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Introduction: The marine microalga Isochrysis galbana is prolific producer of

fucoxanthin, which is a xanthophyll carotenoid with substantial global market

value boasting extensive applications in the food, nutraceutical, pharmaceutical,

and cosmetic industries. This study presented a novel integrated experimental

approach coupled with machine learning (ML) models to predict the fucoxanthin

content in I. galbana by altering the type and concentration of phytohormone

supplementation, thus overcoming the multiple methodological limitations of

conventional fucoxanthin quantification.

Methods: A novel integrated experimental approach was developed, analyzing

the effect of varying phytohormone types and concentrations on fucoxanthin

production in I. galbana. Morphological analysis was conducted to assess

changes in microalgal structure, while growth rate and fucoxanthin yield

correlations were explored using statistical analysis and machine learning

models. Several ML models were employed to predict fucoxanthin content,

with and without hormone descriptors as variables.

Results: The findings revealed that the Random Forest (RF) model was highly

significant with a high R2 of 0.809 and RMSE of 0.776 when hormone descriptors

were excluded, and the inclusion of hormone descriptors further improved

prediction accuracy to R2 of 0.839, making it a useful tool for predicting the

fucoxanthin yield. The model that fitted the experimental data indicated methyl

jasmonate (0.2 mg/L) as an effective phytohormone. The combined experimental

and ML approach demonstrated rapid, reliable, and cost-efficient prediction of

fucoxanthin yield.

Discussion: This study highlights the potential of machine learning models,

particularly Random Forest, to optimize parameters influencing microalgal

growth and fucoxanthin production. This approach offers a more efficient
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alternative to conventional methods, providing valuable insights into improving

fucoxanthin production in microalgal cultivation. The findings suggest that

leveraging diverse ML models can enhance the predictability and efficiency of

fucoxanthin production, making it a promising tool for industrial applications.
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1 Introduction

Microalgae are a diverse group of photoautotrophic organisms

with a promising source of bioactive compounds, including

polysaccharides, fatty acids, carotenoids, phytosterols, and phenols,

with beneficial applications (Lourenço-Lopes et al., 2021). Recently,

extensive research has contributed to investigating the potential of

microalgae to synthesize value-added metabolites owing to their

simple cell organization, enhanced accumulation of lipids, rapid life

cycle, steady growth rate, non-toxicity, biodegradability, and

utilization of CO2 as a carbon source for growth (Lim et al., 2024).

Marine pigments thus have evolved to be an effective alternative in

food, therapeutic, and cosmetic applications (Manochkumar et al.,

2022). In particular, carotenoids are recommended as dietary

supplements, as they possess diverse bioactivities that aid the

prevention of chronic diseases including cancer, cardiovascular

diseases, diabetes, and age-related macular degeneration

(Anantharaman et al., 2014, 2016; Rivera-Madrid et al., 2020).

Fucoxanthin is a xanthophyll marine carotenoid that is abundantly

found in the thylakoid membrane of chloroplasts in macroalgae, and its

distribution varies within chloroplast in microalgae (Foo et al., 2021;

Manochkumar et al., 2022). Among all the carotenoids, fucoxanthin

significantly contributes to more than 10% of estimated total carotenoid

production globally (Lourenço-Lopes et al., 2021). Currently, the global

market value of fucoxanthin upholds an average annual growth rate of

5%, representing an increase from 199.48 million USD in 2022 to 280.7

million USD in 2029 (Market Reports World, 2023). Due to its

enormous applications and valuable bioactivities, the cost of purified

fucoxanthin ranges from 40,000 to 80,000 USD/kg, depending on the

concentration and purity of the compound (Khaw et al., 2022). Despite

its promising applications, fucoxanthin remains limited in availability,

as it has not yet been fully commercialized. Indeed, synthetic

production of fucoxanthin is not feasible due to its complexity; hence,

microalgae were explored as an effective and reliable source for

fucoxanthin production (Lourenço-Lopes et al., 2021). It is evident

that fucoxanthin plays a significant role in microalgae by absorption of

photons, thus regulating photosynthesis and aiding photoprotection to

chlorophyll from photodamage (Miyashita et al., 2020).

The increasing demand for fucoxanthin and significant market

potential in the cosmetic, nutraceutical, and pharmaceutical industries

drive the need for reliable alternative production methods. Currently,
02
fucoxanthin is extracted from macroalgae, but microalgal-based

production offers a more sustainable and efficient alternative. Hence,

this study investigates the potential of Isochrysis galbana, a microalga

with high fucoxanthin content and scalability. The main objective of

this work is to optimize fucoxanthin production in I. galbana,

leveraging its biosynthetic pathway and rapid growth rate to develop

a commercial-scale production process. However, variable fucoxanthin

yields and suboptimal production in microalgae could hinder

profitability. To address this challenge, this study aims to integrate

machine learning (ML) models for predicting the fucoxanthin yield,

leveraging data-driven insights to optimize production and enhance

scalability. By developing prediction models, this study contributes to

the development of sustainable, data-driven production methods,

advancing the frontier of microalgal biotechnology.

I. galbana belongs to the class of flagellated marine microalgae

that shows a higher accumulation of lipids, omega-3

polyunsaturated fatty acids, and fucoxanthin. The absence of a

cell wall in this species allows for an easy extraction of fucoxanthin

during downstream processing (Sun et al., 2019). The inherent

capability of microalgae to produce a higher fucoxanthin yield and

short life cycle, independent of seasonal variations, could be

cultivated all year round, and not competing for land makes it a

promising source of fucoxanthin (Yusof et al., 2022). This

microalgal species was mostly studied to enhance lipid production

(Cañavate et al., 2020; Chin et al., 2023; Cui et al., 2021); this study

is the first of a kind to explore the impact of various phytohormones

to enhance fucoxanthin production.

The common method used to estimate the pigment

concentration is high-performance liquid chromatography

(HPLC), which requires long extraction and column time for

each run, is time- and cost-consuming, and requires highly skilled

persons to maintain the equipment (Chong et al., 2023). Even

though HPLC is the conventional method to determine the

concentration of microalgal carotenoids, is very tedious to operate

as well as time-consuming. Additionally, the use of hazardous

solvents for HPLC analysis (acetonitrile and methanol) hinders

the suitability of this method, making it less sustainable

(Thiviyanathan et al., 2024). In contrast, the UV spectrometry-

based equations could be readily used for the quantification of

fucoxanthin, which could significantly reduce the delay in obtaining

the microalgal fucoxanthin concentrations compared to HPLC
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while retaining adequate accuracy. Hence, a high-throughput

method should be simple, accurate, and reliable for the extraction

and detection of pigment.

Here, we employed the equation derived by Wang et al. (2018)

for UV spectrometry-based quantification of fucoxanthin. While the

HPLC method requires at least 3 h to quantify the fucoxanthin, this

method could detect the fucoxanthin within 5 min (Wang et al.,

2018). It is to be noted that spectrophotometric analysis measures the

reflectance of microalgal extract at a specific wavelength and utilizes a

formula to determine the concentration of the fucoxanthin (Wang

et al., 2018). This method could be flawed in a few instances, when

absorption spectra of other pigments overlap with the fucoxanthin

spectrum, for example, fucoxanthin with chlorophyll. Hence, the

application of this spectrometric analysis for fucoxanthin yield in

large-scale applications is considered to be time-consuming and

limited in technological advancement (Tang et al., 2023).

Thus, ML models were implemented for the prediction of

fucoxanthin yield, as they require less solvent, short analysis time,

and low cost and have high accuracy and good prediction. The

accuracy of the prediction of ML models depends on the input

variables and the training dataset. In this study, the experimental data

of I. galbana supplemented with different types and concentrations of

phytohormones were subjected to statistical analysis followed by data

preprocessing to train the ML models for fucoxanthin prediction.

The advancements in ML and artificial intelligence (AI)

algorithms have profoundly contributed to the easy search for

novel natural product-based drug discovery in the 21st century

(Manochkumar and Ramamoorthy, 2024). Recently, numerous

omics-related datasets have been developed for diverse species of
Frontiers in Plant Science 03
marine organisms, and the need to develop and integrate ML

algorithms for multi-omics studies has been extensively reviewed

(Manochkumar et al., 2023). In crop breeding research, multimodal

data from three sensors coupled with ML algorithms were efficiently

used in a study for the estimation of the crop harvest index of faba

bean and pea (Ji et al., 2024). Similarly, ML-based phenotyping

combined with optical tomography was used to measure the

stomatal density and improve the water use efficiency of sorghum

crop (Ferguson et al., 2021).

In previous studies related to microalgae, an ML model was

incorporated to derive a spectrophotometric equation for

simultaneously quantifying the concentration of chlorophyll,

violaxanthin, zeaxanthin, and lutein from Chlorella vulgaris and

Scenedesmus almeriensis (Victor and Camarena-Bernard, 2023).

