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Pear anthracnose, caused by Colletotrichum bacteria, is a severe infectious

disease that significantly impacts the growth, development, and fruit yield of

pear trees. Early detection of pear anthracnose before symptoms manifest is of

great importance in preventing its spread and minimizing economic losses. This

study utilized hyperspectral imaging (HSI) technology to investigate early

detection of pear anthracnose through spectral features, vegetation indices

(VIs), and texture features (TFs). Healthy and diseased pear leaves aged 1 to 5

days were selected as subjects for capturing hyperspectral images at various

stages of health and disease. Characteristic wavelengths (OWs1 and OWs2) were

extracted using the Successive Projection Algorithm (SPA) and Competitive

Adaptive Reweighted Sampling (CARS) algorithm. Significant VIs were identified

using the Random Forest (RF) algorithm, while effective TFs were derived from

the Gray Level Co-occurrence Matrix (GLCM). A classification model for pear leaf

early anthracnose disease was constructed by integrating different features using

three machine learning algorithms: Support Vector Machine (SVM), Extreme

Learning Machine (ELM), and Back Propagation Neural Network (BPNN). The

results showed that: the classification identification model constructed based on

the feature fusion performed better than that of single feature, with the OWs2-

VIs-TFs-BPNN model achieving a highest accuracy of 98.61% in detection and

identification of pear leaf early anthracnose disease. Additionally, to intuitively

and effectively monitor the progression and severity of anthracnose in pear

leaves, the visualization of anthracnose lesions was achieved using Successive

Maximum Angle Convex Cone (SMACC) and Spectral Information Divergence
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(SID) techniques. According to our research results, the fusion of multi-source

features based on hyperspectral imaging can be a reliable method to detect early

asymptomatic infection of pear leaf anthracnose, and provide scientific

theoretical support for early warning and prevention of pear leaf diseases.
KEYWORDS

hyperspectral imaging, pear leaves, anthracnose, multi-source features, classification
model, visualization
1 Introduction

Pear trees are highly susceptible to pathogenic infections

throughout their growth cycle, with anthracnose fungus being the

most significant threat (Huang et al., 2015; Zhang and Xie, 2019).

This fungus is highly contagious and presents a severe risk to pear

leaves. If anthracnose is not detected and treated promptly, it can

lead to widespread outbreaks, significantly reducing fruit quality

and production, ultimately resulting in substantial economic losses

(Luo, 2018). Therefore, early detection of pear leaf anthracnose is

important for timely treatment, which helps ensure healthy harvests

and keeps pear farming profitable.

In the current landscape of detecting pear leaf anthracnose,

primary methodologies include manual visual inspection, thermal

infrared imaging, machine vision, and spectral analysis. Despite

their effectiveness, each approach has its limitations. Manual visual

inspection, for instance, is highly subjective and often results in

delayed detection of disease progression, affecting timely

intervention (Hu et al., 2022; Zhang et al., 2023). Thermal

infrared imaging, while useful, is affected by ambient temperature

and humidity, which can compromise its accuracy (Zhu et al., 2018;

Rippa et al., 2024; Masri et al., 2017). Machine vision, on the other

hand, is restricted to external characteristics and fails to provide

insights into internal leaf conditions (Chen et al., 2018; Palei et al.,

2023; Kim et al., 2020). Spectral analysis, although capable of

internal assessment, lacks the ability to detect external features

(Zahir et al., 2022; Li et al., 2013). Pathogenic infections in plants

result in changes to both internal physiological characteristics and

external texture features, producing distinct spectral signatures

divergent from healthy states. To detect diseases at an early stage,

when symptoms are mild, it is crucial to monitor changes in both

the internal and external aspects of the plant. Hyperspectral

imaging (HSI) technology effectively combines the strengths of

machine vision and spectral analysis, enabling the simultaneous

collection of both spectral and visual data. This comprehensive

integration can capture changes in both the internal and external

aspects of plants, making the technology highly sensitive to subtle

variations and crucial for the early detection of plant diseases

(Zhang et al., 2021; Xie et al., 2018).

In recent years, numerous researchers have explored the early

detection of plant diseases using spectral characteristics based on
02
HSI technology. Kong et al. (2018) achieved early detection of

oilseed rape leaf spot disease using a combination of HSI

technology, chemometrics, and various machine learning

algorithms. Hernández et al. (2024) utilized spectral features as

input variables to establish an early detection model for grapevine

downy mildew using Convolutional Neural Networks (CNN), with

the accuracy of 99%. Huang et al. (2023) devised an SG-SVMmodel

for early detection of sugarcane leaf spots and rust diseases. Tang

et al. (2023) amalgamated the global and local spectral features,

employing Support Vector Machine (SVM) to establish an early

detection model for citrus anthracnose, achieving an average

detection accuracy of 91.97%. When plants are infected with

pathogens, various vegetation indices (VIs) such as internal

moisture, pigment content, and structure will change as well,

which usually have a close relationship with spectra count of

different specific wavelengths, serving as features for early

detection of plant diseases (Guo et al., 2024). Abdulridha et al.

