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Inter-specific hybridization is a key strategy in modern crop improvement,

aiming to integrate desirable traits from wild species into cultivated

backgrounds. This study delves into the evaluation and identification of

advanced inter-specific derivatives (IDs) derived from crosses of cultivated

chickpea with Cicer reticulatum and C. echinospermum. The primary aim was

to incorporate desirable yield enhancement traits, disease resistance, and

nutritional quality traits into cultivated chickpea. The IDs were assessed during

rabi 2021-22 and 2022-23 in the northern plains zone of India. Significant

amount of genetic variability was observed for key agro-morphological traits

having high heritability and genetic advance. Superior derivatives were identified

for early flowering, high seed yield, and resistance to Ascochyta blight, Botrytis

grey mould, and Fusarium wilt. Significant variability for crude protein and total

soluble sugar content was also observed among the derivatives. The findings

highlight the potential of utilizing wild Cicer species to broaden the genetic base

of cultivated chickpea for the development of robust, high-yielding, disease-

resistant varieties with improved nutritional traits suitable for diverse

environmental conditions. The superior derivatives identified in this study hold

promise for future breeding programmes for improving productivity, disease

resistance and nutritional quality.
KEYWORDS
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1 Introduction

Chickpea (C. arietinum L.) is a temperate, autogamous legume

with a chromosome number of 2n = 2x = 16 and a haploid genome

consisting of 738 mega bases (Varshney et al., 2012). It holds the

second position globally among food legumes after beans.

C. arietinum is the only cultivated species of genus Cicer

including 10 annual and 36 perennial species (Toker et al., 2021).

Its wild ancestor is believed to be C. reticulatum. The historical roots

of chickpea dates back to 7,500-6,800 BC, with archaeological

findings locating its origin in the Middle East, particularly in

southeastern Turkey and adjoining parts of Syria (van der

Maesen, 1987; Zohary et al., 2012). This legume is regarded as a

nutritional powerhouse, offering proteins, vitamins (such as niacin

and thiamine), minerals, carbohydrates and essential unsaturated

fatty acids (linolenic and oleic acids) (Heiras-Palazuelos et al., 2013;

Singh et al., 2022a). It holds a significant place in diets, especially for

those unable to access animal protein or adhering to vegetarianism

in semi-arid regions. Moreover, combining pulses like chickpea

with cereals ensures a balanced intake of essential amino acids to

complement each other’s deficiencies (Reinkensmeier et al., 2015).

Chickpea is cultivated on approximately 14.81 million hectares

globally, yielding a total production of 18.09 million tonnes with an

average productivity of 1221.8 kg/ha. India remains the largest

producer and consumer of chickpea, contributing around 75 per

cent (13.56 million tonnes) of the global production, with 10.74

million hectares under cultivation in 2022 (FAOSTAT, 2022). To

achieve self-sufficiency in pulse production by 2050 (as per Vision

2050 document of IIPR, Kanpur), India needs to reach a total pulse

production of 39 MT with chickpea production targets of about 16-

17.5 MT from an area of 10.5 million hectares (Dixit et al., 2019).

Notably, the absence of genetically improved crop varieties and limited

genetic diversity leads to significant breeding challenges. This is

primarily due to the origin of chickpeas from a single domestication

event followed by high rates of self-pollination (Abbo et al., 2003, 2005;

Chaturvedi and Nadarajan, 2010). To address the issue of limited

genetic diversity, emphasis has been directed towards harnessing traits

from crop wild relatives (CWRs) for yield enhancement and stress

resistance (Croser et al., 2003; Mallikarjuna et al., 2007; Bains et al.,

2012). Studies on wild Cicer species on variability for essential traits

and potential compatibility with cultivated chickpea highlight the

importance of broadening the genetic base of alien introgression

(Xiao et al., 1996; Tanksley and McCouch, 1996). Consequently, in

pursuit of additional achievements to enhance crop yield and

consistency in forthcoming plant varieties, it is necessary to integrate

novel desirable traits into the existing cultivated chickpea background.

Furthermore, enriching the cultivated gene pool with complementary

genes and alleles from CWRs is essential for maximizing genetic gains

by selection (Vega and Frey, 1980).

Inter-specific hybridization is essential for crop improvement to

introduce novel genetic variation from wild relatives into cultivated

species. In chickpea breeding, inter-specific hybridization, involves

crossing chickpeas with wild relatives to generate new genetic

variation. For example, genes from C. echinospermum and C.

reticulatum have been introgressed into cultivated chickpeas,

resulting into significant yield improvements and enhanced
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tolerance to drought and heat (Singh and Ocampo, 1997; Canci

and Toker, 2009; Singh et al., 2024). Similarly, in pigeonpea, inter-

specific hybridization with wild relatives such as Cajanus

scarabaeoides has been used to introgress traits like increased

productivity and resistance to pests and diseases, including pod

borer and Phytophthora stem blight (Singh et al., 2020).

Various stresses affecting yield and stability are the major

restraining factors for the expression of chickpea’s genetic potential.

The crop faces significant challenges from various well-documented

pathogens (Nene and Reddy, 1987). Among these, productivity is

suffered notably by diseases like Ascochyta blight (AB), Botrytis grey

mould (BGM) and Fusarium wilt (FW). Ascochyta blight caused by

Ascochyta rabiei, spreads via seed and crop residue, inflicting severe

symptoms like stem breakage, twig collapse, and pod infection

(Sharma and Muehlbauer, 2007). Moreover, the pathogen’s

evolving nature continually disrupts the resistance mechanisms in

newly bred chickpea varieties (Nene and Reddy, 1987; Chen et al.,

2004; Kanouni et al., 2011). Similarly, in BGM (causal organism:

Botrytis cinerea Pers. ex. Fr.), symptoms are; white colonies on stems,

leaves, and twigs, with water-soaked lesions (Thakur et al., 2023). Its

diverse mechanisms of infection and ability to survive in different

forms make the management of BGM in agricultural settings

immensely challenging (Brandhoff et al., 2017). Besides, the FW

caused by Fusarium oxysporum f. sp. ciceris results in significant

annual yield losses ranging from 10–30% and often a complete crop

loss in wilt-sick areas (Sunkad et al., 2019). Although seed dressing

and foliar fungicides help manage these diseases, yet the approach is

unsustainable, uneconomical, and environmentally hazardous.