Similarly, the convolutional neural network (CNN) model was

used to predict the microalgal pigments including chlorophyll a,

phycocyanin, lutein, fucoxanthin, and zeaxanthin from diatoms

using experimental data obtained from water samples (Pyo et al.,

2022). A hybrid ML-based approach was developed to optimize the

production of biomass and phycobiliproteins in Nostoc sp. (Saini

et al., 2021). Furthermore, Tang et al. (2023) compared linear

regression with the artificial neural network (ANN) model to

predict the chlorophyll concentration in Desmodesmus sp. and

Scenedesmus sp. based on RGB, CYMK, and HSL color models.

In this study, we constructed two ML frameworks to compare and

evaluate the predictive performance of four models on fucoxanthin

production from I. galbana by altering the input data parameters.

The overall process workflow of experimental and ML setup for

fucoxanthin production is depicted in Figure 1.
FIGURE 1

Overall process workflow of experimental and machine learning setup. Isochrysis galbana was scaled up, and the inoculum was added to medium
supplemented with varying concentrations of phytohormones. The growth rate, dry and fresh weight of biomass, and fucoxanthin yield were
measured on alternate days. Morphological analysis of microalgal cells (exponential phase) was observed using FESEM and confocal microscopy
analyses. In contrast, the raw experimental data were subjected to statistical analysis to understand the characteristic pattern of data. Further, the
data were fed as raw data as well as pre-processed data for training the ML models, and the performance was evaluated. Finally, the test data were
fed into the trained ML model to evaluate the prediction of fucoxanthin yield. FESEM, field emission scanning electron microscope.
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2 Materials and methods

2.1 Algal strain and culture conditions

I. galbana, a marine water microalga, was obtained from the

National Repository for Microalgae and Cyanobacteria,

Bharathidasan University. The seawater used for medium

preparation was collected freshly from Mandapam, Tamil Nadu

(9°16′17.9″N79°07′49.4″E) and filtered through a 0.22-mm
membrane filtration system followed by the sterilization using

autoclave for 20 min at 121°C. The salinity and pH of the

sterilized seawater must be within 27 ± 1 and 8 ± 0.5,

respectively. The experimental setup was maintained under

controlled laboratory conditions with optimum temperature

(23°C ± 2°C), light intensity (2,000 lx), and photoperiod (16-h

dark:8-h light) for 30 days.

The I. galbana stock solution was maintained in Conway’s

medium for 14 days, and its density was adjusted to 2.5 mg/mL of

wet biomass using sterile seawater. The algal suspension was then

partitioned and added into sterile conical flasks each containing 150

mL of medium-enriched seawater. Then, the freshly prepared

phytohormones were added to the flasks at specific concentrations

(Supplementary Table S1). The concentration of phytohormones

was based on previous studies (Chu et al., 2019; Fierli et al., 2022;

Mc Gee et al., 2020). Each treatment employed three biological

replicates. Cultures were cultivated in conical flasks supplemented

with various phytohormones, maintaining consistent conditions of

light and temperature as those used for stock culture maintenance.

The culture medium without the addition of phytohormones was

used as the control.
2.2 Experimental data collection

The growth rate of microalgae was monitored by measuring the

optical density (OD) of the algal suspension culture every alternate

day using a UV–Vis spectrophotometer (Cary 3500 Multicell,

Agilent Technologies, Santa Clara, CA, USA) at 680 nm (Hawrot-

Paw et al., 2019). For the spectrometry-based quantification of

fucoxanthin yield, the absorbance of the cultures was measured at

750 nm on alternate days. Simultaneously, 1 mL of sample from

each flask was centrifuged at 7,000 rpm, and the pellet was

resuspended in 1 mL of ethanol. The absorbance of the

supernatant was then measured at 445 and 663 nm within 5 min

of extraction (Wang et al., 2018), and the fucoxanthin yield in

cultures supplemented with phytohormones was calculated

(Equation 1).

Cfuc ’ = 6 : 39(OD445) − 5 : 18(OD663) + 0 : 312(OD750) − 5 : 27 (1)

where OD445, OD663, and OD750 are the absorbance at 445 nm,

663 nm, and 750 nm, respectively.

For the estimation of fresh weight biomass, pre-weighed

Eppendorf loaded with 1 mL of harvested sample was weighed

and was allowed to dry at 60°C till constant weight was obtained to

determine the dry weight biomass. The fresh weight and dry weight
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were calculated by taking the difference between the initial and final

weight. This experiment was conducted for 30 days by measuring

the growth rate, biomass, and fucoxanthin yield on alternate days.
2.3 Morphological data acquisition

2.3.1 Field emission scanning
electron microscopy

The cells of I. galbana (control and phytohormone-treated cells)

at exponential phase were fixed in sterile seawater using 2%

glutaraldehyde and 4% paraformaldehyde in a shaker (1 h at

room temperature) followed by rinsing with Milli-Q water. Then,

the cells were subjected to dehydration by sequential ethanol wash

(de Haan et al., 2024). Dried cells were sputter-coated, and images

were recorded using a field emission scanning electron microscope

(FESEM; FEI QUANTA 250 FEG, Thermo Fisher Scientific,

Waltham, MA, USA) to analyze the morphological changes in

cell structure in response to phytohormone treatment.

2.3.2 Confocal laser scanning microscopy
Confocal laser scanning microscopy was employed to scrutinize

the fluorescence of chlorophyll, lipids, and pigments within the cells.

The cell suspensions of I. galbana without hormone treatment

(control) and cultures treated with hormones were harvested and

subsequently centrifuged at 8,000 rpm for 5 min. Pellets were

resuspended in phosphate-buffered saline (PBS) buffer (Yadav

et al., 2023a). Nile red (9-diethylamino-5H-benzo[a]phenoxazine-
5-one) staining was performed 15 min before imaging to detect the

presence of lipid by adding 380 μL of microalgal suspension to 20 μL

of Nile red [Sigma, Darmstadt, Germany; stock solution of 0.2 mg/

mL in dimethyl sulfoxide (DMSO)]. Approximately 5 μL of the algal

suspension was loaded, and images were recorded using the confocal

laser scanning microscope Fluoview Fv3000 at 40× objective

(Olympus, Tokyo, Japan). The detection ranges were as follows:

lexc = 488 nm and lem = 510–630 nm for carotenoids, lexc = 560 nm

and lem = 640–750 nm for chlorophyll, and lexc = 530 nm and lem =

636 nm for Nile red (Zienkiewicz et al., 2020; Duval et al., 2023).
2.4 Machine learning-assisted
fucoxanthin prediction

This study utilized four models [Random Forest (RF), Support

Vector Machine (SVM), Linear Regression (LR), and ANN] to

predict the optimized concentration and type of hormone for

enhanced fucoxanthin productivity. The performance of these

models was compared for the selection of the optimal prediction

model. These models were chosen owing to their ability to analyze

complex biological data (Kang et al., 2023).

RF is one of the most used ML-based ensemble-learning

methods, which constructs a forest using multiple decision trees

for training and predicting the samples by random extraction

(Chen et al., 2023). Each decision tree generates the identification

output for unknown test data. Based on the identification output of
frontiersin.org
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all decision trees, the final identification output is generated for the

unknown test sample. The greater the number of output times for a

specific category, the more likely that the unknown test data belong

to it. The process of calculation is simple and easy to understand

and interpret, yet it could lead to overfitting performance. The

parameters employed for computation of output by RF include the

number of trees as 10 and the number of attributes considered at

each spit as 6. The features utilized for RF are replicable training,

and the number of features in the subset could not be less than 4.

SVM is one of the supervised learning methods of ML algorithms

that work based on statistical learning theory (Pisner and Schnyer,

2020). It is effective in high-dimensional space and could be used for

identification, regression, and classification tasks and could function

better in conditions where the number of dimensions is higher than the

number of samples. The data are effectively separated between two

categories using a hyperplane for two-dimensional data followed by

mapping of test points and prediction of its category depending on the

side of the gap they belong to. This method could solve the

computational complexity and high-dimensional issues efficiently.

The major disadvantage is that it has less sensitivity to data, and

hence, it is strenuous to find appropriate kernel functions for non-

linear data. In this study, the parameters for SVMwere given as cost (c)

= 1, regression loss epsilon (e) = 0.10, and tolerance limit = 0.0010. The

radial basis function (RBF) kernel was employed in this study, and the

iteration limit was set to 100.

LR falls within the realm of supervised machine learning

algorithms, which operate by learning from labeled datasets and

fitting the data points to optimal linear functions. These functions

can then be used to predict outcomes for new datasets. It is effective in

predictive analysis and provides a linear relationship between

dependent and independent variables for the prediction of outcomes

(Maulud and Abdulazeez, 2020). The least absolute shrinkage and

selection operator (LASSO) regression (L1 norm) was utilized for linear

regression with a regularization strength of a = 0.001.