(2020) conducted detection of various stages of powdery mildew in

pumpkins, discovering that Water Index (WI) and Photochemical

Reflectance Index (PRI) accurately classified asymptomatic, early,

and advanced stages of powdery mildew under laboratory

conditions. Su et al. (2024) utilized six VIs, including Normalized

Pigment Chlorophyll Index (NPCI), Water Index (WI),

Chlorophyll Index Rededge (CIrededge), Green Atmospherically

Resistant Index (GARI), Normalized Difference Vegetation Index

(NDVI), and Chlorophyll Index Green (CIgreen), to detect various

stages of stripe rust in wheat. The results demonstrated the

effectiveness of these indices in dynamically characterizing the

severity of stripe rust infection. Texture, as a crucial feature,

describes the spatial distribution of brightness among adjacent

pixels and stands. After plant infection with pathogens, the leaves

will exhibit morphological changes such as chlorophyll loss,

deformation, curling, wilting, etc. Therefore, several studies have

attempted to identify plant diseases using TFs extracted from

images of the plants. Xie et al. (2015) proposed detection models

for early blight and late blight in tomato leaves based on 8 texture

features, combined with an Extreme Learning Machine (ELM)

classifier. The accuracy of the models ranged from 69.9% to

71.8%. Zhu et al. (2017) extracted TFs using the Gray-Level Co-

occurrence Matrix (GLCM) and constructed various machine

learning models to identify healthy and diseased tobacco leaves at
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different stages. Among them, the Back Propagation Neural

Network (BPNN) classifier achieved an impressive accuracy of up

to 93.33% in the classification task. The aforementioned studies

demonstrated the feasibility of utilizing TFs for early detection of

plant diseases. Obviously, present research is primarily relied on

HSI technology, utilizing a single feature combined with image

processing techniques to achieve early detection of plant diseases.

However, studies on early detection of plant diseases through the

fusion of multi-source features are relatively limited.

In addition, HSI technology can also visualize the lesion, so as to

intuitively and accurately understand the location of the lesion,

infection mechanism and severity (Coliban et al., 2020). Guan et al.

(2022) visualized the lesions on wheat leaves infected with powdery

mildew 2-5 days after infection using Spectral Angle Mapper

(SAM), monitoring the progression of powdery mildew over time.

Pan et al. (2019) visualized the lesions of pear black spot disease

using Maximum Likelihood method and Spectral Angle Mapper

(SAM). Finding that SAM could obtain the occurrence rate of pear

infection with black spot disease at different stages and the size of

the infected area, realizing a real-time monitoring of the occurrence

process of pear infection with black spot disease. Despite the crucial

role of monitoring the occurrence process in disease prevention and

control, there are currently no reports on the monitoring of the

occurrence process of pear leaf anthracnose with a vivid and

intuitive method, limiting the further development of precision

pesticide application technology.

The current study aimed to use HSI technology to develop an

early detection and identification model for pear leaf anthracnose.

The objectives were threefold: (1) to extract and combine both

internal physiological features (OWs1, OWs2, and VIs) and

external texture features (TFs) to detect the disease at an early

stage; (2) to evaluate different classification models (SVM, ELM,

and BPNN) for optimizing detection results; (3) to visualize the

progression of the disease using SMACC and SID techniques. The

research will provide scientific theoretical support for the early

prevention and precise treatment of pear leaf anthracnose disease.
2 Materials and methods

2.1 Experimental materials and inoculation
of pathogens

Pear leaf samples were obtained from a pear orchard (32.04°N,

118.88°E) at the Jiangsu Academy of Agricultural Sciences, Jiangsu,

China. The pear cultivar was ‘Sucui No.1’. In June 2023, under the

guidance of plant protection personnel, healthy leaves of uniform

size and relatively broad leaf surface area were randomly sampled,

totaling 300 leaves. Then the leaves were immediately placed in a

small cooler and transported to the laboratory for labelling and

inoculation of anthracnose pathogen.

The anthracnose pathogen was provided by Plant Protection

Research Institute of Jiangsu Academy of Agricultural Sciences,

Jiangsu, China. During inoculation, each leaf was divided into two
Frontiers in Plant Science 03
parts along the midrib, and a 5mm diameter fungal plug was

inoculated on each side. The inoculated leaves were placed in a

growth chamber for cultivation under the following conditions:

temperature of 25°C, relative humidity of 85%, and simulated light

for 12 hours then by 12 hours of darkness each day. The first day of

pear leaf infection was defined as the day after the inoculation day.
2.2 Hyperspectral imaging data acquisition

Figure 1 showed the HSI system (GaiaSorter-Dual, Jiangsu

Shuangli Hesheptic Technology Co., Ltd., Jiangsu, China), which

primarily consisted of two hyperspectral cameras (a visible-light

camera and a near-infrared camera), a data acquisition box, and a

computer. This experiment only utilized the visible-light camera,

model DUALTX_IR_GE_17, with a resolution of 1392×1040 pixels,

a spectral range of 380-1010 nm, a spectral resolution of 3.8 nm, and

a total of 256 spectral channels. The data acquisition box comprised

8 halogen lamps (50 W each) and a motorized linear stage. During

the data collection, the distance between the pear leaf surface and

the camera lens was set to 55 cm, the exposure time was 9 ms, and

the motor speed was 0.69 cm/s.