Under such conditions, host-plant resistance is the most effective

and sustainable solution (Pande et al., 2007). The lack of stable

resistance in the cultivated gene pool, warrants the need to introgress

resistance from CWRs. The resistant sources among wild species like

C. reticulatum and C. echinospermum from the primary gene pool of

chickpea possess novel genes for resistance to AB and BGM (Singh

et al., 1991; Ramgopal, 2006; Kaur et al., 2013) and FW (Sharma and

Muehlbauer, 2007; Mallikarjuna et al., 2011). Moreover, accessions of

C. judaicum, C. pinnatifidum, and C. bijugum from the secondary/

tertiary gene pools display resistance but are inaccessible for chickpea

breeding due to various crossability barriers (Mallikarjuna et al.,

2011). Despite the challenges of wide crossing, the successful gene

transfer from these wild relatives can improve chickpea disease

resistance (Collard et al., 2003; Mallikarjuna et al., 2011). Hence,

this study aims to assess and identify superior high-yielding IDs that

withstand major biotic challenges and display better nutritional

quality for use in developing chickpea cultivars with improved traits.
2 Materials and methods

2.1 Plant materials, experimental site
and design

In this study, advanced chickpea IDs derived from crosses

between the cultivated chickpea varieties PBG5 and BGD72 (C.

arietinum) with the wild annual Cicer species ILWC229

(EC720438) (C. reticulatum) and ILWC246 (EC720481)
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(C. echinospermum) were used (Singh et al., 2018). The segregating

populations were advanced using the single seed descent (SSD)

breeding technique (Goulden, 1939) to generate derivatives. Finally,

a set of 90 IDs from four different crosses namely PBG5 × ILWC229

(33 IDs), BGD72 × ILWC229 (30 IDs), PBG5 × ILWC246 (8 IDs),

and BGD72 × ILWC246 (19 IDs) were evaluated for agro-

morphological and nutritional traits and against major diseases. A

total of 96 genotypes including 90 IDs, their four parents (Figure 1)

and two standard checks (PBG7 and PBG8) were planted in paired

rows of 2-meter length with a row-to-row spacing of 30 cm in alpha

lattice design having 8 blocks with two replications during the rabi

season of 2021-2022 and 2022-2023 at the experimental area of

Punjab Agricultural University (PAU), Ludhiana (30° 54′N, 75° 48′
E) of Punjab, India. The experimental area falls in the North

Western Plains Zone (NWPZ) of India with semi-arid climate

having loamy sand soil with a pH range of 7.8-8.2. The average

annual rainfall received at Ludhiana is 726 mm. During the 2021-22

rabi season, Ludhiana experienced 111.20 mm of rainfall during the

crop period, with temperatures ranging from a minimum of 11.19°

C to a maximum of 24.84°C. In the subsequent 2022-23 rabi season,

the region saw an increase in rainfall to 126.70 mm, while the

temperature slightly varied, with minimum and maximum values of

11.11°C and 24.26°C, respectively.
2.2 Observations of agro-
morphological traits

The agro-morphological traits assessed in the study consisted of

days to 50% flowering (DFF), days to maturity (DTM), plant height

(PH), primary branches per plant (PBPP), secondary branches per
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plant (SBPP), number of pods per plant (NPP), seeds per 10 pods

(SPTP), 100-seed weight (HSW), seed yield per plot (SYPP),

biological yield per plot (BYPP) and harvest index (HI). To

measure the PH, NPP, PBPP, SBPP and HSW, five plants were

randomly taken from each plot, while the traits namely DFF, DTM,

SYPP, BYPP and HI were recorded on plot basis.
2.3 Disease screening of inter-
specific derivatives

2.3.1 Ascochyta blight (A. rabiei)
For screening against AB, all the derivatives from four inter-

specific crosses along with their parents and highly susceptible

checks (L550 and C214) were planted in 2-meter row lengths with a

row-to-row spacing of 40 cm during the rabi season of 2021-2022

and 2022-2023 in the Ascochyta screening plot, PAU, Ludhiana,

India. All plants of the test entries were inoculated by spraying with

a conidial suspension of A. rabiei (4 � 104 spores ml-1) in the

evening during the first week of February at the time of flowering

and pod initiation (85 to 90 days after sowing) to establish uniform

disease for screening. Water was sprinkled from the day following

inoculation for 10 min at two-hour intervals to maintain >85%

relative humidity for 21 days using perfo-spray system. Disease

symptoms started to appear around 10-15 days after inoculation

and the observations were made on the response of plants at both

vegetative and reproductive stages, using a rating scale from 1 to 9

(Pande et al., 2010). During disease screening, the IDs were sorted

into different classes based on their response to the pathogen as ‘1’

for asymptomatic (HR), ‘3’ resistant (R), ‘5’ moderately resistant

(MR), ‘7’ susceptible (S), and ‘9’ highly susceptible (HS).
FIGURE 1

Field view of parents and inter-specific derivatives in field trials at PAU, Ludhiana.
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2.3.2 Botrytis grey mould (B. cinerea)
All the derivatives from four inter-specific crosses along with

their parents and highly susceptible checks (BG1053 and GPF2)

were screened using the cut-twig method under laboratory

conditions during the rabi of 2021-2022 and 2022-23. In this

screening experiment, each derivative was replicated twice. A twig

from a young plant was collected and briefly immersed in water.

After removing it from the water, the cut sections of the plant were

treated with rooting hormone before planting them in trays. After

planting, the trays were kept in shade and watered twice daily until

the roots began to emerge. Thereafter, these trays were transferred

to growth chambers, watered, and inoculated with BGM (B. cinerea)

spore suspension (2 � 104 spores ml-1). Following inoculation, the

growth chambers were wrapped with polythene sheets to maintain

regulated conditions (Temperature: 20°C, Relative Humidity: >90%,

and alternating dark and light intervals of 8 and 16 hours,

respectively). Disease symptoms were started to appear 3-4 days

following inoculation and observations were recorded on sixth-day

using 1 to 9 disease rating scale (Pande et al., 2006), where ‘1’ is

asymptomatic (HR), ‘3’ resistant (R), ‘5’moderately resistant (MR),

‘7’ susceptible (S), and ‘9’ highly susceptible (HS).

2.3.3 Fusarium wilt (F. oxysporum f.sp. ciceris)
For screening against FW, all the IDs along with their parents and

highly susceptible check, JG62, were planted in 4-meter length row

with a row-to-row spacing of 40 cm during rabi 2021-22 and 2022-23

in the wilt-sick plot, PAU, Ludhiana, India. The wilt-sick plot is well-

established with F. oxysporum f.sp. ciceris inoculum. After one month

of planting, the disease started appearing. A total of three assessments

were conducted throughout the crop season to calculate the

percentage of plant mortality based on the total number of plants

germinated and the number of plants killed by wilt. The

categorization of genotypes based on disease incidence was done as

per Haware et al. (1992), where asymptomatic (HR) had 0% plant

mortality, 0.1-10.0% for resistant (R), 10.1-25.0% for moderately

resistant (MR), 25.1-50.0% for susceptible (S) and >50% for highly

susceptible (HS).
2.4 Extraction and determination of crude
protein content and total soluble sugars

The crude protein content was determined using the Kjeldahl

method as described by McKenzie and Wallace (1954). Initially, 0.1

g of seed powder obtained by grinding the seeds was wrapped in

Whatman No. 1 filter paper and placed in a Kjeldahl digestion tube.

A digestion mixture containing copper sulphate and potassium

sulphate in 1:9 ratio was added, followed by the addition of 10 ml of

concentrated sulphuric acid. After digestion, distillation was

conducted using KELPLUS and the resulting samples were

titrated with 0.1 N HCL. The determined nitrogen content was

converted to protein content using a conversion factor of 6.25.