ANN could train itself for the recognition of patterns in a

dataset and the prediction of non-linear relationships between input

variables and output (Kumar et al., 2024). It is demonstrated to be

the research hotspot in the field of artificial intelligence and is

commonly referred to as a neural network (Chen et al., 2023). A

multilayer fully connected feed-forward ANN was applied in this

study to develop a model for the prediction of fucoxanthin yield

(Supplementary Figure S1). It comprises an input layer, an output

layer, and one or more hidden layers. Although the flexibility of the

model could be enhanced by increasing the number of hidden

layers, one hidden layer is adequate to model the microalgal growth.

The process was repeated until the achieved mean squared error

(MSE) was as low as possible. All the ML models and the data

processing process of this study have been developed using the JMP

and Orange software (Demš ar et al., 2013).
2.5 Construction of models for prediction
of fucoxanthin yield

The ML models thus developed were used as the driving engine

and compared for the accuracy of prediction based on the data used
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to train the model. In this study, two ML frameworks (Case Study 1

and Case Study 2) were constructed for the inclusion and exclusion

of hormone descriptors to train the model and compare its

prediction accuracy.
2.5.1 Case Study 1 (without descriptors)
The ML framework is constructed in a way that when the

concentration of hormones, number of days, growth rate, dry

biomass, and fresh biomass are given as input, the model will be

able to predict the fucoxanthin yield as output. For the initial model,

no descriptors will be given for the hormones; hence, the prediction

will be completely based on the input parameters.
2.5.2 Case Study 2 (with descriptors)
We constructed and developed an integrated ML framework

to incorporate the characteristics of hormones; hence, descriptor

values were given to the hormones in addition to the pre-

processed experimental data. The input data including days,

concentration, and descriptors of hormones will be given as

input to the first model, which will predict the growth rate. The

output of the first model (i.e., predicted growth rate) will be given

as input to the second model, which will finally predict the

fucoxanthin yield.
2.6 Data evaluation

2.6.1 Evaluation of model performance
To evaluate the accuracy of ML models, 70% of the sample data

were selected as the training dataset, and the remaining 30% were

used as the testing dataset. The ML models were trained with the

experimental data obtained from supplementation of indole-3-

acetic acid (IAA), salicylic acid (SA), gibberellin A3 (GA3), and

methyl jasmonate (MeJa) phytohormones, whereas abscisic acid

hormone was used as testing data. The modeling process was

repeated 200 times to minimize the errors. The prediction

accuracy of the ML models was evaluated using four indicators:

the coefficient of determination (R2), root mean squared error

(RMSE), MSE, and mean absolute error (MAE) (Equations 2–5,

respectively). Therefore, these indicators could better measure the

degree of fitness between actual and simulated values.

R2 =  1 −on
i=1  (Xi − X̂ i)2=(Xi − �X)2  (2)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Xi − X̂ i

q
=n (3)

MSE =
1
no

n
i=1(Xi − X̂ i)

2 (4)

MAE =on
i=1 Xi − X̂ i

�� ��=n (5)

where n is the total number of samples; Xi and X̂ i are the actual

measured and predicted fucoxanthin yield of the samples,

respectively; and �X denotes the mean of the measured

fucoxanthin yield.
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2.7 Statistical data analysis

Data from microalgal cultivation were processed, and

exploratory data analysis was performed to understand the

characteristic data pattern and correlation between the input

parameters. Supervised machine learning using four ML models

was carried out to explore and observe the correlational

relationships between the microalgal growth rate, biomass, and

fucoxanthin yield as affected by various types and concentrations of

phytohormones, followed by the construction of heatmaps to

visualize multidimensional data and compress and simplify the

complex scientific process. All further statistical modeling and

figure generation were performed using JMP® and RStudio

(JMP®, 2017; R Core Team, 2017).
3 Results

3.1 Data acquisition and visualization

The proposed approach endorsed simultaneous data

collection from the I. galbana to monitor the growth as well as

cel lular production of fucoxanthin and biomass. The

spectrophotometric quantification of fucoxanthin showed

advantages in terms of time and cost. The default experimental

setup ensured that the result of the proposed method would not be

affected by temperature and light. Hence, the results will be

impacted by the type and concentration of hormones and

number of days. I 1, I 2, I 3, and I 4 indicate the hormones IAA,

SA, GA3, and MeJa, respectively.
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3.2 Statistical models and
correlation analysis

The data from the supplementation of four phytohormones were

analyzed by statistical analysis (scatter plot) to explore and understand

the data distribution across various parameters (Figure 2). Among

them, the growth rate of microalgae is directly proportional to the

fucoxanthin yield. Furthermore, the days at which maximum growth

rate and fucoxanthin yield were attained are tabulated (Supplementary

Table S2). Overall, the maximum fucoxanthin yield was achieved with

0.2 mg/L MeJa supplementation in minimal time within 10 days.

In this study, the experimental data excluding hormone

descriptors and including hormone descriptors allowed Pearson’s

correlation coefficient analysis of fucoxanthin across the investigated

complete set of input parameters (Figure 3). On a relative basis,

consistent with the scatter plot analysis, the fucoxanthin yield showed

maximum correlation against growth rate followed by dry weight of

biomass, whereas concentration and number of days show a negative

correlation in both cases (Figures 3A, B), demonstrating weak and

moderate associations. When descriptors of hormones were included

in the input data (Figure 3B), the fucoxanthin yield showed a minimal

positive correlation with the hydrogen bond donor count depicting a

moderate association.
3.3 Morphological alterations in
microalgal structure

FESEM analysis revealed the morphology of I. galbana cells at

day 12 in the absence of hormone treatment and at various
FIGURE 2

Scatter plot analysis of various input parameters against fucoxanthin yield. Scatter plot analysis shows the visualization of pattern of raw experimental
data. In this figure, x-axis represents the number of days of microalgal culture, while y-axis (left) represents the growth rate, dry weight of biomass,
and fucoxanthin yield. Furthermore, the x- and y-axes were further partitioned into five representing the type and concentration of hormones.
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concentrations of hormone treatment (Figure 4). The size of each

cell (diameter) was measured, and the shape and appearance of cells

were observed to analyze the impact of phytohormone

supplementation. At control, the cells appear clustered with

smooth surfaces, whereas different concentrations of hormone

treatment morphologically alter the structure of microalgae. The

caption of each figure indicates the average diameter of the

microalgal cell followed by the yield of fucoxanthin (Figure 4).

For instance, when IAA was supplemented at 0.02 and 0.2 mg/L, the

cells appeared clustered and enlarged, whereas higher

concentrations caused the cell surface to become relatively rough

with irregular grooves and increased the average cell size. In

contrast, SA at 0.02 and 0.2 mg/L concentrations depicted

enlarged cells with rough and distorted cell surfaces. SA of 2 and

20 mg/L made the cells appear smaller with no proper shape. The

cells appeared smooth round and enlarged at 0.02 mg/L

concentration of GA3, whereas at 0.2 and 2 mg/L concentrations,

they became irregularly shaped and stretchy, respectively. The

supplementation of GA3 at 20 mg/L clustered the cells with

irregular grooves and protuberances on the surface. In contrast,

cells appeared smooth and round at MeJa of 0.02 mg/L and swollen

and enlarged with maximum production of fucoxanthin at MeJa of

0.2 mg/L. MeJa of 2 mg/L supplementation completely altered the

cell with a distorted and irregular shape. At 20 mg/L, the cells

appeared extremely swollen, which caused the cell to explode.

Hence, the morphology of cells was altered depending on the type

and concentration of the hormone supplementation to medium.