The infection period of the pear leaf by the anthracnose fungus

was 1 day, thus the day following inoculation was considered as the

first day of infection. Prior to inoculation, hyperspectral images of

the pear leaves were captured for healthy controls, with each sample

labeled and numbered. Subsequently, hyperspectral images were

collected continuously for 5 days post-inoculation, capturing the

dynamic process of the pear leaves transitioning from healthy to the

onset of infection until the appearance of distinct lesions. In total,

1800 hyperspectral images were collected.
FIGURE 1

Hyperspectral image acquisition system.
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To mitigate the impact of brightness variation on data and

enhance the quality and reliability of spectral data, it was essential to

perform black-and-white rectification on hyperspectral data before

data processing.

R =
R0 − B
W − B

(1)

Where, R is the corrected hyperspectral image; R0 is the original

hyperspectral image; W is the full-white calibration image; B is the

full-black calibration image.
2.3 Feature extraction and selection

2.3.1 Region of interest extraction and selection
In this study, the entire leaf area was considered as the region of

interest (ROI) for extracting spectral information. However, the

hyperspectral image collected contains both the leaf area and the

background area. To extract the spectral information of the leaves,

the background must first be removed. ENVI 5.3 software was used

to extract the spectral reflectance of the pear leaves and the

background area separately. As shown in Figure 2, the pear leaves

exhibited a pronounced reflectance peak around 550 nm, which was

significantly different from the background reflectance. Therefore,

the grayscale image at the 551.2 nm band was used, and the leaves

were extracted from the background using a thresholding method.

Extraction Process: First, the grayscale image at 551.2 nm band

was obtained using ENVI 5.3 software (Figure 3A). Next, the

thresholding algorithm was applied to create a binary mask

image, setting the leaf area pixels to 1 and the background area

pixels to 0 (Figure 3B). Then, the mask image was then applied to all
Frontiers in Plant Science 04
bands of the original hyperspectral image, multiplying the pixel

values to obtain the hyperspectral image containing only the pear

leaf area (Figure 3C). Finally, the average spectral reflectance curve

of the leaf area was calculated by averaging the reflectance values of

all pixels within the leaf region (Figure 3D). Additionally, the

spectral reflectance values at the beginning and end of the

spectral curve exhibited frequent and significant fluctuations,

which were considered noise bands and lacked practical research

value. Therefore, the bands with substantial noise influence were

excluded, consequently 245 bands between 400 and 1000 nm were

selected for subsequent analysis.
FIGURE 2

Average spectral reflectance of pear leaves and background.
A B 

  

C D 

 

 

FIGURE 3

Spectral information extraction process. (A) Grayscale image at 551.2nm, (B) Binarized mask image, (C) Specular highlight image after background
removal, (D) Average spectral reflectance.
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2.3.2 Feature wavelength extraction
and selection

Each of the captured hyperspectral images contains 245 spectral

bands, with substantial inter-band correlation and redundant

information, significantly affecting the speed and accuracy of

subsequent data processing for modeling. Hence, reducing the

dimensionality of the original spectral data and extracting optimal

feature wavelengths is essential (Raghavendra et al., 2021). In this

study, the Sequential Projection Algorithm (SPA) and Competitive

Adaptive Reweighted Sampling (CARS) were employed for feature

wavelength extraction. The SPA algorithm effectively summarizes

the variable information of the majority of original spectra with a

sparse subset, greatly enhancing the speed and efficiency of

modeling (Araújo et al., 2001). Not only does CARS effectively

eliminate non-informative variables, but it also minimizes the

impact of collinear variables on the model to the greatest extent
Frontiers in Plant Science 05
(Li et al., 2009). The extraction of feature wavelengths was carried

out using the Matlab R2022b software.

2.3.3 Vegetation indices extraction and selection
After being infected with anthracnose, the physiological

characteristics of pear leaves change gradually, thereby altering

their spectral reflectance (Pane et al., 2021). Spectral vegetation

indices (VIs) are calculated using the reflectance of two or more

wavelengths, enhancing the data differences between healthy and

diseased samples (Sah et al., 2023; Dutta et al., 2024). This study

initially selected 23 VIs related to leaf pigment, structure, and water

content for the early detection of pear leaf anthracnose. The

calculation formulas for each of these VIs were presented in Table 1.

To screen out the VIs that were significantly sensitive to pear

leaf anthracnose, the Random Forest (RF) method was selected for

feature selection. The random forest feature variable screening
TABLE 1 Spectral vegetation indices used in this study.

