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Editorial on the Research Topic

Mineral nutrition and plant stress tolerance
The provision of so-called global food safety and security is threatened by global

warming, climate change, and the increasing food demand for an ever-growing human

population (Berkhout et al., 2019; Sun and Weaver, 2020; Dobermann et al., 2022).

Improper plant nutritional management reduces crop production and quality becomes a

vital global concern affecting billions of people worldwide (Kumssa et al., 2015; Hofmann

et al., 2020; Dobermann et al., 2022). Any stress (biotic or abiotic) can disrupt plant

metabolism and lead to reduced growth, fitness, and productivity (Hossain and Dietz, 2016;

Ahmed et al., 2020). Understanding crop physiological and biochemical responses to

adverse environmental conditions is critical (Bashir et al., 2021). Mineral nutrition is one of

the most effective ways to reduce various stresses in crops to increase yield and quality. It

plays a crucial role in the response of plants to both biotic and abiotic stresses (Marschner

and Cakmak, 1989; Cakmak, 2005; Waraich et al., 2011; Marschner, 2012; Elmer and

Datnoff, 2014; Cabot et al., 2019; Sarwar et al., 2019; Kumari et al., 2022). Interactions

between mineral elements and biotic and abiotic stress responses are important for

developing strategies to improve crop productivity and quality in stressed environments.

Proper nutrient management can effectively mitigate the adverse effects of different stresses

through diversified mechanisms (Shoukat et al., 2024a, b; Waraich et al., 2011; Mannan

et al., 2022; Van Nguyen et al., 2022; Chowdhury et al., 2024).

Although considerable progress has been made in plant nutrition and stress tolerance

many aspects of plant nutrition remain unknown. However, more extensive efforts are

required to understand better the relationship between mineral elements and plant stress

tolerance. Mechanisms underlying the role of mineral nutrition and its interactions with

plants are proposed in this Research Topic, comprising diverse research articles, including

two reviews and seven original research papers.

Nitrogen metabolism in crops is crucial for various physiological processes and plant

growth, especially in staple crops like tea. In this review, Zhang et al. summarized the

current information on the underlying mechanisms to identify key regulators in functional

phenotypes and improve nitrogen use efficiency. The review highlighted the significance of

ammonium as the primary nitrogen source. The biological and molecular mechanisms

underlying the GS-GOGAT pathway, including nitrate reductase (NR), nitrite reductase
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1461651/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1461651/full
https://www.frontiersin.org/research-topics/53779/mineral-nutrition-and-plant-stress-tolerance/overview
https://doi.org/10.3389/fpls.2023.1249202
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1461651&domain=pdf&date_stamp=2024-07-25
mailto:sazzadmh.aha@sau.ac.bd
mailto:khmuehling@plantnutrition.uni-kiel.de
https://doi.org/10.3389/fpls.2024.1461651
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1461651
https://www.frontiersin.org/journals/plant-science


Hossain et al. 10.3389/fpls.2024.1461651
(NiR), glutamine synthetase (GS), glutamate synthase (GOGAT),

and glutamate dehydrogenase (GDH), were also explained in detail.

Phan et al. conducted a genome-wide association study to

identify quantitative trait loci (QTLs) linked to nitrogen use

efficiency (NUE) in rice under saline conditions. The research

involved 2,391 rice accessions grown under two nitrogen

conditions and two NaCl concentrations to assess dry weight. A

total of 55 QTLs associated with the evaluated traits were identified,

with 28 being novel discoveries. These findings offer valuable

genetic resources for improving NUE in rice, particularly in

saline environments.

Sugar and acid metabolism are pivotal in tomato development

and fruit quality, necessitating further investigation into the

underlying transcripts, particularly under high temperature and

nitrogen fertilizer conditions. Zheng et al. reported that both

conditions elevated the levels of soluble sugars and organic acids

in young tomato fruits. Additionally, the study identified several

genes involved in sucrose metabolism (CWINV2, HK2, SPS, PK)

and sucrose transporters (SUT1, SUT4, SWEETs).

Chen et al. experimented to discern the main physiological and

molecular mechanisms of Acacia melanoxylon stem in response to

boron deficiency. Under boron-deficit conditions, stem growth was

reduced with shortened internodes. Transcriptomic analysis

revealed that genes linked to cell wall metabolism and structural

components were downregulated. Furthermore, additional genes

linked to hormone signaling showed significant alterations.

Moradi and Siosemardeh investigated the influence of seed

priming and foliar application of various chemical fertilizers on

rainfed wheat. Their study demonstrated that combining these

application methods significantly enhanced the physiological and

yield traits of the wheat. This information is crucial for growers

seeking to improve plant growth and yield under drought-

stressed conditions.

The review by Mukarram et al. focused on the interaction

between silicon nanoparticles (SiNPs) and trace elements (TEs)

toxicity. The authors emphasize exploring this interaction from an

omics perspective, encompassing plant metabolomics, proteomics,

and genomics. Furthermore, the review delves into the physiological

and biochemical mechanisms underlying this interaction.

Pitann and Mühling examined the waterlogging resistance of

oat at various developmental stages as an alternative for crop rotation

in regions with temporary submergence. Their findings revealed that

while late waterlogging negatively impacted the vegetative phase, it led

to improved performance in the generative phase, resulting in

increased grain yield. In contrast, early waterlogging severely affected

oat performance during vegetative and generative phases.

Delgado et al. assessed the facilitation effects of Gevuina

avellana, an aluminum hyperaccumulator, on the seedling growth

and performance of Vaccinium corymbosum, a plant sensitive to

aluminum intolerance and phosphorus deficiency, in soils

supplemented with varying aluminum doses. The results

indicated that co-cultivation with G. avellana ameliorated the
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growth conditions for V. corymbosum, highlighting the beneficial

influence of G. avellana.

Luo et al. investigated the role of SPX-domain-containing

proteins (SPXs) in phosphorus homeostasis in maize, with a

particular emphasis on ZmSPX1. Their study demonstrated that

overexpressed lines exhibited increased root sensitivity to both

phosphorus deficiency and high-phosphorus conditions. These

findings hold significant implications for enhancing phosphorus

efficiency in maize breeding programs.

In conclusion, the articles included in this Research Topic

contribute to our understanding of the efficacy of various

nutrients in alleviating diverse stresses and plant nutrient

relations, while illustrating the need for more such research. A

better understanding of different nutrient elements could lead to

more rational fertilizing practices, avoiding interactions that could

contribute to the unbalanced mineral nutrition of plants for

maximizing crop yield. This knowledge is also necessary to obtain

more efficient genotypes in the acquisition of different nutrients.
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