Further, the impact of phytohormone treatment on the

presence of lipid, pigment, and chlorophyll content within

I. galbana was visualized using confocal microscopy analysis.

Carotenoids are lipophilic pigments present in the interior and

exterior of chloroplasts and are detected as green globular forms
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using Nile red stain under confocal microscopy whereas chlorophyll

autofluorescence as red globules. The chlorophyll autofluorescence

of I. galbana cells in the exponential phase reveals that the type and

concentration of phytohormone supplementation negatively affect

the chlorophyll content. For instance, supplementation of IAA and

SA at higher concentrations demonstrated higher chlorophyll

content, whereas supplementation of GA3 and MeJa at higher

concentrations demonstrated degradation of chlorophyll

(Figure 5A). During IAA and SA supplementation, the lipid

droplets increased in size and number, whereas GA3 and MeJa

supplementation progressively decreased the size of lipids

(Figure 5B). As fucoxanthin belongs to xanthophyll carotenoids,

the carotenoid fluorescence emission is detected as green globules at

488-nm excitation, whereas chlorophyll was detected by red light

excitation at 560 nm. Similar to lipids, the type and concentration of

hormone supplementation affected the accumulation of

carotenoids. MeJa of 0.2 mg/L showed the maximum carotenoid

accumulation (Figure 5C). The merged fluorescence was emitted by

lipids and pigment and chlorophyll autofluorescence within

I. galbana in the absence and presence of varying concentrations

of hormone supplementation (Figure 5D).
3.4 Machine learning-based
fucoxanthin prediction

In this study, the experimental dataset was divided into training

and testing data, and four ML models (SVM, RF, LR, and ANN)

were adopted for the prediction of fucoxanthin yield, as these

models are extensively used for analyzing complex biological data

(Figure 6A). The reliability of the models was evaluated based on

previously trained data. The parameters considered for the
FIGURE 3

Pearson’s correlation analysis of input variables (excluding and including) hormone descriptors. (A) Representative heatmap of Pearson’s correlation
of input variables excluding hormone descriptors. The notations for the figure: a, phytohormone concentration; b, days; c, growth rate; d, biomass
(wet); e, biomass (Dry); f, fucoxanthin yield. (B) Representative heatmap of Pearson’s correlation of input variables including hormone descriptors.
The notations for figure: a, phytohormone concentration; b, days; c, growth rate; d, biomass (wet); e, biomass (dry); f, fucoxanthin yield; g, XLogP3;
h, hydrogen bond donor count; i, hydrogen bond acceptor; j, rotatable bond count; k, topological polar surface area; l, heavy atom count; m, formal
charge; n, complexity; o, isotope atom count; p, defined atom stereocenter count; q, undefined atom stereocenter count; r, covalently bonded unit
count; s, defined bond stereocenter count; t, undefined bond stereocenter count; u, canonicalized compound.
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construction of ML models and the framework of models for Case

Study 1 and Case Study 2 are illustrated in Figure 6B. For Case

Study 1, the models were trained using whole experimental data,

whereas for Case Study 2, models were trained with restricted

experimental data, and descriptors for hormones were included to

incorporate the characteristics of hormones. The experimental

dataset (growth rate, dry biomass, fresh biomass, number of days,
Frontiers in Plant Science 08
and type and concentration of hormones IAA, SA, GA3, and MeJa)

used for the modeling step in this study included a dataset

consisting of 273 samples with six variables (excluding hormone

descriptors) for the Case Study 1, whereas for Case Study 2, the

experimental dataset consisted of 273 samples with 24 features

(including hormone descriptors) for prediction of fucoxanthin

yield.
FIGURE 4

FESEM analysis of Isochrysis galbana without and with hormone treatment. Impact of varying concentrations of phytohormones on the
morphological analysis of surface and average size of cells of I. galbana. The representative caption of each hormone concentration indicates the
average cell size and the yield of fucoxanthin. The appearance of cell clusters and their surface morphology give insights into how phytohormones
affect the cellular morphology of microalgae to aid in enhanced production of fucoxanthin. FESEM, field emission scanning electron microscope.
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3.5 Performance comparison between ML
models (Case Study 1—exclusion of
hormone descriptors)

For Case Study 1, the RF model performance for fucoxanthin

yield prediction provided higher R2 values and lower RMSE, MSE,

and MAE values (R2 = 0:809,  MSE = 0:602,  RMSE = 0:776, and  

MAE = 0:458). For the prediction of fucoxanthin yield (Table 1), R2

values of LR and SVM were lower than those of the RF and ANN

models. Among the four models, RF provided the maximum

accuracy in fucoxanthin yield prediction followed by the ANN

model (R2 = 0:722). Compared with other models, LR was the

algorithm with the poorest performance for predicting the

fucoxanthin yield (R2 = 0:605,  MSE = 1:248,    RMSE = 1:117, and

 MAE = 0:906). The randomly selected predictions made by four

ML algorithms at specified instances show that the RF and ANN

models predicted the fucoxanthin yield with maximum accuracy

and suggested that MeJa (0.2 mg/L) proved to synthesize maximum

fucoxanthin compared to other hormones (Table 1). Therefore, the

RF and ANN models were adopted as the optimized modeling

methods for fucoxanthin prediction for Case Study 1.

The randomly selected ML-predicted fucoxanthin yield at different

days, types, and concentrations of hormones show the differences in

the prediction of ML models (Supplementary Table S3). From these

predictions, it can be inferred that MeJa could yield maximum

fucoxanthin production at lower concentrations in a shorter time

followed by GA3. The hormones IAA and SA were able to produce

higher fucoxanthin after 15 days. However, the results obtained by

ML prediction were purely based on the training and experimental

data, as the hormone descriptors have not been included. Hence,

descriptors of hormones were given as an additional input to the

developed model, and prediction performance was evaluated

(Supplementary Table S4). Consistent with the previous results, the
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RF and ANN models (R2 = 0:825and    R2 = 0:746Þ showed better

predictions respectively. This result suggests that the inclusion of

hormone descriptors in input data improved the prediction accuracy

of fucoxanthin yield (Supplementary Table S5).
3.6 Performance comparison between
ML models (Case Study 2—inclusion
of hormone descriptors)

3.6.1 Growth rate prediction using
pre-processed data

As the inclusion of hormone descriptors improved the prediction

accuracy (Case Study 1), a generic integrated ML model was

constructed exclusively to incorporate the hormone characteristics,

and the predictive performance of ML models for growth rate and

fucoxanthin yield was evaluated. The experimental data were pre-

processed before training the ML models to avoid discrepancies. In

this model, growth rate and fucoxanthin yield were predicted by

varying the input data (Figure 6B). The prediction results of ML

models (Table 2) showed ANN to predict growth rate with maximum

accuracy (R2 = 0:836) followed by RF   (R2 = 0:82). Additionally, the

lower values of MAE, MSE, and RMSE along with higher R2 value

indicated ANN with higher prediction accuracy. These results

indicate that the ANN model demonstrated better performance in

the prediction of the growth rate in several instances, whereas LR

showed the poorest prediction accuracy of the growth rate. However,

RF failed to provide the expected maximum estimated accuracy at

growth rate prediction, which was provided by ANN (Supplementary

Table S6). These results demonstrate that the ANNmodel performed

better than the other models in predicting the growth rate of

I. galbana. Hence, these trained models will be further used to

imply the actual prediction of fucoxanthin yield.
FIGURE 5

Cellular changes in chlorophyll, lipid, and pigment content of Isochrysis galbana in response to phytohormone supplementation. (A) Representative
confocal microscopy images of chlorophyll autofluorescence (red) I. galbana cells in response to phytohormone supplementation. (B)
Representative confocal microscopy images of Nile red stained-lipid fluorescence (green) of cells in response to phytohormone supplementation.
(C) Representative confocal microscopy image of pigment fluorescence (green) of I. galbana cells in response to phytohormone supplementation.
(D). Shown are the merged fluorescence of all signals of chlorophyll, lipids, and pigments of I. galbana cells.
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3.6.2 Fucoxanthin prediction using
pre-processed data

In this study, the ML models were fed with predicted growth

rate as input data for the prediction of the fucoxanthin yield by

combining the advantages of integration of the ML models and

avoiding overfitting or overestimating. Compared to all the above

models, the RF model (R2 = 0:839) employed in this method gave

the maximum accuracy for fucoxanthin yield prediction followed by

the ANN model (R2 = 0:738), whereas the predictive performance

of SVM and LR was better than that of the previously developed

models (Table 3). In several instances, the RF model fed with pre-

processed experimental data showed a better prediction of

fucoxanthin yield followed by the ANN model (Supplementary

Table S7). For Case Study 2 (including descriptors), the RF and
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ANNmodels were able to improve the generalization by integration

of multiple models, thus providing a more stable prediction result.

The prediction values obtained from the integration of ML models

are in good agreement with the measured fucoxanthin yield from I.

galbana, which reflects a satisfactory prediction result.

3.6.3 Prediction of growth rate using raw data
In this study, additionally, to evaluate the influence of pre-

processing of experimental data on the prediction of growth rate

and fucoxanthin yield, the constructed models were trained with

raw data. Consistent with the results for pre-processed data, the

growth rate prediction results were better with the ANN model

followed by the RF model (Supplementary Table S8). The ANN

model showed the maximum accuracy of growth rate predictions
FIGURE 6

Overall overview of ML framework construction and training and testing datasets. (A) Schematic representation of the training and testing datasets
used to train the ML models. (B) Experimental construction of machine learning framework for Case Study 1 and Case Study 2 and the parameters
considered for each model. ML, machine learning.
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(R2 = 0:846), whereas LR showed the worst growth rate prediction

accuracy (R2 = 0:156). However, the RF model failed to provide the

expected estimated accuracy at growth rate prediction, which was

provided by ANN (Supplementary Table S9). Hence, the artificial

neural network is optimized as the best model for the prediction of

growth rate for both raw and pre-processed data. Although the RF

model failed to provide the best prediction accuracy for all the case

studies, it achieved a more stable performance by minimizing the

deviations and randomness of the other models.