Category Vegetation Index Abbreviation Equation Reference

Pigment

Anthocyanin Reflectance Index ARI 1/R550-1/R700 (Gitelson et al., 2005)

Chlorophyll Index Green CIgreen R790/R550-1 (Gitelson et al., 2005)

Chlorophyll Index Red CIre R790/R720-1 (Gitelson et al., 2005)

Nitrogen Reflectance Index NRI (R570- R670)/(R570+ R670) (Aghdam et al., 2024)

Optimized Soil-Adjusted Vegetation Index OSAVI (1 + 0.16)(R800-R670)/(R800+ R670+ 0.16) (Chandel et al., 2021)

Photochemical Reflectance Index PRI (R531-R570)/(R531+ R570) (Gamon et al., 1992)

Plant Senescence Reflectance Index PSRI (R660-R510)/R760 (Penuelas et al., 1994)

Structure Insensitive Pigment Index SIPI (R800-R451)/(R800+ R680) (Penuelas et al., 1995)

Transformed Chlorophyll Absorption
Reflectance Index

TCARI 3((R700-R675)-0.2(R700-R500)/(R700+ R500)) (Merzlyak et al., 1999)

Red Green Index RGI R690/R550 (Chappelle et al., 1992)

Ratio Analysis of Reflection of Spectral
Chlorophyll a

RARSa R675/R700 (Chappelle et al., 1992)

Ratio Analysis of Reflection of Spectral
Chlorophyll b

RARSb R675/(R700*R650) (Chappelle et al., 1992)

Structure

Difference Vegetation Index DVI R800-R680 (Patrick et al., 2017)

Enhanced Vegetation Index EVI 2.5(R800-R660)/(1 + R800+ 2.4R660) (Patrick et al., 2017)

Green Normalized Difference
Vegetation Index

GNDVI (R750-R540+ R570)/(R750+ R540-R570) (Patrick et al., 2017)

Greenness Index GI R554/R667 (Gitelson et al., 2003)

Normalized Difference Vegetation Index NDVI (R800-R670)/(R800+ R670) (Haboudane et al., 2004)

Ratio Vegetation Structure Index RVSI (R651-R750)/2-R733 (Haboudane et al., 2004)

Triangular Vegetation
Index

TVI 0.5(120(R750-R550)-200(R670-R550)) (Haboudane et al., 2004)

Simple Ratio SR R900/R680 (Qiu et al., 2018)

Ratio Vegetation Index RVI R810/R660 (Qiu et al., 2018)

Water content
Water Stress and Canopy Temperature WSCT (R970-R850)/(R970+ R850) (Babar et al., 2006)

Water Index WI R900/R970 (Penuelas et al., 1997)
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method has good robustness and stability. It constructs a random

forest model, utilizes the bagging method and random attribute

selection, evaluates the importance of each attribute, and then

selects the attributes with the greatest impact on the target

variable, ranking the importance of all attributes (Jaiswal and

Samikannu, 2017).

2.3.4 Texture feature extraction and selection
The leaf morphology of plants exhibits variation in response to

the degree of anthracnose infection. Essentially, changes in pear leaf

texture features (TFs) at different stages of infection can serve as a

predictive indicator for the severity of anthracnose disease. In image

processing, the TFs of images are typically obtained with method of

Gray Level Co-occurrence Matrix (GLCM), which characterizes

TFs based on pixel correlation in grayscale space and can convey

directional, spatial, and range information regarding variations in

image grayscale (Utaminingrum et al., 2022).

In order to improve the processing efficiency and accuracy,

principal component analysis (PCA) was initially used to remove the

redundant information of hyperspectral images (Licciardi and

Chanussot, 2018). In this study, the first three principal components

(PC1, PC2, and PC3) with a cumulative contribution of 99.5% were

used as the objects for subsequent extraction of TFs. Eight TFs ofMean,

Variance, Synergy, Contrast, Dissimilarity, Entropy, Second-order

Moment and Correlation were selected for the followed TFs screening.
2.4 Model construction and
performance evaluation

2.4.1 Model construction
Spectral features, VIs, and TFs data obtained from the 300 pear

leaf sample images daily were randomly divided in a 2:1 ratio into

training and testing sets. Three machine learning algorithms,

Support Vector Machine (SVM), Extreme Learning Machine

(ELM), and Back Propagation Neural Network (BPNN), were

employed to structure an early classification model for

anthracnose disease in pear leaves. The model construction was

conducted using Matlab R2022b software.

SVM is characterized by its rapid computing speed, high

classification accuracy, and strong generalization ability to

samples, leading to its widespread application in statistical

classification and regression analysis (Cervantes et al., 2020). In

this study, SVM selected the Radial Basis Function (RBF) kernel,

and employed grid search method to determine the optimal values

of the penalty factor c and the kernel parameter g. ELM has

emerged as a highly popular machine learning algorithm. During

training, it requires no adjustments; simply setting the number of

neurons in the hidden layer yields a unique optimal solution (Xu

et al., 2019). In this study, ELM utilized the sigmoid function as the

activation function of the hidden layer, with an optimal number of

hidden layer nodes obtained through cross-validation. BPNN is a

type of feedforward neural network capable of easily implementing

complex nonlinear mapping functions with strong generalization

capabilities, finds widespread applications (Asaad and Ali, 2019). In
Frontiers in Plant Science 06
this study, the number of nodes in the input layer of BPNN was

consistent with the number of input parameters of the sample, the

number of nodes in the output layer was consistent with the

number of classification, the activation function of the hidden

layer was tanh, the maximum number of iterations of the

network was set at 1000, and the target error was 0.01. The

relationship between the number Y of nodes in the hidden layer

and the number I of nodes in the input layer was calculated by the

following formula (Kim, 2017).

