Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.
Sec. Plant Biotechnology
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1463584
This article is part of the Research Topic Agricultural Planting Improvement and Risk Control View all 3 articles

Ozone Stress-Induced DNA Methylation Variations and Their Transgenerational Inheritance in Foxtail Millet

Provisionally accepted
Long Wang Long Wang 1Yang Liu Yang Liu 1Xiaohan Song Xiaohan Song 1Shiji Wang Shiji Wang 1Meichun Zhang Meichun Zhang 1Jiayi Lu Jiayi Lu 1Sheng Xu Sheng Xu 2Hongyan Wang Hongyan Wang 1*
  • 1 Liaoning University, Shenyang, China
  • 2 Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology (CAS), Shenyang, Liaoning Province, China

The final, formatted version of the article will be published soon.

    Elevated near-surface ozone (O3) concentrations have surpassed the tolerance limits of plants, significantly impacting crop growth and yield. To mitigate ozone pollution, plants must evolve a rapid and effective defense mechanism to alleviate ozone-induced damage. DNA methylation, as one of the most crucial epigenetic modifications, plays a pivotal role in maintaining gene stability, regulating gene expression, and enhancing plant resilience to environmental stressors. However, the epigenetic response of plants to O3 stress, particularly DNA methylation variations and their intergenerational transmission, remains poorly understood. This study aims to explore the epigenetic mechanisms underlying plant responses to ozone stress across generations and to identify potential epigenetic modification sites or genes crucial in response to ozone stress. Using Open Top Chambers (OTCs), we simulated ozone conditions and subjected foxtail millet to continuous ozone stress at 200 nmol mol -1 for two consecutive generations (S0 and S1). Results revealed that under highconcentration ozone stress, foxtail millet leaves exhibited symptoms ranging from yellowing and curling to desiccation, but the damage in the S1 generation was not more severe than in the S0 generation. Methylation Sensitive Amplified Polymorphism (MSAP) analysis of the two generations indicated that ozone stress-induced methylation variations ranging from 10.82% to 13.59%, with demethylation events ranged from 0.52% to 5.58%, while hypermethylation occurred between 0.35% and 2.76%. Reproductive growth stages were more sensitive to ozone than vegetative stages. Notably, the S1 generation exhibited widespread demethylation variations, primarily at CNG sites, compared to S0 under similar stress conditions. The inheritance pattern between S0 and S1 generations was mainly of the A-A-B-A type. By recovering and sequencing methylation variant bands, we identified six stress-related differential amplification sequences, implicating these variants in various biological 2 processes. These findings underscore the potential significance of DNA methylation variations as a critical mechanism in plants' response to ozone stress, providing theoretical insights and references for a comprehensive understanding of plant adaptation mechanisms to ozone stress and the epigenetic role of DNA methylation in abiotic stress regulation.

    Keywords: Ozone, DNA methylaiton, Transgenerational inheritance, MSAP (methylation sensitive amplified polymorphism), foxtail millet (Setaria italica (L.)

    Received: 12 Jul 2024; Accepted: 05 Sep 2024.

    Copyright: © 2024 Wang, Liu, Song, Wang, Zhang, Lu, Xu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Hongyan Wang, Liaoning University, Shenyang, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.