3.6.4 Prediction of fucoxanthin yield using
raw data

In this study, when raw data were given as input, the ANN

(R2 = 0:836) and RF models (R2 = 0:845) achieved the maximum

accuracy in the prediction of fucoxanthin yield. The predictive

performance of LR remained the same as that of the model trained

with pre-processed data, whereas the predictive performance of

SVM decreased (Supplementary Table S10). The RF model

showed better prediction similar to the measured fucoxanthin

yield at several instances, whereas ANN overestimated the

fucoxanthin yield at a few instances (Supplementary Table S11).

Hence, these results infer that pre-processing of data shows an

influence on the predictive performance of the ML models.

However, contrary to the ML-based fucoxanthin prediction, the

quantitative experimental values of fucoxanthin yield obtained for

the I. galbana were lower than those obtained from ML prediction

in a few instances. This discrepancy was possibly observed, as ML

models at few instances overestimated the fucoxanthin production

depending on the training dataset.
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4 Discussion

4.1 Sustainable approach: ensuring
enhanced fucoxanthin and
biomass production

Microalgae synthesize a wide range of bioactive metabolites

including carotenoids, lipids, and polysaccharides, which makes

them a sustainable source for next-generation feedstock (Foo et al.,

2017). The microalgal species I. galbana was selected in this study

because they have gained widespread application in aquaculture and

animal feed due to their rapid and stable growth rates. However,

compared with other microalgal species (Phaeodactylum tricornutum

and Chaetoceros calcitrans), there have been fewer studies on

I. galbana for fucoxanthin production. Recently, the impact of

spermidine, a type of plant growth regulator on fucoxanthin

accumulation in Isochrysis sp. acclimated to different light

intensities, was studied. The supplementation of spermidine

increased the fucoxanthin production to 6.11 mg/g under low light

intensity (Bo et al., 2023). Most studies on I. galbana focus on the

extraction of lipids (Wu et al., 2023; Yang et al., 2024).

Therefore, the current study, which focuses on predicting the

fucoxanthin production of I. galbana through the UV spectroscopic

method coupled with high-throughput ML studies in the research

field, is of great significance for the future development of

commercial production of microalgal fucoxanthin. The

integration of ML models with biotechnological tools (UV

spectrometry-based measurement of fucoxanthin yield) allows for

the rapid and accurate prediction of fucoxanthin yield, which can

aid in understanding the influence of different types and

concentrations of hormones on the microalgal growth, biomass,

and response to elicitor supplementation. By predicting the

fucoxanthin production of I. galbana, this study can provide

valuable insights into their enhanced yield potential and

optimized type and concentration of hormones, aiding in the

improved cultivation strategies as well as commercial fucoxanthin

production strategies.

Figure 1 represents the experimental workflow of UV-based

measurement of fucoxanthin coupled with ML-based fucoxanthin

prediction, whereas Figure 2 represents the scatter plot analysis of

experimental data, which shows that the type and concentration of

hormone supplementation have an influence on the fucoxanthin

yield. For control cultures, the maximum yield of fucoxanthin was

achieved only on day 18, whereas the 0.02 mg/L concentration of I 1

and I 2 showed maximum fucoxanthin yield on days 10 to 15. At I 1

(0.2 mg/L, 2 mg/L, and 2 mg/L), I 2 (0.2 mg/L), and I 3 (0.02 and 0.2

mg/L), the maximum yield was obtained from days 15 to 20. The

supplementation of I 4 (0.02 mg/L) could give maximum

fucoxanthin yield at days 12 to 18, whereas I 4 (0.2 mg/L)

concentration could attain maximum yield within 10 days. For

hormones I 2, I 3, and I 4 (2 and 20 mg/L), there was negligible or

minimum yield of fucoxanthin.

These results were consistent with the previous findings on

phytohormone supplementation. Mc Gee et al. (2020) showed that

fucoxanthin content in Stauroneis sp. and Phaeothamnion sp.
TABLE 2 Test results of ML models for the prediction of growth rate
using pre-processed data.

Model MSE RMSE MAE R2

Random Forest 0.011 0.105 0.083 0.820

Linear Regression 0.052 0.227 0.195 0.157

Support Vector Machine 0.021 0.144 0.116 0.661

Artificial Neural Network 0.01 0.1 0.077 0.836
ML, machine learning; MSE, mean squared error; RMSE, root mean squared error; MAE,
mean absolute error.
TABLE 1 Test results of ML models trained with all input variables
excluding hormone descriptors.

Model MSE RMSE MAE R2

Random Forest 0.602 0.776 0.458 0.809

Linear Regression 1.248 1.117 0.906 0.605

Support Vector Machine 0.949 0.974 0.648 0.699

Artificial Neural Network 0.878 0.937 0.506 0.722
ML, machine learning; MSE, mean squared error; RMSE, root mean squared error; MAE,
mean absolute error.
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increased owing to the addition of MeJa (10 and 100 μM). It was also

reported that MeJa (2.2 mg/L) supplementation enhanced the

biosynthesis of fucoxanthin in Stauroneis sp (Mc Gee et al., 2021).

Similar results were obtained for P. tricornutum cultivated with GA3.

The supplementation of SA also boosted the synthesis of carotenoids

in Nitzschia, leading to a 1.7-fold increase in fucoxanthin content. In

contrast, MeJa supplementation at 0.5 mg/L has a negligible impact

on fucoxanthin yield (Fierli et al., 2022).

Additionally, Fierli et al. (2023) studied the effect of the

combined application of exogenous phytohormones along with

blue light in P. tricornutum. When GA3 was supplemented

separately, the fucoxanthin yield increased by 30%. The combined

supplementation of GA3 and ABA was demonstrated to be more

effective. Therefore, supplementation of phytohormones provides a

promising strategy to enhance fucoxanthin production due to their

intrinsic role in promoting microalgal growth. A similar pattern of

results was obtained in studies predicting the fucoxanthin

production. Gao et al. (2021) studied the effect of light on

biomass and fucoxanthin production in P. tricornutum and

Tisochrysis lutea. The prediction models developed using

fluorescence spectroscopy showed a positive correlation between

biomass and fucoxanthin yield (Gao et al., 2021). However, the

impact on fucoxanthin production depends on the type of

hormone, concentration, and the microalgal species.
4.2 Pearson’s correlation
coefficient analysis

Pearson’s correlation coefficient uses a correlation coefficient

(R) ranging from −1 to +1 to evaluate the linear relationship

between the variables X and Y. The ideal positive and negative

relationships between the variables are indicated by R values of 1

and −1, respectively. The absolute magnitude of R represents the

strength of correlation such that a higher absolute value indicates a

greater correlation. An absolute value of R > 0.6 is considered a

robust correlation. We detected a positive correlation between

growth and fucoxanthin yield in both the cases of exclusion and

inclusion of hormone descriptors in input data (Figures 3A, B). In

this study, the growth rate of I. galbana shows a higher positive

correlation with fucoxanthin yield (R = 0.78). This is consistent with

the findings of previous studies showing a positive correlation of
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fucoxanthin yield with microalgal growth rate followed by biomass

(Li et al., 2020; Ishika et al., 2019). Recently, Sequeira et al. (2021)

reviewed the positive influence of hydrogen bond donor chemicals

on the yield of fucoxanthin from macroalgae as well as microalgae.

Hence, consistent with theoretical expectations and prior

observations, when hormone descriptors are included in input,

fucoxanthin yield shows a higher positive correlation with growth

rate followed by hydrogen bond donor count.
4.3 Morphological alterations in the
microalgal structure in response
to phytohormones

In this study, FESEM analysis of I. galbana at day 12 revealed

that the type and concentration of hormones alter the

morphological structure of microalgal cells (Figure 4). Consistent

with this result, similar changes in the morphology of microalgae

were observed when the concentration of nutrient supplementation

was varied. For instance, variations in the nutrient composition of

the culture medium morphologically altered the cell wall and

structure of Amphiprora sp (Jayakumar et al., 2021).

The presence of lipid, pigment, and chlorophyll within I. galbana

was visualized using confocal microscopy analysis. The chlorophyll

autofluorescence-based detection method has revealed immense

potential as an on-site tool to assess microalgal vitality (Li et al.,

2022). However, there are very limited data on the impact of

phytohormones on the presence of chlorophyll within the microalgal

structure. In this study, the effects of different phytohormones with four

concentrations (0.02 mg/L, 0.2 mg/L, 2 mg/L, and 20 mg/L) on the

chlorophyll autofluorescence in cells of I. galbana were investigated by

red light excitation at 560 nm (Figure 5A). Experimental results showed

that both the type and concentration of hormones were major factors

that caused the degradation of chlorophyll.