Y = 2I + 1 (2)
2.4.2 Model performance evaluation
The model performance was evaluated via accuracy, recall, and

precision. “Accuracy” refers to the proportion of samples correctly

predicted out of the total samples. “Recall” indicates the ratio of

correctly classified samples of a certain category to the actual

number of samples in that category. “Precision” denotes the ratio

of correctly classified samples of a certain category to the predicted

number of samples in that category (Lamba et al., 2021).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(3)

Recall =
TP

(TP + FN)
(4)

Precision =
TP

(TP + FP)
(5)

Where, TP is the number of true positive; TN is the number of

true negative; FP is the number of false positive; FN is the number of

false negative.

With increasing emphasis on the accuracy of plant disease

detection, accuracy was the primary evaluation metric in this

study. The higher the accuracy, the better the model performance.
2.5 Lesion visualization

Sequential Maximum Angle Convex Cone (SMACC) is a faster

and more automatic method to obtain endmember spectra. It starts

with an endmember and increases in dimension. According to the

angle between the end member and the existing cone, the new end

member is identified. The data vector with the largest included

angle with the existing cone is selected as the next endmember to

expand the endmember set. Within a certain tolerance range, when

all pixel vectors are within the convex cone, the algorithm

terminates (Zhang, 2023; Nalawade et al., 2019).

Spectral Information Divergence (SID) is a spectral

classification method. It calculates the local characteristics of

spectra by spectral gradient, and then compares the overall

characteristics of spectra by using information divergence to

measure the degree of difference between different spectra, so as

to determine their similarity or dissimilarity. By comparing the

divergence of spectral information of different samples, the
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classification and identification of spectra can be realized

(Chang, 1999).

3 Results

3.1 Spectral feature analysis and modeling

3.1.1 Spectral feature analysis
The spectral reflectance data of the pear leaf samples were

collected within the 400-1000 nm wavelength range. To mitigate the

impact of various noise sources on the raw spectral data, a Savitzky-

Golay convolution smoothing (SG) method was employed to

enhance the signal-to-noise ratio and improve the subsequent

data analysis (Truyols and Schoenmakers, 2006).

Figure 4 depicted the average spectral reflectance curves for

healthy leaves and leaves infected with anthrax from day 1 to day 5.
Frontiers in Plant Science 07
The overall trend of the spectral curves for the healthy and infected

leaves at different days was similar, exhibiting the typical spectral

characteristics of green plants. At around 550 nm, there was a

minimum in chlorophyll absorption, while at around 680 nm, there

was a strong chlorophyll absorption, leading to the “red edge”

phenomenon (Zhao et al., 2022). The spectral reflectance showed a

significant increase in the 700-760 nm region, and then a more

gradual change, forming a high reflectance platform after 760 nm.

The peak value of the chlorophyll reflectance around 550 nm varies,

which was consistent with the “loss of greenness” in the infected leaf

samples. However, the difference between healthy leaves and leaves

infected for 1-2 days was relatively small, likely due to the lack of

visible lesions during the early stages of infection. In the 700-1000

nm spectral region, the reflectance of healthy leaves was

significantly higher than that of the infected leaves as the disease

progresses, which could be attributed to the damage to the leaf cell

structure caused by the disease.

The feature wavelength of full-band spectrum was extracted by

SPA. The SPA algorithm was run through Matlab R2022b, and the

average spectral curves of ROI of all samples were screened. As

shown in Figure 5A, when RMSE reached the minimum value

(RMSE=0.3152), 12 feature wavelengths were determined. The

feature wavelength of the full-band spectrum was extracted by

CARS. As shown in Figure 5B, with the increase of sampling

times, the number of wavelength variables rapidly decreased until

it approached 0. In the RMSECV chart, it decreased as irrelevant

wavelengths were removed, followed by an upward trend. When the

RMSECV value was at its lowest, it indicated that irrelevant and

collinear wavelengths had been removed, and 8 feature wavelengths

had been selected.

According to Figure 5 and Table 2, 12 feature wavelengths

(OWs1) were extracted by SPA, and 8 feature features (OWs2) by

CARS, reducing 95.1% and 96.7% wavelength count, respectively,

eliminating the redundant information from ineffective

wavelengths and significantly improving the speed of

data processing.
FIGURE 4

Average spectral curves of healthy and infected leaves from 1 to
5 days.
A  B  

  

FIGURE 5

Different algorithms for extracting feature wavelengths. (A) Extraction of SPA Feature Wavelengths, (B) Extraction of CARS Feature Wavelengths.
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3.1.2 Identification models with spectral features
In this study, full-spectrum, SPA, and CARS extracted feature

wavelengths (OWs1 and OWs2) were used as input variables to

construct classification models with SVM, ELM, and BPNN,

respectively. The classification results of testing sets were

presented in Table 3. The identification accuracy of the three

models constructed based on the extraction wavelength of SPA

and CARS exceeded that of the full-band model, signifying that the

extraction of feature wavelengths not only markedly enhanced

modeling speed but also augmented modeling accuracy. Among

these, the OWs2-BPNN model demonstrated the most effective

identification efficacy, achieving an accuracy of 95.13%.
3.2 Vegetation indices feature analysis
and modeling

3.2.1 Vegetation indices feature analysis
Numerous studies have demonstrated that VIs can more

comprehensively explain changes in vegetation growth, and

models constructed using VIs can more effectively detect plant

diseases (Zhao et al., 2020). This study selected 23 VIs related to

plant disease, and used RF to screen for significant VIs features

sensitive to pear leaf anthracnose, ranking the importance weights

of each VI feature as shown in Figure 6.