For extracting total sugars, the method described by AOAC

(1965) was employed. The subsequent analysis was done using the

phenol sulphuric acid technique developed by Dubois et al. (1956).

The sugars were extracted twice with 80 and 70 per cent ethanol by
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retaining the tubes connected with water condensers in the hot

water bath. After each extraction, the supernatants were collected,

and 2 ml of the extract was combined with distilled water in a test

tube. Following this, 5 per cent phenol and 95.5 per cent sulphuric

acid were added, and the absorbance of the resulting pink colour

was measured at 490 nm using a spectrophotometer.
2.5 Statistical analysis

Statistical analysis was performed for all the traits recorded,

wherein mean values from two replications were used. The analysis

of variance (ANOVA) for alpha lattice design was done using the R

software (version 4.2.1) “agricolae package” and “PBIB.test”

functionality. The descriptive statistics was performed on the

numerical data using MS Office Excel programme, while violin

plots integrating box plots for key morphological traits were

generated using the “ggplot2” library in R. The heritability in

broad sense (Hbs) was estimated as per Allard (1960), (Hbs = s 2
g =

s2
p × 100) and were classified as low (<50%), moderate (50-80%)

and high (>80%) categories. The genotypic and phenotypic

coefficients of variance (GCV and PCV) were estimated as per

Burton and DeVane (1953) and were categorized as low (<10%),

moderate (10-15%), and high (>15%). The genetic advance

estimation was carried out using the formula GA = k × Hbs ×ffiffiffiffiffiffi
s 2
p

q
as per Allard (1960). Where k is the selection differential (k =

2.06 at 5% selection intensity), s2
p is phenotypic variance, and s 2

g is

genotypic variance. By utilizing the adjusted means of all the traits,

correlations, path analysis, and principal component analysis

(PCA) were estimated. The “qgraph” function in R was used to

conduct Pearson’s correlation analysis for ascertaining the

relationship between seed yield and other related traits that

were recorded. Additionally, the “metan” package in R was

employed to examine the direct and indirect contributions of

various independent traits on seed yield. The associations among

the traits were explored by PCA using “factoextra” and

“factominer” packages.
3 Results

3.1 Performance of inter-specific
derivatives for agro-morphological traits

The ANOVA for IDs during both the seasons revealed

significant differences for genetic variability for all the traits.

Treatments consistently showed highly significant effects,

indicating strong genetic diversity. The pooled analysis showed

significant effects over the years and interactions between

treatments and years, emphasizing the importance of testing over

the years. The alpha lattice design effectively minimized the

experimental error for the evaluation of the IDs in different

conditions (Supplementary Table 1). Moreover, the descriptive

statistical measures demonstrated a wide range of variation for

major agronomical parameters. The measures of descriptive

statistics for important agro-morphological traits obtained across
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rabi seasons 2021-22, 2022-23 and pooled data (Supplementary

Table 2) revealed consistent means and variability, indicating stable

trait performance. The traits such as DFF, DTM and SYPP

displayed reliable averages and low variability, critical for

developing early maturing genotypes. Traits like NPP and SBPP

remained stable across the years indicating reliable yield potential.

The IDs exhibited a slight decline in yield and yield-contributing

traits in 2022-23 compared to 2021-22, potentially due to higher

temperatures experienced during the reproductive phases

(Supplementary Figure 1). The data exhibited low skewness and

kurtosis, signifying normal distributions, hence, facilitating

statistical analysis. Overall, the results demonstrated the stability

and reliability of key agro-morphological traits in chickpea across

different seasons, providing valuable insights for breeding

programmes aimed to enhance yield levels and overall

adaptability. Further, the comparison among the IDs of crosses
Frontiers in Plant Science 05
PBG5 × ILWC229, BGD72 × ILWC229, PBG5 × ILWC246 and

BGD72 × ILWC246, displayed a wide range of variation, as

evidenced by the diversity in mean, range, and CV (Table 1).

Early flowering and maturity were observed in the rabi 2021-22

than in 2022-23 for all the crosses. In contrast, the IDs derived from

C. echinospermum displayed the maximum average plant height

compared to C. reticulatum derivatives. The IDs of crosses PBG5 ×

ILWC246 exhibited higher NPP and SYPP, followed by BGD72 ×

ILWC229, while the derivatives involving BGD72 exhibited higher

HSW in comparison to derivatives involving PBG5 (Table 1).

The assessment of variation among the IDs as determined using

violin and box plots are presented in Figure 2. The violin plots

visualize the data density and distribution with the shape indicating

the concentration of data points at different values. Inside each

violin plot, a box plot is integrated to provide a statistical summary.

The thick black bar represents the median value, the dot within the
TABLE 1 Range, Mean, Standard Error (SE), and Coefficient of Variation (CV) for different agro-morphological traits in chickpea inter-
specific derivatives.

Rabi (2021-22) Rabi (2022-23) Pooled

Trait/Cross Range Mean ± SE CV% Range Mean ± SE CV% Range Mean ± SE CV%

Days to 50% flowering

PBG5 × ILWC229 96.00-108.50 102.90 ± 0.54 3.06 96.50-110.00 104.27 ± 0.68 3.77 96.25-109.25 103.65 ± 0.60 3.34

BGD72 × ILWC229 89.00-107.00 98.93 ± 0.85 4.72 92.00-110.00 100.03 ± 0.91 5.02 90.50-108.50 99.48 ± 0.86 4.77

PBG5 × ILWC246 94.00-107.00 103.25 ± 1.52 4.18 97.00-110.00 105.12 ± 1.59 4.29 95.50-108.50 104.18 ± 1.54 4.19

BGD72 × ILWC246 89.00-108.50 100.02 ± 1.11 4.86 92.00-110.00 101.44 ± 1.05 4.52 90.50-109.25 100.73 ± 1.07 4.64

Days to maturity

PBG5 × ILWC229 144.50-153.50 149.72 ± 0.36 1.39 146.00-155.00 150.72 ± 0.37 1.41 146.00-154.25 150.28 ± 0.35 1.34

BGD72 × ILWC229 144.00-154.50 148.43 ± 0.49 1.81 145.00-155.00 150.33 ± 0.52 1.91 144.50-154.50 149.38 ± 0.48 1.78

PBG5 × ILWC246 145.00-150.50 147.00 ± 0.65 1.25 148.00-153.00 149.81 ± 0.66 1.24 146.50-151.00 148.40 ± 0.59 1.13

BGD72 × ILWC246 145.50-151.50 149.05 ± 0.42 1.24 145.50-155.00 150.47 ± 0.54 1.56 145.50-153.00 149.71 ± 0.44 1.29

Plant height (cm)