There are several reports on the enhanced accumulation of

lipids in Nile red-stained microalgal cells grown under nutrient-

stress conditions and phytohormone supplementation. In this

study, the lipid accumulation was higher within the microalgal

cells supplemented with IAA and SA hormones, whereas

supplementation of GA3 and MeJa at higher concentrations

degraded the lipids (Figure 5B). These results were consistent

with the findings of previous studies (Ahamed et al., 2022; Duval

et al., 2023; Zienkiewicz et al., 2020).

Additionally, spectral analysis using a confocal laser scanning

microscope was performed to investigate the alterations in

fluorescence emission of endogenous pigments in I. galbana cells.

The microalgal pigments when excited by specific wavelengths of

UV–visible laser light will produce a specific emission spectrum.

The fluorescence emission of carotenoids is detected in the green-

yellow spectral region, whereas chlorophyll is typically detected in

the red spectral region (Zienkiewicz et al., 2020). In this study, when

blue light at 488-nm excitation was given to hormone-treated I.

galbana cells, a change in spectral characteristic occurred owing to

an increased carotenoid pigment (Figure 5C).
TABLE 3 Test results of generic ML models for the prediction of
fucoxanthin yield using pre-processed data.

Model MSE RMSE MAE R2

Random Forest 0.507 0.712 0.357 0.839

Linear Regression 1.27 1.127 0.919 0.598

Support Vector Machine 1.332 1.154 0.781 0.578

Neural Network 0.826 0.909 0.51 0.738
ML, machine learning; MSE, mean squared error; RMSE, root mean squared error; MAE,
mean absolute error.
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4.4 Performance of machine learning
models for fucoxanthin prediction

Few previous studies have demonstrated the feasibility of the

UV spectroscopic method, and the fusion of ML models to analyze

the data from multiple treatment parameters could provide a better

prediction of chlorophyll and other pigments. However,

fucoxanthin prediction based on the UV-spectroscopic method

has not been previously investigated.

4.4.1 Differences in fucoxanthin prediction
metrics (Case Study 1)

It can be observed from the prediction results of ML models

trained with whole input data excluding descriptors (Table 1) that the

RFmodel is the most stable and showed higher accuracy with less error

rate (R2 = 0:809,  MSE = 0:602,  RMSE = 0:776, and  MAE = 0:458)

followed by the ANN model (R2 = 0:722,  MSE = 0:878,  RMSE =

0:937, and  MAE = 0:506). Consistent with previous results, ML

models trained with whole data including hormone descriptors

(Supplementary Table S4), and the RF and ANN models showed the

maximum prediction accuracy. The major advantage of the RF model

over the other ML models is that it utilizes an integrated learning

algorithm to generate multiple decision trees for learning and

prediction. The average of each decision tree was used to attain the

final prediction. Thus, this assures robust training and decreases the

chances of overfitting and the influence of noised data. In contrast,

LR and SVM models enable single training from the input dataset

without statistical average and bootstrap sampling. Hence, compared

with other models, RFmodels show better performance as per previous

studies (Chen et al., 2023; Lei et al., 2019). ML models could effectively

capture the influences of parameters by altering the growth and

biomass concentrations of microalgae compared to conventional

mathematical models owing to their complexity (Yu et al., 2024). For

instance, Raj et al. (2021) investigated response surface methodology

(RSM) and ANN for the optimization of factors involving biodiesel

production from Nannochloropsis salina, which proved the ANN

model to be the optimized model (R2 = 0.957). Similarly, Tang et al.

(2023) utilized linear regression and the ANNmodel for the prediction

of chlorophyll content in microalgae compared to the conventional

spectrophotometric method, which showed ANN to be an effective

prediction model. Hence, ML models demonstrate their ability to

accurately predict the fucoxanthin yield in I. galbana in this study.

However, the predictive results depend on the input data and training

process and are independent of the biological process behindmodeling.

Hence, the training data were further modified, and the models were

further evaluated for their fucoxanthin predictive performance.

4.4.2.1 Differences in growth rate prediction
metrics (Case Study 2)

As in Case Study 1, the inclusion of hormone descriptors in the

basic model improved the prediction accuracy of fucoxanthin yield;

we constructed an integrated ML model framework exclusively for

the inclusion of hormone descriptors and pre-processed the
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experimental data to avoid further discrepancies. It can be observed

that the construction of the MLmodel (Figure 6) and the inclusion of

hormone descriptors in pre-processed input data enhanced the

prediction accuracy compared to Case Study 1 (Table 2;

Supplementary Table S6). However, the ANN model showed

maximum accuracy in the prediction of the growth rate (R2 =

0:836), whereas the RF model showed maximum accuracy in the

prediction of fucoxanthin yield using pre-processed data (R2 = 0:839)

(Table 3). Furthermore, these results are in strong accordance with

ML models trained with raw data (Supplementary Tables S8, S9), as

the ANN model showed the maximum growth rate prediction

accuracy (R2 = 0:846) :As far as the ANN model is considered, the

number of nodes in the hidden layer plays a vital role in the

performance; hence, the models should be carefully selected based

on the dimensions of the input parameters and output as well as the

number of samples being trained. A higher number of nodes could

lead to overfitting performance, whereas inadequate nodes could

relatively suppress the generalization capability (Fiorentini et al.,

2023). Similarly, the ANN model depicted a validation of (R2 =

0.98) in predicting the growth rate of Synechocystis sp. at different

light regions (Yu et al., 2024). Consistently, in this study, the ANN

model proved to be effective in predicting the growth rate

of microalgae.
4.4.2.2 Differences in fucoxanthin yield prediction
metrics (Case Study 2)

When the constructed model was trained with previously

predicted growth rate as input (Table 3), the RF model showed

the maximum fucoxanthin prediction accuracy (R2 = 0:839)

followed by the ANN model (R2 = 0:738). The prediction results

of fucoxanthin yield by generic integrated ML model trained with

growth rate from previous model showed RF to be the best model

(Supplementary Table S7).

Consistent with the above results, ML models trained with raw

data (Supplementary Tables S10, S11) gave the best fucoxanthin

prediction results with the ANN model (R2 = 0:836) and the RF

model (R2 = 0:845) : The predictive performance of LR and SVM was

better than that of the previously developedmodels. These results are in

strong accordance with the concept that neural network effectively

processes the non-linear characteristics of data when enough data and

neurons are given. For an ANNmodel to be ideal, it requires three vital

functions to operate (Otálora et al., 2021). The major requirement is

that the data should be adequate for training and validation of the

model. The second vital function is the construction and structure of

the neural network, which includes the selection of the type, size, and

choice of layers based on the problem addressed, input type, amount of

data, and complexity of the model to be developed. The final part of

developing an ideal model lies in the process of training, which is

defined by the calculation frequency of input parameters, duration of

the training, type of data used for training, and the stop factors

(Hudson et al., 1992). In contrast, as SVM and LR process only the

linear characteristics of data, they demonstrated poor performance in

both Case Study 1 and Case Study 2.
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4.4.3 Performance of ML models (test data) in
fucoxanthin prediction

Marine biotechnological research is progressing swiftly, with a

burgeoning interest in utilizing multi-omics approaches and

machine learning techniques to analyze marine metabolite

datasets (Manochkumar et al., 2023). The developed integrated

ML model harnesses the complementary strengths of the basic

models to minimize the occurrence of random errors, thereby

enhancing the reliability of its predictions. When abscisic acid

phytohormone (predictions and actual measured values are

highlighted in red) was used as testing data, the RF and ANN

networks showed the maximum predict ion accuracy

(Supplementary Tables S3, S5–S7, S9, S11). Even though RF

showed stable prediction, the ML models overestimated the

fucoxanthin yield of abscisic acid in several instances when

compared to the actual measured values. This requires the need

to train the ML model with increased sample size and

different phytohormones.

Yadav et al. (2023b) investigated the impact of the ANN-GA

model and statistical RSM-based model to optimize the process

parameters and elevate the production of isoprene in engineered

Synechococcus elongatus UTEX 2973. The ANN-GA model

combined with the metabolic pathway inhibition strategy

performed better than the statistical model and achieved a 29.52-

fold higher isoprene yield. Similarly, Kang et al. (2023)

demonstrated the ML-guided prediction of engineered

Deinococcus radiodurans R1 for enhanced lycopene production.

The multilayer perceptron models combined with the genetic

algorithm predicted the potential overexpression targets from

2,047 combinations of key genes. This model achieved a threefold

increased lycopene production from glycerol and a sixfold increased

lycopene yield. Yeh et al. (2023) investigated the use of ML models

for the modeling and growth monitoring of microalgae. The

performance of Long Short-Term Memory (LSTM) and Support

Vector Regression (SVR) was compared for outdoor cultivation of

P. tricornutum in flat-panel airlift photo-bioreactors. The LSTM

model outperformed the SVR model and showed its potential

ability to capture the acclimation effects of light on microalgal

growth. Recently, data-enhanced interpretable ML was used to

predict the biochar characteristics. Data enhancement

significantly improved the model accuracy from 5.8% to 15.8%.