To verify the effectiveness of VIs for early detection of pear leaf

anthracnose and reduce redundant information, the top 4 VIs

ranked by importance weight were selected as features for early

detection of pear leaf anthracnose for further analysis, they were
Frontiers in Plant Science 08
CIgreen, PSRI, NDVI, and SIPI. The box plots of these 4 VIs in the

pear leaf samples throughout the experimental stages were shown in

Figure 7. These 4 VIs exhibited a generally monotonic change in the

pear leaf samples as the infection time progressed, which was

consistent with the typical pattern of disease development in pear

leaves infected with anthracnose.

3.2.2 Identification models with vegetation
indices features

The four selected VIs screened through RF were utilized as

input variables for constructing the classification models: SVM,

ELM, and BPNN. The model classification results of testing sets

were shown in Table 4. The identification accuracies of the three

models were 88.06%, 92.39%, and 91.94%, respectively, indicating

the effective utilization of VIs as input features for early detection of

pear leaf spot disease. Among the models, the ELMmodel exhibited

the best performance, with not only the highest accuracy but also

superior recall and precision rates compared to the other

two models.
TABLE 2 Feature wavelengths extracted by the different algorithms.

Algorithm
Number of
Feature

wavelengths
Feature wavelengths/nm

SPA 12
401.6, 410.6, 449.1, 558.3, 712.8,

792.6, 825.5, 879.3, 933.8,
952.1, 999.6

CARS 8
710.6, 712.8, 792.6, 825.5, 879.3,

933.8, 952.1, 999.6
TABLE 3 Classification results of identification models testing sets based on spectral characteristics.

Input features Number of variables Model type Accuracy (%) Recall (%) Precision (%)

Full spectrum 245

SVM 87.50 87.48 89.13

ELM 89.44 88.95 91.08

BPNN 92.50 91.89 92.68

OWs1 12

SVM 88.06 89.27 89.58

ELM 91.67 90.78 91.65

BPNN 93.33 94.92 93.37

OWs2 8

SVM 90.00 91.23 90.82

ELM 92.46 93.12 92.70

BPNN 95.13 94.42 95.85
FIGURE 6

Ranking the importance weight of VIs features by random
forest algorithm.
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3.3 Texture feature analysis and modeling

3.3.1 Texture feature analysis
In the experimental setup, a distance parameter of 1 was utilized

for employing GLCM to extract TFs from images derived from the

top 3 principal components. Analysis was conducted on four

directional angles (0°, 45°, 90°, and 135°) with the results

averaged. As illustrated in Figure 8, a total of 8 common TFs

were extracted from the pear leaf images. And Mean, Dissimilarity,

Entropy and Correlation were identified as particularly effective in

accurately representing disease spot information. Consequently, 4

TFs were ultimately selected, yielding a total of 12 distinctive feature

values that were used for building the classification model.

3.3.2 Identification models with texture features
The SVM, ELM, and BPNN classification models were

established based on the 12 distinctive features obtained above.
Frontiers in Plant Science 09
Table 5 described the testing set classification results of the

identification models, with the accuracy rates of 65.83%, 71.11%,

and 68.06%, respectively, for the classification models. Compared to

models based on spectral features and VIs, the performance of the

models was relatively lower. This could be attributed to the subtle

changes in external leaf texture during the early stages of pear leaf

anthracnose. However, the results indicated the feasibility of using

TFs for early detection of pear leaf anthracnose.
3.4 Identification models with multi-
source features

Various combinations of feature wavelengths (OWs2), obtained

through CARS extraction along with screened VIs and TFs, served

as diverse inputs for constructing three classification models—

SVM, ELM, and BPNN—for early detection of pear leaf
A B

C D

FIGURE 7

The changing trend of four VIs samples in the whole experimental stage. (A) CIgreen, (B) PSRI, (C) NDVI, (D) SIPI.
TABLE 4 Classification results of identification models testing sets based on VIs features.