PBG5 × ILWC229 39.49-82.49 61.85 ± 1.43 13.34 45.16-77.66 67.94 ± 1.20 10.14 42.33-80.08 64.90 ± 1.19 10.61

BGD72 × ILWC229 48.49-79.75 62.49 ± 1.43 12.58 51.50-78.00 64.50 ± 1.23 10.47 53.62-78.87 63.49 ± 1.20 10.42

PBG5 × ILWC246 46.16-74.58 65.06 ± 3.09 13.45 68.16-79.50 73.28 ± 1.25 4.82 59.24-76.87 69.17 ± 1.87 7.67

BGD72 × ILWC246 55.95-78.33 66.42 ± 1.37 9.01 58.16-78.66 69.56 ± 1.11 6.98 57.12-78.49 67.99 ± 1.19 7.65

Primary branches plant-1

PBG5 × ILWC229 2.66-4.57 3.50 ± 0.08 13.12 2.83-4.99 3.88 ± 0.07 11.29 2.99-4.78 3.69 ± 0.06 10.17

BGD72 × ILWC229 2.25-4.99 3.59 ± 0.12 19.12 2.99-4.66 3.96 ± 0.07 10.71 2.87-4.58 3.78 ± 0.08 12.36

PBG5 × ILWC246 2.74-3.91 3.24 ± 0.14 12.62 3.66-4.66 4.21 ± 0.09 6.59 3.37-4.12 3.72 ± 0.09 7.43

BGD72 × ILWC246 2.41-4.75 3.68 ± 0.15 18.21 3.16-4.99 3.90 ± 0.12 13.44 2.83-4.53 3.79 ± 0.12 14.32

Secondary branches plant-1

PBG5 × ILWC229 3.41-7.83 5.19 ± 0.19 22.00 3.66-7.83 5.39 ± 0.18 19.46 3.53-7.24 5.29 ± 0.17 18.97

BGD72 × ILWC229 3.25-8.41 5.46 ± 0.23 23.49 4.00-8.33 5.89 ± 0.22 21.02 3.70-7.45 5.67 ± 0.20 19.75

PBG5 × ILWC246 4.25-7.25 5.34 ± 0.32 17.35 5.33-7.50 6.41 ± 0.31 13.77 4.79-7.37 5.87 ± 0.30 14.90

(Continued)
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box plot marks the interquartile range (IQR), and the thin black

lines (whiskers) extend to the minimum and maximum values,

excluding outliers. This combination of violin and box plots allows

for a detailed comparison of central tendency, spread, and

variability of the traits. For most of the traits, median values for

rabi 2021-22 and 2022-23 were similar, suggesting the consistent

performance of IDs across the seasons. In traits viz., DFF and DTM,
Frontiers in Plant Science 06
seasonal variations in the spread of IDs were observed though there

was overall similarity in the ranges. The PBPP, SBPP and SPTP

exhibited consistent patterns across seasons, suggesting no

significant seasonal variation in branching and seed producing

traits. Similarly in HSW, NPP and PH traits, stable distributions

were observed across the seasons. Hence, implying that these traits

are relatively unaffected by seasonal changes. Lastly, BYPP and
TABLE 1 Continued

Rabi (2021-22) Rabi (2022-23) Pooled

Trait/Cross Range Mean ± SE CV% Range Mean ± SE CV% Range Mean ± SE CV%

Secondary branches plant-1

BGD72 × ILWC246 4.16-7.00 5.41 ± 0.19 15.42 4.33-7.33 5.87 ± 0.17 13.00 4.24-6.62 5.64 ± 0.15 12.24

Number of pods plant-1

PBG5 × ILWC229 31.08-67.66 46.27 ± 1.44 17.92 20.49-74.99 46.76 ± 1.84 17.64 25.78-71.32 46.51 ± 1.49 18.44

BGD72 × ILWC229 39.32-71.07 51.76 ± 1.80 19.14 28.83-67.50 49.25 ± 1.91 18.24 34.74-67.03 50.58 ± 1.68 18.20

PBG5 × ILWC246 41.04-62.24 52.11 ± 2.38 12.94 41.49-66.60 55.91 ± 3.24 16.42 44.72-61.20 54.01 ± 2.45 12.84

BGD72 × ILWC246 29.33-74.50 43.63 ± 2.53 19.35 28.41-65.50 47.22 ± 1.97 18.22 31.58-69.25 45.40 ± 2.14 19.54

Seeds 10 pods-1

PBG5 × ILWC229 14.50-20.00 16.96 ± 0.26 9.13 15.00-20.00 18.39 ± 0.21 6.82 14.75-20.00 17.68 ± 0.21 6.89

BGD72 × ILWC229 12.50-20.00 16.73 ± 0.36 11.81 11.50-20.00 17.11 ± 0.37 12.02 12.00-20.00 16.92 ± 0.35 11.36

PBG5 × ILWC246 15.50-18.50 16.62 ± 0.39 6.77 16.00-20.00 18.12 ± 0.47 7.33 16.00-19.25 17.37 ± 0.40 6.57

BGD72 × ILWC246 15.50-20.00 17.55 ± 0.29 7.22 15.50-20.00 17.65 ± 0.31 7.67 16.00-19.25 17.60 ± 0.22 5.66

100-Seed weight (g)

PBG5 × ILWC229 13.30-28.49 17.86 ± 0.38 12.41 13.55-28.24 18.47 ± 0.38 12.02 13.45-28.34 18.23 ± 0.38 11.97

BGD72 × ILWC229 16.68-30.56 23.61 ± 0.81 19.52 17.63-30.10 23.72 ± 0.78 18.00 17.25-29.61 23.68 ± 0.79 18.47

PBG5 × ILWC246 17.46-19.48 18.60 ± 0.24 3.73 17.53-19.63 18.57 ± 0.27 4.20 17.70-19.45 18.58 ± 0.25 3.88

BGD72 × ILWC246 16.26-26.21 18.69 ± 0.50 11.88 16.46-26.51 19.67 ± 0.56 12.59 16.53-26.39 19.28 ± 0.53 12.09

Seed yield plot-1 (g)

PBG5 × ILWC229 375.50-594.50 479.19 ± 9.99 11.98 380.00-593.00 478.33 ± 9.36 11.24 380.75-593.75 478.76 ± 9.51 11.41

BGD72 × ILWC229 348.50-645.50 514.05 ± 12.97 13.82 367.50-627.00 507.86 ± 12.85 13.86 363.75-634.50 510.95 ± 12.39 13.29

PBG5 × ILWC246 464.50-574.00 515.00 ± 15.11 8.30 473.00-564.50 519.43 ± 10.67 5.81 468.75-569.25 517.21 ± 11.79 6.45

BGD72 × ILWC246 376.00-582.00 498.76 ± 12.42 10.85 385.00-577.00 497.34 ± 12.50 10.96 395.50-579.50 498.05 ± 12.33 10.79

Biological yield plot-1 (g)

PBG5 × ILWC229 925.00-1525.00 1169.47 ± 24.00 11.78 900.00-1500.00 1163.63 ± 21.94 10.83 912.50-1512.50 1166.55 ± 22.79 11.22

BGD72 × ILWC229 925.00-1482.50 1242.58 ± 27.24 12.00 900.00-1475.00 1228.75 ± 26.40 11.77 912.50-1478.75 1235.66 ± 26.25 11.63