Compared to the ANN and SVM models, the optimal RF model

showed a maximum accuracy of 94.89% (Chen et al., 2023).

Consistent with previous studies, in our study, the addition of

hormone descriptors and pre-processing of data to the constructed

generic integrated model enhanced the performance of the RF

optimal model to 83.9%. Therefore, the production of fucoxanthin

depends on the type and concentrat ion of hormone

supplementation and number of days of cultivation. In addition,

the growth rate of microalgae was directly proportional to the

fucoxanthin production. Machine learning models predicted that

supplementation of MeJa (0.02 and 0.2 mg/L) contributed to

maximum fucoxanthin production in shorter time intervals,
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whereas IAA supplementation showed maximum fucoxanthin

production on day 18. The created generic model was found to be

more effective in predicting the fucoxanthin yield, as this is the first

study to employ ML models to predict the fucoxanthin yield

from microalgae.

Testing the potential combination of phytohormones to

forecast the synergetic effect on fucoxanthin production and

dynamics of microalgal growth will constitute a significant aspect

of the upcoming research endeavors in this field. It will be intriguing

to contrast various deep-learning models with the ML models

employed in this study for the enhancement of fucoxanthin

production. Overall, the fucoxanthin production from I. galbana

was validated and verified by the construction of different ML

models. These constructed models were only applicable in the

determination of fucoxanthin yield using spectrometry-based data

acquisition. This study highlights the superior potential of ML

models in predicting and optimizing fucoxanthin production,

outperforming the conventional quantification methods. By

leveraging ML models, there is a significant increase in prediction

accuracy (R2 = 0.839) with the inclusion of hormone descriptors.

This data-driven approach reduced the experimentation time as

well as minimized the utilization of resources, making fucoxanthin

production more sustainable and cost-effective. Also, ML provided

insights into the correlation between phytohormones, growth rate,

and fucoxanthin yield. Therefore, ML models could be applied as a

prediction tool for the commercial production of fucoxanthin by

tracking the growth rate as well as determining the fucoxanthin

yield for industrial purposes. In contrast, conventional methods

often rely on trial-and-error approaches, which are time-consuming

and result in suboptimal fucoxanthin production. However, an ML-

based approach can aid in saving time, costs, and manpower

associated with optimizing the process parameters, underscoring

the scalability of ML models in biotechnology applications. Our

study demonstrates the exclusive potential of an ML-based

approach in fucoxanthin production, paving the way for efficient,

sustainable, and data-driven pigment production.
4.5 Future improvements

Although the current results are satisfactory, there are still areas

for improvement that should be addressed in future research. To

further enhance the prediction accuracy of fucoxanthin using

machine learning models, expanding the dataset size could prove

beneficial, considering that the sample size utilized in this study has

certain limitations. For instance, as we trained the model with

limited data using four phytohormone supplementations and four

concentrations, the ML model could only capture and program as

per the characteristics of the trained hormones. Future studies

should include more types and concentrations of hormones to

test the applicability and robustness of developed ML models.

Recent studies have shown that deep learning models can

effectively harness large datasets. Therefore, the incorporation of
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deep learning should be considered to explore the potential

applicability of UV-based fucoxanthin detection in marine research.
5 Conclusion

This study unequivocally demonstrates the potential of

integrating UV-based fucoxanthin estimation with ML models as a

reliable predictive tool that enhances yield accuracy and accelerates

production. Findings offer insights into MeJa (0.2 mg/L) as an

effective phytohormone in enhancing fucoxanthin yield to 7.83 mg/
mL in a shorter time interval of less than 10 days. Compared with the

basic ML models of Case Study 1, the integrated ML model (Case

Study 2) contributed to higher prediction accuracy in most cases.

ANN showed maximum accuracy in the growth rate prediction,

whereas RF showed maximum accuracy in the fucoxanthin

prediction. Moreover, the critical role of data pre-processing and

hormone descriptors in enhancing prediction accuracy streamlines

the optimization process. These findings open up new avenues for

exploring phytohormone-mediated fucoxanthin optimization and

provide a scalable, adaptable framework for predicting fucoxanthin

yield. The implications of this research are that through the adoption

of an integrated approach, industries could reduce the time-to-

market, increase yield predictability, and minimize production

risks. Future studies should focus on expanding sample and raw

dataset size and exploring additional phytohormones, implementing

advanced deep learning models to further solidify these findings.

Ultimately, this research sets a new avenue in fucoxanthin

production, characterized by sustainability, efficiency, and data-

driven innovation.
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SUPPLEMENTARY FIGURE 1

Schematic representation of Artificial neural network ML model. The input

layer comprises four neurons corresponding to the four input variables (type

of hormone, concentration of hormones, growth rate and biomass) and the
output layer has one neuron corresponding to fucoxanthin yield. Three

hidden layers with 4, 3, and 4 neurons respectively were found to give
good performance. The tan h activation function was utilized in this study

for the computation of output. The regularization value of a=0.0006 and L-
BFGS-B solver was used for the ANN model. The neurons between adjacent

layers are fully interconnected and the number of iterations was set to 200 for

the training algorithm to reduce the error between the actual and
predicted output.
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Otálora, P., Guzmán, J. L., Acién, F. G., Berenguel, M., and Reul, A. (2021).
Microalgae classification based on machine learning techniques. Algal Res. 55,
102256. doi: 10.1016/j.algal.2021.102256

Pisner, D. A., and Schnyer, D. M. (2020). “Support vector machine,” in Machine
learning, Ed. A. Mechelli and S. Vieira (Academic Press), 101–121.

Pyo, J., Hong, S. M., Jang, J., Park, S., Park, J., Noh, J. H., et al. (2022). Drone-borne
sensing of major and accessory pigments in algae using deep learning modeling. GISci.
Remote Sens. 59, 310–332. doi: 10.1080/15481603.2022.2027120

R Core Team. (2017). R: A language and environment for Statistical computing. Vienna:
R Foundation for Statistical Computing. Available online at: https://www.R-project.org/.

Raj, J. V. A., Kumar, R. P., Vijayakumar, B., Gnansounou, E., and Bharathiraja, B.
(2021). Modelling and process optimization for biodiesel production from
Nannochloropsis salina using artificial neural network. Bioresour. Technol. 329,
124872. doi: 10.1016/j.biortech.2021.124872

Rivera-Madrid, R., Carballo-Uicab, V. M., Cárdenas-Conejo, Y., Aguilar-Espinosa,
M., and Siva, R. (2020). “Overview of carotenoids and beneficial effects on human
health,” in Carotenoids: properties, processing and applications, 1st ed. Ed. C. M.
Galanakis (London, UK: Academic Press), 1–40.

Saini, D. K., Rai, A., Devi, A., Pabbi, S., Chhabra, D., Chang, J. S., et al. (2021). A
multi-objective hybrid machine learning approach-based optimization for enhanced
biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403. Bioresour.
Technol. 329, 124908. doi: 10.1016/j.biortech.2021.124908

Sequeira, R. A., Mondal, D., and Prasad, K. (2021). Neoteric solvent-based blue
biorefinery: for chemicals, functional materials and fuels from oceanic biomass. Green
Chem. 23, 8821–8847. doi: 10.1039/D1GC03184H
frontiersin.org