Input features Number of variables Model type Accuracy (%) Recall (%) Precision (%)

VIs 4

SVM 88.06 86.78 89.18

ELM 92.39 91.72 92.73

BPNN 91.94 92.08 92.40
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anthracnose. It showed the results of detecting the testing set of

multi-source feature fusion model in Table 6. Comparative analysis

revealed enhanced identification accuracies across all models

utilizing multi-source feature fusion compared to single-feature

approaches; notably achieving over 90% accuracy when

employing this method as a variable input—indicating that

amalgamating multiple source features yields richer information

pertinent to effective disease identification while enhancing overall

model performance. Notably among these features was OWs2-VIs-

TFs-BPNN which demonstrated superior efficacy in early detection
Frontiers in Plant Science 10
of pear leaf anthracnose with an impressive accuracy rate

reaching 98.61%.
3.5 Visualization analysis of pear leaf
anthracnose lesions

The hyperspectral images of healthy and diseased pear leaves

from day 1 to day 5 were initially processed using SMACC to extract

endmember spectra, followed by mixed pixel decomposition using
A B

C D

E F

G H

FIGURE 8

Eight common TFs. (A) Mean, (B) Variance, (C) Synergy, (D) Contrast, (E) Dissimilarity, (F) Entropy, (G) Second-order Moment, (H) Correlation.
TABLE 5 Classification results of identification models testing sets based on TFs features.

Input features Number of variables Model type Accuracy (%) Recall (%) Precision (%)

TFs 12

SVM 65.83 68.23 65.87

ELM 71.11 70.98 71.53

BPNN 68.06 69.92 68.55
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SID to obtain SID images. Subsequently, disease tissue identification

was conducted based on predefined reference spectra by comparing

each pixel in the image with each endmember and assigning values.

A total of 4 endmembers were extracted, and the colors in the SID

image were set to be consistent with their corresponding

endmembers. Figure 9 displayed the 4 endmembers extracted

based on SMACC. Endmember 1 (orange) represented the

average spectrum of leaf veins, endmember 2 (green) signified the

typical spectrum of healthy pear leaves, endmember 3 (red)

represented the average spectrum of diseased leaf spots with

lower reflectance, and endmember 4 (pink) corresponded to the

average spectrum of dead leaf tissue, exhibiting reflectance curves

no longer consistent with the typical spectral features of

green plants.

Figure 10 illustrated the RGB and SID images of healthy and

infected pear leaves from day 1 to 5. It could be observed that there

were no discernible changes in the RGB images of the leaves from
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day 1 to 2. However, the SID images revealed the presence of minute

lesions on the second day of infection. As time progresses, from day

3 to 5, symptoms of pear leaf anthracnose became increasingly

prominent in the RGB images. Concurrently, in the corresponding

SID images, the red lesions increased on the third day, pink necrotic

leaves appeared on the fourth day, and by the fifth day, leaf infection

reached its peak throughout the entire experimental phase. In

conclusion, compared to the RGB images, the SID images

effectively identified the symptoms of pear leaf anthracnose

through changes in spectral characteristics rather than lesion size.

As time progresses, the visualization of pear leaf anthracnose lesions

became more effective.
4 Discussion

4.1 Importance of correct feature
wavelength extraction

Hyperspectral data usually contain a lot of redundant

information and highly correlated wavelength information, so it is

very important to extract the feature wavelength (Siedliska et al.,

2018; Lin et al., 2014). With the rapid development of computer

technology, there are many methods to extract feature wavelength.

However, the feature wavelengths used in different studies are quite

different. Liu et al. (2022) used SPA algorithm to extract the feature

wavelength when monitoring the anthracnose of infected pear

leaves, and found that the important bands related to anthracnose

were between 400-460nm. Wang et al. (2014) used the first-order

differential to screen the spectral bands, and determined that the

important bands related to tea anthracnose were between 680-780

nm. It can be seen that the feature wavelength bands of the same

disease are very different, which may be due to different plant

species or different extraction methods of feature wavelength.

Therefore, in this study, in order to explore the influence of

different feature methods on the detection of the same disease of
TABLE 6 Classification results of identification models testing sets based on multi-source feature fusion.

Input features Number of variables Model type Accuracy (%) Recall (%) Precision (%)

OWs2-VIs 12

SVM 92.50 91.94 92.92

ELM 94.44 92.50 94.57

BPNN 97.78 95.28 97.80

OWs2-TFs 20

SVM 94.17 95.28 94.37

ELM 93.06 97.22 93.40

BPNN 97.50 98.61 97.53

VIs-TFs 16

SVM 91.94 91.12 91.98

ELM 92.50 93.54 92.65

BPNN 95.28 94.78 95.42

OWs2 -VIs-TFs 24

SVM 95.28 94.92 95.33

ELM 97.22 98.83 97.25

BPNN 98.61 99.25 98.63
FIGURE 9

Different endmembers extracted by SMACC.
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the same plant species, SPA and CARS were used to extract the

feature wavelength of pear leaf anthracnose. It was found that the

feature bands extracted by SPA algorithm were concentrated in

400-560nm and 710-1000nm, while the feature bands extracted by

CARS algorithm were concentrated in 710-1000nm. After modeling

and analysis, it was found that CARS algorithm was superior to SPA

algorithm, and the model constructed by CARS algorithm had

higher recognition accuracy. Therefore, different extraction

methods of feature wavelength have great influence on disease

research and detection, and many methods are needed to study,

and it is more important to choose the correct extraction method of

feature wavelength.
4.2 Advantages of multi-source feature
fusion in early detection of plant diseases

In previous studies, Zhu et al. (2019); Liang et al. (2023); Chen

et al. (2021) and Gao et al. (2022) used single spectral feature to

identify and detect rice sheath blight, sclerotinia sclerotiorum of

rapeseed, verrucous mildew disease of agaricus bisporus and gray

mold disease of tomato respectively, which could accurately identify

the diseases in the obvious stage, but could not accurately identify

them in the early stage. This was because in the early stage of the

disease, the lesion was not obvious and the spectral features had not

changed significantly. It was difficult to realize the early detection of

diseases only by using a single spectral feature (Nguyen et al., 2021).

