings, which suggest that drought

adversely affects belowground bud bank densities and numbers

with cascading consequences for aboveground productivity.

Moreover, N addition significantly promotes belowground bud

bank density, positively correlating with aboveground biomass,

litter accumulation, and subsequently increased nutrient

availability. The disparity effects on belowground bud banks among

the measured variables may be attributed to the dependency of some

factors (e.g., wildfire) on drought variables. Thus, for example, effects

of wildfire on grassland ecosystems increase with drought intensity

and duration. Given the importance of grassland ecosystems and the

predicted increases in N deposition and drought in the coming

decades, prioritizing the management of belowground bud banks

will remain a critical component of maintaining the productivity and

stability of grassland globally.
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