PBG5 × ILWC246 1037.50-1300.00 1205.31 ± 29.88 7.01 1050.00-1275.00 1200.00 ± 27.54 6.49 1043.75-1272.50 1202.65 ± 26.66 6.27

BGD72 × ILWC246 1025.00-1425.00 1240.26 ± 29.37 10.32 1000.00-1400.00 1232.89 ± 28.68 10.13 1012.50-1412.50 1239.21 ± 28.92 10.17

Harvest index

PBG5 × ILWC229 29.18-45.35 41.17 ± 0.70 9.82 33.76-45.51 41.23 ± 0.61 8.63 31.77-45.44 41.20 ± 0.64 9.06

BGD72 × ILWC229 33.36-45.69 41.37 ± 0.56 7.48 33.40-45.33 41.34 ± 0.56 7.48 33.39-45.32 41.36 ± 0.53 7.04

PBG5 × ILWC246 39.39-45.46 42.74 ± 0.79 5.23 40.40-45.16 43.33 ± 0.56 3.71 40.00-45.31 43.04 ± 0.66 4.37

BGD72 × ILWC246 33.84-44.76 40.30 ± 0.70 7.65 33.92-44.38 40.23 ± 0.66 7.20 33.89-44.58 40.26 ± 0.66 7.17
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SYPP displayed symmetrical distributions with stable means across

seasons, indicating that biological yield and seed yield remains

consistent, although BYPP had slightly broader distribution during

2022-23 (Figure 2).

The comparison of chickpea traits across four crosses for two

rabi seasons (2021-22 and 2022-23) provided valuable insights into

the performance of various IDs. Each cross was analysed for five key

traits namely DTM, PH, NPP, HSW and SYPP. In each cross,

better-performing IDs were compared with check variety, PBG8

and parents (Figure 3). The data revealed that most IDs consistently

outperformed the check and parents for NPP and SYPP. Hence,

indicating their potential for higher productivity. Notable variations

for PH and HSW were observed in IDs, with some displaying
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significantly better performance. Crosses with ILWC229 exhibited

more variability for the traits under study compared to ILWC246.

Certain IDs with higher yield levels (PAUID41, PAUID44,

PAUID50 and PAUID42) could serve as potential candidates in

breeding programmes aimed to improve yield and adaptability.
3.2 Estimation of genetic
variability parameters

The analysis of genetic variability parameters for chickpea

across the seasons and pooled data (Table 2) revealed consistently

high genotypic and phenotypic variances, heritability and genetic
FIGURE 2

Comparative violin and boxplots of different agro-morphological traits in chickpea inter-specific derivatives for rabi seasons 2021-2022 and 2022-2023.
(DFF-Days to 50% flowering, DTM-Days to maturity, PH-Plant height (cm), PBPP-Primary branches per plant, SBPP-Secondary branches per plant, NPP-
No. of pods per plant, SPTP-Seeds per 10 pods, HSW-100 Seed weight (g), SYPP-Seed yield per plot (g), BYPP-Biological yield per plot (g)).
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FIGURE 3

Comparative performance of chickpea inter-specific derivatives with parents, and checks for key agro-morphological traits. (DTM-Days to maturity,
PH-Plant height (cm), NPP-No. of pods per plant, HSW-100 Seed weight (g), SYPP-Seed yield per plot (g)).
TABLE 2 Genetic variability parameters for various traits in chickpea across rabi seasons 2021-22 to 2022-23 and pooled analysis.

Trait EV GV PV ECV GCV PCV H(bs) GA GAPM

Rabi (2021-22)

DFF 2.01 19.59 21.60 1.40 4.38 4.59 90.69 8.68 8.59

DTM 1.37 5.28 6.65 0.78 1.54 1.73 79.37 4.21 2.83

PH 6.50 58.05 64.55 4.02 12.03 12.68 89.93 14.88 23.50

(Continued)
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advance for key traits such as DFF, NPP, SYPP and BYPP. The PH

also exhibited high genotypic and phenotypic variances, heritability

and genetic advance, though slightly lower in the pooled data

compared to individual seasons. The environmental coefficient of

variation was low for most of the traits, especially for highly
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heritable traits like DFF, PH and SYPP. There were some

differences in the magnitude of genetic and environmental

variances between the two seasons. For instance, the genotypic

variance for PH was higher in rabi 2021-22 (58.04) compared to

rabi 2022-23 (43.88), indicating a variation in the expression of this
TABLE 2 Continued

Trait EV GV PV ECV GCV PCV H(bs) GA GAPM

Rabi (2021-22)

PBPP 0.06 0.32 0.38 6.85 15.91 17.32 84.36 1.06 30.10

SBPP 0.11 1.17 1.28 6.28 20.26 21.22 91.23 2.13 39.88

NPP 4.86 95.09 99.95 4.58 20.26 20.78 95.13 19.59 40.72

SPTP 0.50 2.41 2.91 4.18 9.14 10.05 82.71 2.91 17.13

HSW 0.34 16.20 16.54 2.91 20.09 20.30 97.94 8.20 40.97

SYPP 173.69 3725.56 3899.25 2.64 12.25 12.53 95.55 122.90 24.67

BYPP 1064.00 18597.28 19661.28 2.69 11.25 11.56 94.59 273.21 22.54

HI 0.21 11.64 11.85 1.10 8.27 8.35 98.26 6.96 16.90

Rabi (2022-23)