https://doi.org/10.1016/j.indcrop.2013.12.025
https://doi.org/10.1016/j.indcrop.2013.12.025
https://doi.org/10.1016/j.biortech.2023.129688
https://doi.org/10.1016/j.biortech.2023.129688
https://doi.org/10.1007/s10811-020-02258-2
https://doi.org/10.1007/s10811-020-02258-2
https://doi.org/10.1016/j.biortech.2023.128893
https://doi.org/10.1016/j.bcab.2023.102660
https://doi.org/10.1080/21655979.2023.2244232
https://doi.org/10.1080/21655979.2023.2244232
https://doi.org/10.1007/s10811-018-1623-y
https://doi.org/10.1016/j.algal.2021.102406
https://doi.org/10.1111/nph.19743
https://doi.org/10.1016/j.algal.2022.102955
https://doi.org/10.1093/plphys/kiab346
https://doi.org/10.1007/s00253-022-12140-5
https://doi.org/10.1007/s00253-022-12140-5
https://doi.org/10.1016/j.algal.2023.103052
https://doi.org/10.1016/j.algal.2023.103052
https://doi.org/10.1177/036119812211113
https://doi.org/10.3389/fbioe.2020.546067
https://doi.org/10.1016/j.jbiotec.2016.11.026
https://doi.org/10.1016/j.jbiotec.2016.11.026
https://doi.org/10.1002/bit.27657
https://doi.org/10.3390/w12010106
https://doi.org/10.1007/s10811-018-1718-5
https://doi.org/10.1007/s10811-018-1718-5
https://doi.org/10.1016/j.scitotenv.2021.145471
https://doi.org/10.1093/plphys/kiad577
https://www.jmp.com/en_in/home.html
https://doi.org/10.1016/j.biortech.2022.128455
https://doi.org/10.3390/md20100592
https://doi.org/10.1016/j.apenergy.2023.122597
https://doi.org/10.1016/j.fuel.2018.11.006
https://doi.org/10.1016/j.scitotenv.2022.155192
https://doi.org/10.1007/s00343-019-9171-0
https://doi.org/10.1016/j.biortech.2023.129898
https://doi.org/10.1016/j.tifs.2021.03.012
https://doi.org/10.1016/j.compbiomed.2023.107425
https://doi.org/10.1016/j.algal.2021.102594
https://doi.org/10.18520/cs/v126/i1/19-35
https://www.marketreportsworld.com/global-fucoxanthin-market-19888189
https://www.marketreportsworld.com/global-fucoxanthin-market-19888189
https://doi.org/10.38094/jastt1457
https://doi.org/10.1016/j.procbio.2020.03.001
https://doi.org/10.1016/j.jprot.2021.104381
https://doi.org/10.1016/j.bcab.2020.101639
https://doi.org/10.1016/j.algal.2021.102256
https://doi.org/10.1080/15481603.2022.2027120
https://www.R-project.org/
https://doi.org/10.1016/j.biortech.2021.124872
https://doi.org/10.1016/j.biortech.2021.124908
https://doi.org/10.1039/D1GC03184H
https://doi.org/10.3389/fpls.2024.1461610
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Manochkumar et al. 10.3389/fpls.2024.1461610
Sun, Z., Wang, X., and Liu, J. (2019). Screening of Isochrysis strains for simultaneous
production of docosahexaenoic acid and fucoxanthin. Algal Res. 41, 101545.
doi: 10.1016/j.algal.2019.101545

Tang, D. Y. Y., Chew, K. W., Ting, H. Y., Sia, Y. H., Gentili, F. G., Park, Y. K., et al.
(2023). Application of regression and artificial neural network analysis of Red-Green-
Blue image components in prediction of chlorophyll content in microalgae. Bioresour.
Technol. 370, 128503. doi: 10.1016/j.biortech.2022.128503

Thiviyanathan, V. A., Ker, P. J., Tang, S. G. H., Amin, E. P., Yee, W., Hannan, M. A., et al.
(2024). Microalgae biomass and biomolecule quantification: optical techniques, challenges
and prospects. Renew. Sustain. Energy Rev. 189, 113926. doi: 10.1016/j.rser.2023.113926

Victor, P., and Camarena-Bernard, C. (2023). Lutein, violaxanthin, and zeaxanthin
spectrophotometric quantification: A machine learning approach. J. Appl. Phycol. 35,
73–84. doi: 10.1007/s10811-022-02855-3

Wang, L. J., Fan, Y., Parsons, R. L., Hu, G. R., Zhang, P. Y., and Li, F. L. (2018). A
rapid method for the determination of fucoxanthin in diatom. Mar. Drugs 16, 33.
doi: 10.3390/md16010033

Wu, M., Cao, J., Xu, Y., Xu, S., Zhou, Z., Shao, M., et al. (2023). Impact of three
phycospheric bacterial strains on the growth and fatty acid composition of Isochrysis
galbana. Algal Res. 74, 103183. doi: 10.1016/j.algal.2023.103183

Yadav, K., Nikalje, G. C., Pramanik, D., Suprasanna, P., and Rai, M. P. (2023a).
Screening of the most effective media for bioprospecting three indigenous freshwater
microalgae species. Int. J. Plant Biol. 14, 558–570. doi: 10.3390/ijpb14030044
Frontiers in Plant Science 17
Yadav, I., Rautela, A., Gangwar, A., Wagadre, L., Rawat, S., and Kumar, S. (2023b).
Enhancement of isoprene production in engineered Synechococcus elongatus UTEX
2973 by metabolic pathway inhibition and machine learning-based optimization
strategy. Bioresour. Technol. 387, 129677. doi: 10.1016/j.biortech.2023.129677

Yang, F., Liu, W., Li, Y., Che, X., and Liu, S. (2024). Glycerol changes the growth and
lipid profile of the marine microalga Isochrysis galbana via the regulation of
photosynthetic and respiratory metabolic pathways. J. Appl. Phycol. 36, 57–71.
doi: 10.1007/s10811-023-03148-z

Yeh, Y. C., Syed, T., Brinitzer, G., Frick, K., Schmid-Staiger, U., Haasdonk, B., et al.
(2023). Improving microalgae growth modeling of outdoor cultivation with light
history data using machine learning models: A comparative study. Bioresour.
Technol. 390, 129882. doi: 10.1016/j.biortech.2023.129882

Yu, T., Fan, F., Huang, L., Wang, W., Wan, M., and Li, Y. (2024). Artificial neural
networks prediction and optimization based on four light regions for light utilization
from Synechocystis sp. PCC 6803. Bioresour. Technol. 394, 130166. doi: 10.1016/
j.biortech.2023.130166

Yusof, Z., Khong, N. M., Choo, W. S., and Foo, S. C. (2022). Opportunities for the
marine carotenoid value chain from the perspective of fucoxanthin degradation. Food
Chem. 383, 132394. doi: 10.1016/j.foodchem.2022.132394

Zienkiewicz, A., Zienkiewicz, K., Poliner, E., Pulman, J. A., Du, Z. Y., Stefano, G.,
et al. (2020). The microalga Nannochloropsis during transition from quiescence to
autotrophy in response to nitrogen availability. Plant Physiol. 182, 819–839.
doi: 10.1104/pp.19.00854
frontiersin.org

https://doi.org/10.1016/j.algal.2019.101545
https://doi.org/10.1016/j.biortech.2022.128503
https://doi.org/10.1016/j.rser.2023.113926
https://doi.org/10.1007/s10811-022-02855-3
https://doi.org/10.3390/md16010033
https://doi.org/10.1016/j.algal.2023.103183
https://doi.org/10.3390/ijpb14030044
https://doi.org/10.1016/j.biortech.2023.129677
https://doi.org/10.1007/s10811-023-03148-z
https://doi.org/10.1016/j.biortech.2023.129882
https://doi.org/10.1016/j.biortech.2023.130166
https://doi.org/10.1016/j.biortech.2023.130166
https://doi.org/10.1016/j.foodchem.2022.132394
https://doi.org/10.1104/pp.19.00854
https://doi.org/10.3389/fpls.2024.1461610
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Machine learning-based prediction models unleash the enhanced production of fucoxanthin in Isochrysis galbana
	1 Introduction
	2 Materials and methods
	2.1 Algal strain and culture conditions
	2.2 Experimental data collection
	2.3 Morphological data acquisition
	2.3.1 Field emission scanning electron microscopy
	2.3.2 Confocal laser scanning microscopy

	2.4 Machine learning-assisted fucoxanthin prediction
	2.5 Construction of models for prediction of fucoxanthin yield
	2.5.1 Case Study 1 (without descriptors)
	2.5.2 Case Study 2 (with descriptors)

	2.6 Data evaluation
	2.6.1 Evaluation of model performance

	2.7 Statistical data analysis

	3 Results
	3.1 Data acquisition and visualization
	3.2 Statistical models and correlation analysis
	3.3 Morphological alterations in microalgal structure
	3.4 Machine learning-based fucoxanthin prediction
	3.5 Performance comparison between ML models (Case Study 1—exclusion of hormone descriptors)
	3.6 Performance comparison between ML models (Case Study 2—inclusion of hormone descriptors)
	3.6.1 Growth rate prediction using pre-processed data
	3.6.2 Fucoxanthin prediction using pre-processed data
	3.6.3 Prediction of growth rate using raw data
	3.6.4 Prediction of fucoxanthin yield using raw data


	4 Discussion
	4.1 Sustainable approach: ensuring enhanced fucoxanthin and biomass production
	4.2 Pearson’s correlation coefficient analysis
	4.3 Morphological alterations in the microalgal structure in response to phytohormones
	4.4 Performance of machine learning models for fucoxanthin prediction
	4.4.1 Differences in fucoxanthin prediction metrics (Case Study 1)
	4.4.2.1 Differences in growth rate prediction metrics (Case Study 2)
	4.4.2.2 Differences in fucoxanthin yield prediction metrics (Case Study 2)
	4.4.3 Performance of ML models (test data) in fucoxanthin prediction

	4.5 Future improvements

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