However, in this study, besides spectral features, VIs and TFs were

also considered. The early changes of pear leaf anthracnose were

captured from many aspects, and the early accurate identification of
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pear leaf anthracnose was realized by building a model with multi-

source feature fusion. This provided a theoretical basis for the early

prevention and control of pear leaf diseases in the future. The fusion

of multi-source features can better capture the subtle changes of

disease symptoms in many aspects, thus providing greater

possibilities for early and accurate detection of plant diseases

(Zhang et al., 2020; Ren et al., 2020). However, at present, there

are few studies on early detection of plant diseases by multi-source

feature fusion, and most of them are based on single spectral

feature. Therefore, many factors should be considered in the

study of early diseases in the future, such as VIs, TFs, chlorophyll

and nitrogen content (Lalit and Purwar, 2022). Striving to achieve

accurate detection of diseases in the early stage, so that diseases can

be prevented in time and economic losses can be reduced. I believe

that with the continuous progress of related technologies, the

detection method of multi-source feature fusion will play a more

important role in future agricultural production.
4.3 Function of lesion visualization

In the early stage of plant diseases, the disease spots are not

obvious, so some infection symptoms cannot be clearly identified

only from RGB images, and early detection cannot be realized

through image processing (Terentev et al., 2022). In contrast,

hyperspectral images contain much more information than RGB

images, and some effective methods can be used to visualize them,

so that the location of lesions in the early stage of diseases can be

tracked (Lowe et al., 2017). Zhou et al. (2019) and Li et al. (2016)

respectively visualized the early stage of barley rice blast and citrus
A B

C D

E F

G H

I J

K L

FIGURE 10

RGB images and SID images of healthy and infected pear leaves from 1 to 5 days. (A) RGB-Healthy, (B) SID-Healthy, (C) RGB-Infected Day 1, (D) SID-
Infected Day 1, (E) RGB-Infected Day 2, (F) SID-Infected Day 2, (G) RGB-Infected Day 3, (H) SID-Infected Day 3, (I) RGB-Infected Day 4, (J) SID-
Infected Day 4, (K) RGB-Infected Day 5, (L) RGB-Infected Day 5.
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rot through SAM. However, when using SAM to extract different

endmembers, we needed to manually classify different endmembers

according to the differences in spectral characteristics. Because the

difference of early spectral characteristics was not obvious, it leaded

to some errors in manual classification. Eventually, their

experimental results were unclear in the early stage of disease

spot visualization. In this study, SMACC method could

automatically capture spectral differences and extract typical

endmembers according to the changes of spectral features caused

by anthracnose of pear leaves. Then, the mixed pixel decomposition

was carried out by SID, and the SID image was obtained. From the

SID image, we could clearly see the shape, distribution and scope of

the early stage lesions, and realize the visualization of the early stage

lesions of pear leaf anthracnose. However, some preliminary

experiments needed to be done in advance to determine the

number of typical endmembers extracted before the formal

experiment, which was helpful to better visualize the phenotype

of the lesion. In a word, the effective visualization method of disease

spots can accurately monitor the course of disease and provide

scientific basis for the early prediction and prevention of subsequent

plant diseases.
5 Conclusion

This study, based on HSI technology, utilized a combination of

multi-source features and three machine learning models to enable

early detection of pear leaf anthracnose. Healthy pear leaves and

leaves infected with the disease for 1 to 5 days were used as the

research subjects. Spectral reflectance was extracted from

hyperspectral images in the range of 400 nm to 1000 nm. 12 and

8 feature wavelengths (OWs1 and OWs2) were respectively

extracted using SPA and CARS. Then, 4 VIs were chosen via RF,

and twelve TFs were extracted using GLCM after dimensionality

reduction through PCA. Three types of features with different

fusion methods were used as variable inputs to construct

classification identification models (SVM, ELM, and BPNN). The

results showed that the models constructed using multi-source

feature fusion outperformed those using single features.

Specifically, the OWs2-VIs-TFs-BPNN model exhibited the best

performance in early detection of pear leaf anthracnose with an

accuracy of 98.61%. Furthermore, SMACC and SID were

employed to visualize the lesions on pear leaves at varying stages

of anthracnose infection, enabling an intuitively monitoring of

the disease progression. In summary, the early classification

identification model and lesion visualization based on multi-

source feature fusion provide scientific support for the early

detection and precise treatment of pear leaf anthracnose. In

future research, it would be valuable to explore the use of

HSI technology combined with deep learning for the early

detection of pear leaf diseases, and to apply these techniques in

field environments.
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