DFF 0.69 23.38 24.07 0.81 4.72 4.79 97.14 9.81 9.59

DTM 1.04 5.47 6.51 0.67 1.55 1.69 84.01 4.41 2.93

PH 1.68 43.89 45.57 1.91 9.79 9.98 96.32 13.39 19.80

PBPP 0.02 0.19 0.21 3.66 10.97 11.57 89.93 0.84 21.43

SBPP 0.09 1.13 1.22 5.18 18.46 19.17 92.70 2.10 36.62

NPP 9.67 99.34 109.02 6.41 20.54 21.52 91.13 19.60 40.40

SPTP 0.17 2.67 2.84 2.29 9.19 9.47 94.15 3.26 18.37

HSW 0.05 14.41 14.46 1.11 18.44 18.48 99.64 7.80 37.93

SYPP 337.01 3373.89 3710.90 3.70 11.71 12.28 90.92 114.09 23.00

BYPP 3849.45 15337.08 19186.53 5.15 10.28 11.50 79.94 228.09 18.93

HI 1.00 9.71 10.71 2.42 7.55 7.93 90.66 6.11 14.81

Pooled

DFF 1.88 20.94 22.82 1.35 4.50 4.69 91.74 9.03 8.88

DTM 1.99 4.60 6.59 0.94 1.43 1.71 69.79 3.68 2.46

PH 15.99 39.06 55.05 6.10 9.54 11.33 70.95 10.84 15.56

PBPP 0.14 0.15 0.29 9.91 10.51 14.45 52.93 0.59 15.75

SBPP 0.37 0.88 1.25 11.01 16.88 20.16 70.15 1.61 29.13

NPP 28.43 76.06 104.49 11.03 18.05 21.16 72.79 15.32 31.73

SPTP 0.96 1.92 2.88 5.64 7.96 9.76 66.57 2.32 13.38

HSW 0.62 14.88 15.50 3.88 18.99 19.39 95.98 7.78 38.34

SYPP 439.07 3366.00 3805.07 4.21 11.67 12.41 88.46 112.40 22.61

BYPP 2340.38 17083.52 19423.90 4.00 10.81 11.53 87.95 252.50 20.90

HI 1.35 9.93 11.28 2.81 7.64 8.14 88.02 6.08 14.76
EV, Environmental Variance; GV, Genotypic Variance; PV, Phenotypic Variance; ECV, Environmental Coefficient of Variation; GCV, Genotypic Coefficient of Variation; PCV, Phenotypic
Coefficient of Variation; H(bs), Heritability in broad sense; GA, Genetic advance; GAPM, Genetic advance as percentage of mean; DFF, Days to 50% flowering; DTM, Days to maturity; PH, Plant
height; PBPP, Primary branches per plant; SBPP, Secondary branches per plant; NPP, No. of pods per plant; SPTP, Seeds per 10 pods; HSW, 100 Seed weight; SYPP, Seed yield per plot; BYPP,
Biological yield per plot; HI, Harvest index.
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trait between seasons. Similarly, the environmental variance for

traits like BYPP was higher in rabi 2022-23 (3849.45) compared to

rabi 2021-22 (1064.00), reflecting the influence of different

environmental conditions in each season. The genotypic

coefficient of variation and phenotypic coefficient of variation

also exhibit slight variations between seasons. For example, the

GCV for SBPP was higher in rabi 2022-23 (18.46%) compared to

rabi 2021-22 (12.29%), indicating a greater relative genetic

variability in the latter season. The pooled analysis smooths out

the seasonal variations and provides an average estimate of genetic

and environmental parameters. This result in slightly lower

heritability for some traits, like PH (70.95%) and PBPP (52.93%),

compared to the individual seasons.
3.3 Correlations and path analysis

Visualizing correlation matrices as networks (Figure 4), where

variables are represented as nodes and the correlations between them as

connecting edges, reveals the important relationships among chickpea

traits. Using this approach, the network analysis of chickpea traits

across different rabi seasons and pooled data revealed strong positive

correlations amongst key traits, such as NPP with SYPP and BYPP

with HI. SYPP was also having positive correlation with HSW, PH,

SBPP and PBPP. Additionally, positive correlations were observed

between DFF and DTM while BYPP with NPP, SBPP, HSW, PH and

PBPP. Interestingly, DFF and DTM were negatively correlated with

SYPP. All these correlations were consistent across both seasons and

the pooled analysis. The analysis also revealed distinct clusters of inter-

related traits, such as SYPP, BYPP and HI and another cluster

comprising of DFF, DTM and HSW.

The path analysis results for chickpea traits across different rabi

seasons and pooled data (Figure 5) revealed the direct and indirect

effects of the studied traits on SYPP. Out of all the 11 traits, BYPP
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showed consistent strong direct positive effect on SYPP across season

2021-22, season 2022-23 and pooled data, with 0.817, 0.880 and

0.847, path coefficients, respectively. The HI also demonstrated a

significant positive direct effect on SYPP across all datasets, with

coefficients of 0.625, 0.585 and 0.606 for season 2021-22, season 2022-

23 and pooled data. Traits such as HSW, NPP and PH exhibited

moderate positive indirect effects on SYPP via BYPP and HI across

the years and pooled analysis. The negative indirect effects of DFF

and DTM on SYPP were observed to be more pronounced during

rabi 2022-23. The lower residual values across different rabi seasons

and pooled data (0.090, 0.067 and 0.082, respectively) indicate that

majority of the yield attributes were included in the path analysis.
3.4 Principal component analysis

The PCA biplots for rabi 2021-22, 2022-23 and pooled data

(Figure 6) revealed both similarities and differences in the

contributions of traits to SYPP. Across all datasets, traits such as

NPP, SYPP, BYPP and HSW consistently had long vectors. In

contrast, DFF and DTM vectors were in similar directions but away

from yield traits, highlighting an inverse relationship with seed

yield. The biplot of pooled data explained a higher percentage of the

total variance (59.8%) compared to the individual rabi seasons (54%

for 2021-22 and 54.5% for 2022-23), indicating a more

comprehensive capture of trait variability on combining seasons.

The distribution of genotypes across all biplots had similar patterns

thereby reinforcing the consistent associations between traits and

genotypes. The strong positive associations of NPP, SYPP, BYPP

and HSW highlights the direct influence on yield, while negative

associations for DFF and DTM with yield traits. According to the

biplot analysis, the ID 94 (PAUID44) followed by 20 (PAUID54)

and 72 (PAUID41) were found to be superior for traits such as

SYPP, BYPP and HSW across the seasons and the pooled analysis.
FIGURE 4

Pearson’s correlation networks in chickpea inter-specific derivatives: (A) Inter-trait relationships across seasons (B) Seasonal consistency of trait correlations
(Green edges indicate positive correlations, while red edges indicate negative correlations. The thickness and saturation of these edges reflect the strength
of the absolute correlation). (R1-Replication 1, R2-Replication 2, rabi (2021-22) is R1+R2 of 2021-22, rabi (2022-22) is R1+R2 of 2022-23). (DFF-Days to
50% flowering, DTM-Days to maturity, PH-Plant height (cm), PBPP-Primary branches per plant, SBPP-Secondary branches per plant, NPP-No. of pods per
plant, SPTP-Seeds per 10 pods, HSW-100 Seed weight (g), SYPP-Seed yield per plot (g), BYPP-Biological yield per plot (g) and HI-Harvest index).
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3.5 Screening against diseases

The four parent lines had varying levels of disease resistance:

PBG5 and BGD72 were moderately resistant to AB and FW but

susceptible to BGM. In contrast, ILWC229 and ILWC246 were

resistant to all three diseases (Figure 7).

3.5.1 Ascochyta blight
A total of 33 derivatives (13 from PBG5 × ILWC229, 2 from

BGD72 × ILWC229, 3 from PBG5 × ILWC246 and 15 from BGD72

× ILWC246 cross) showed resistance against AB, while 14

derivatives (2 from PBG5 × ILWC229, 7 from BGD72 ×

ILWC229, 2 from PBG5 × ILWC246 and 3 from BGD72 ×

ILWC246 cross) exhibited moderate resistance across both

seasons (Figure 7) consistently. The remaining derivatives were

either susceptible or highly susceptible to the disease.
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3.5.2 Botrytis grey mould
The screening results indicated that across both seasons

(Figure 7) out of 90, only one ID (PAUID69) of cross PBG5 ×

ILWC246 gave resistant disease reaction while moderate level of

resistance was observed in 11 derivatives (5 from PBG5 × ILWC229,

4 from BGD72 × ILWC229 and 2 from BGD72 × ILWC246 cross).

3.5.3 Fusarium wilt
The screening of chickpea IDs against FW revealed that five

derivatives from crosses PBG5 × ILWC229 (2 IDs) and BGD72 ×

ILWC229 (3 IDs) exhibited resistant disease reactions against the

pathogen. Likewise, a moderate level of resistance was observed in

10 derivatives (6 of PBG5 × ILWC229, 2 of BGD72 × ILWC229, and

2 of BGD72 × ILWC246 cross) consistently across the seasons

(Figure 7). The remaining derivatives were either susceptible or

highly susceptible to FW.
FIGURE 6

PCA biplots depicting yield relationships in inter-specific derivatives of chickpea across the seasons and pooled analysis.
FIGURE 5

Direct (diagonal) and indirect contributions of various traits to seed yield across the seasons and pooled analysis. (DFF-Days to 50% flowering,
DTM-Days to maturity, PH-Plant height (cm), PBPP-Primary branches per plant, SBPP-Secondary branches per plant, NPP-No. of pods per
plant, SPTP-Seeds per 10 pods, HSW-100 Seed weight (g), SYPP (linear)-Seed yield per plot (g), BYPP-Biological yield per plot (g) and HI-
Harvest index).
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3.6 Crude protein content

The range of estimated crude protein content for 90 IDs

varied significantly across the different crosses (17.93% to

24.28%), indicating the presence of sufficient genetic diversity

and potential for selection among the derivatives. The cross PBG5

× ILWC246 exhibited the widest range for crude protein content
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(17.93% to 23.84%), followed by BGD72 × ILWC246 (21.00% to

24.06%), PBG5 × ILWC229 (20.78% to 24.28%) and BGD72 ×

ILWC229 (19.46% to 23.62%) (Table 3). A slight variation for

mean crude protein content was observed among the crosses,

BGD72 × ILWC246 (22.87%), PBG5 × ILWC229 (22.71%),

PBG5 × ILWC246 (22.31%) and BGD72 × ILWC229

(21.94%) (Figure 8).
FIGURE 7

Performance of chickpea inter-specific derivatives against Ascochyta blight, botrytis grey mould, and fusarium wilt [R (Resistant), MR (Moderately
Resistant) and S (Susceptible)].
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3.7 Total soluble sugars

The crosses in this study exhibited a wide range of total soluble

sugar content, reflecting the genetic potential for improving the

trait. The cross BGD72 × ILWC229 exhibited the broadest range of

total soluble sugar content, from 20.06 mg/g to 68.06 mg/g. This

was followed by PBG5 × ILWC246 (18.12 mg/g to 65.00 mg/g),

BGD72 × ILWC246 (19.43 mg/g to 49.75 mg/g) and PBG5 ×

ILWC229 (16.25 mg/g to 47.00 mg/g) (Table 3). Among these

crosses, BGD72 × ILWC229 had the highest average total soluble

sugar content (38.64 mg/g), followed by PBG5 × ILWC246 (34.79

mg/g), PBG5 × ILWC229 (30.34 mg/g) and BGD72 × ILWC246

(29.95 mg/g) (Figure 8).
4 Discussion

In crop improvement programmes, there is a mounting trend of

pre-breeding and genetic enhancement activities by involving wild

relatives to discover novel genes and alleles, thereby expanding the

genetic diversity in released cultivars (Singh et al., 2015). The

habitual use of the same breeding parents has led to the narrow

genetic base of the major pulse crops including chickpea. It has been

reported by Kumar et al. (2003) that about 41% of hybridized

chickpea varieties have PB7 as a common ancestor. Enhancement of

genetic diversity by incorporating beneficial characteristics from
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wild relatives into cultivated gene pools through wide hybridization

is common in cereals, pulses, oilseeds and fiber crop species. In

chickpea, this strategy has proven successful in introducing traits

related to productivity, resistance to both biotic and abiotic stresses,

and in widening the genetic diversity (Bhavyasree et al., 2018a,

Bhavyasree et al., 2018b; Kushwah et al., 2021a; Salaria et al., 2023).

A breeding attempt of distant hybridization was made by crossing

cultivated varieties (PBG5 and BGD72) with C. reticulatum

(ILWC229) and C. echinospermum (ILWC246) as male parents

(Singh et al., 2018) with the aim to transfer productivity traits and

resistance to major chickpea diseases. Numerous studies have

reported successful inter-specific hybridization events in

cultivated chickpea. Some of the easily crossable annual wild

species include C. echinospermum (Singh et al., 2018, 2022a,

2022b, 2022c, Sari et al., 2022) and C. reticulatum (Singh et al.,

2005; Adak et al., 2017; Bhavyasree et al., 2018a, Bhavyasree et al.,

2018b; Singh et al., 2018; Sari et al., 2022).

The present experimental findings demonstrated significant

variation among the derivatives derived from hybridization of C.

arietinum with the wild annual Cicer species (C. reticulatum and C.

echinospermum), as evidenced by the analysis of variance, range,

mean and coefficient of variation for key agro-morphological traits

which was also supported by earlier studies (Bhavyasree et al.,

2018a, b; Kushwah et al., 2021b, c).

Furthermore, the determination of genotypic and phenotypic

coefficients of variation with boxplot analyses revealed consistent
FIGURE 8

Comparison of crude protein (%) and total soluble sugar (mg/g) contents in inter-specific derivatives of chickpea.
TABLE 3 Estimates of crude protein and total soluble sugar content in chickpea inter-specific derivatives.

Trait/Cross
Crude protein (%) Total soluble sugars (mg/g)

Range Mean ± SE Range Mean ± SE

PBG5 × ILWC229 20.78-24.28 22.71 ± 0.15 16.25-47.00 30.34 ± 1.17

BGD72 × ILWC229 19.46-23.62 21.94 ± 0.17 20.06-68.06 38.64 ± 2.64

PBG5 × ILWC246 17.93-23.84 22.31 ± 0.67 18.12-65.00 34.79 ± 5.92

BGD72 × ILWC246 21.00-24.06 22.87 ± 0.19 19.43-49.75 29.95 ± 1.60
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variations for traits like PH, NPP and SYPP. High heritability

coupled with substantial genetic advance was observed for most

of the traits across seasons. This indicated the probable stabilization

of additive gene effects (Singh et al., 2022b) that can ease the

selection of genetic materials with the desirable traits. Studies by

Kushwah et al. (2021b) and Singh et al. (2022c) emphasizing the

significance of genetic variance for yield and its related

characteristics, corroborated the results of present study.

Assessments of derivatives for NPP and SYPP align with the

findings of Singh et al. (2005) and Pal et al. (2005). Similar

findings were also observed by Singh and Ocampo (1997) and

Singh et al. (2015) for yield and its related characteristics in

chickpea. Higher variability for seed yield among the inter-

specific derivatives of chickpea was also observed earlier by

Kanaka et al. (2007); Sidramappa et al. (2008) and Farshadfar and

Farshadfar (2008).

Traits with high genotypic and phenotypic coefficients of

variation demonstrated considerable genetic variability, which is

advantageous for breeding programmes. The low environmental

variance for most traits indicated that environmental factors have a

limited impact on trait expression. The close match between

genotypic variance and phenotypic variance further supports that

the observed variation is primarily genetic with least influence of

environment (Johnson et al., 1955). Overall, these results

demonstrated that the traits studied were largely controlled by

genetic factors and have significant potential for improvement

through selection. High heritability and genetic advance values

for key traits like HSW, NPP and SYPP suggested that these traits

can be effectively targeted in breeding programmes to enhance

chickpea productivity and adaptability.

Correlation studies are important for understanding how

different variables impact the genetic makeup of a crop. The

mutual relationship between two variables is determined by

degree of correlation. Seed yield is affected by several other traits

and by analyzing the relationships, seed yield can be improved

through selection based on those traits. In the present study, the

traits like BYPP, HI, NPP, HSW and PH were identified as

important yield components which should be taken into

consideration during the selection programme for yield

improvement in chickpea. Johnson et al. (2015) also identified

biological yield and pods per plant as important contributing

traits towards high yield in chickpea. These findings emphasized

the importance of these traits in breeding programmes. Overall, the

dense network of interactions underscores the complexity of trait

relationships. Thus, suggesting that a holistic approach in breeding

programmes can lead to substantial improvements in chickpea

productivity, adaptability and resilience to varying environmental

conditions. The negative indirect effects of days to flowering and

maturity on seed yield were more pronounced during rabi 2022-23,

suggesting that environmental conditions had more significant

impact on these traits. The lower residual values across the

seasons and for pooled analysis indicated that important yield

contributing traits were appropriately included in the study.

These insights may provide a strategic roadmap to the breeders

for the development of high yielding chickpea cultivars by targeting

key traits in selection programmes.
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The observed decline in yield and yield-contributing traits in

2022-23, compared to 2021-22, suggested that higher temperatures

during the reproductive phases adversely affected the plants’

productivity. This indicated the sensitivity of these traits to

temperature fluctuations, highlighting the need for developing

heat-tolerant varieties. Previous studies by Gaur et al. (2007); Paul

et al. (2018) and Kushwah et al. (2021b), Kushwah et al. (2021c)

have indicated that heat-stress environments significantly affect

most morphological traits. Reduced seed yield during heat stress

conditions could be attributed to low pollen viability (Kushwah

et al., 2021b). Additionally, pollen sterility has been identified as a

major factor contributing to poor pod setting under pre-anthesis

high-temperature stress (Devasirvatham et al., 2010).

Across all datasets, traits such as pods per plant, seed yield,

biological yield and seed weight consistently had long vectors,

indicated their strong contributions to the principal components

and positive correlations with each other. This suggested that these

traits are key drivers of variability and are essential for enhancing yield

as also reported by Kushwah et al. (2021b). On the other hand, days to

flowering and maturity suggested that there is a need to keep a desired

balance of the negative association between early maturity and yield.

The stability of these patterns across seasons enhance the reliability of

these traits for selection in breeding programmes. Overall, the PCA

biplots provided a strategic roadmap for developing high-yielding,

adaptable chickpea cultivars by focusing on the traits studied.

Effective screening and identification of resistant sources are

crucial for developing cultivars that can withstand the major

pathogens. In this study, screening of chickpea inter-specific

derivatives against AB, BGM and FW revealed significantly

promising results. Earlier, C. reticulatum and C. echinospermum

have been reported to harbour high level of resistance against AB

(Stamigna et al., 1998). In a study by Singh et al. (2014), ILWC229

(C. reticulatum) was reported to have high level of resistance to AB

and ILWC246 (C. echinospermum) resistance to AB and BGM.

Based on findings of these studies, ILWC229 and ILWC246 were

used as donors for AB and BGM to generate inter-specific

derivatives which were screened consecutively for two seasons. In

all, 33 and 14 IDs against AB, 1 and 11 IDs against BGM and 5 and

10 IDs against FW were found resistant and moderately resistant,

respectively (Supplementary Table 3). This indicated presence of

considerable repository for inter-species defence mechanism

governed by novel genes in the wild Cicer species. Promising

inter-specific derivatives having resistance to AB and BGM were

also identified earlier by various workers in chickpea (Singh et al.,

2005; Kaur et al., 2013; Bhavyasree et al., 2018a; Kushwah et al.,

2021a; Salaria et al., 2023) indicated the potential of wild Cicer

species for generating derivatives resistant to economically

important diseases. A high yielding BGM resistant chickpea

cultivar, PBG8, was developed through introgression of BGM

resistance from C. judaicum by Singh et al. (2022) strongly

supported that the promising resistant derivatives identified in the

present study could be further deployed for the development of

disease-resistant cultivars. The findings of our study demonstrated

that wild Cicer species harbour valuable and untapped variations for

productivity traits and resistance to major chickpea diseases. By

utilising these promising lines in breeding programmes, robust
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chickpea cultivars resistant to AB, BGM and FW could be

developed, thereby ensuring more resilient and productive crops.

The analysis of protein and total soluble sugars content provided a

valuable insight to the nutritional composition in derivatives under

study. The crude protein content in chickpea is of significant interest

due to its implications for their nutritional value as chickpeas are

known for high protein content, making them an essential source of

plant-based protein in both vegetarian and non-vegetarian diets

worldwide (Singh, 1985; Jukanti et al., 2012). The total soluble sugars

play a crucial role in determining the taste, flavour, palatability and

nutritional quality contribute towards consumer’s acceptance of

chickpea-based products. The significant differences in levels of crude

protein and total soluble sugars in the derivatives provided an insight to

the amount of genetic diversity created from crosses involving wild

Cicer species C. reticulatum and C. echinospermum. The promising

derivatives possessing higher protein and soluble sugar contents can

further be used in breeding programmes to enhance the nutritional

value and flavour within cultivated germplasm. Furthermore, the

relationship between total soluble sugars and crude protein content

warrants in-depth consideration in chickpea breeding. As by balancing

these two nutritional components along with optimal agronomic

performance the overall farmers’ preference, consumers’ acceptance

and market competitiveness of chickpea cultivars could be enhanced.

By building on this work, we can contribute significantly to sustainable

agriculture and food security initiatives hence, ensuring the

development of chickpea cultivars to meet the evolving needs of both

producers and consumers.
5 Conclusions

Significant variability was observed for most of the agro-

morphological traits, nutritional parameters and resistance to major

chickpea diseases. The inter-specific derivatives exhibited greater

stability, higher yield potential and enhanced level of resistance to

major diseases namely Ascochyta blight, Botrytis grey mould and

Fusariumwilt. These findings accentuate the potential of wild species as

a vital resource for broadening the genetic base of chickpea. The

consistent performance (adaptability and resilience) of these derivatives

across seasons make them prime candidates to be utilized in breeding

programmes for developing robust, high-yielding nutritionally-rich

disease resistant cultivars. Further, the identified derivatives carrying

desired traits, such as resistance to major diseases and higher

nutritional contents could serve as valuable genetic resources for

germplasm enhancement. The identified promising derivatives can

be instrumental in future breeding programmes for ensuring the

continued improvement and adaptation of chickpea cultivars to meet

the growing demand and to tackle future agricultural challenges for

sustainable and resilient chickpea crop.
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