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A multivariate soil temperature
interval forecasting method for
precision regulation of plant
growth environment
Hang Yin*†, Zeyu Wu †, Zurui Huang, Yiting Luo, Xiaohan Liu,
Xiaojiang Peng and Qiang Li*

College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
Foliage plants have strict requirements for their growing environment, and timely

and accurate soil temperature forecasts are crucial for their growth and health.

Soil temperature exhibits by its non-linear variations, time lags, and coupling with

multiple variables, making precise short-term multi-step forecasts challenging.

To address this issue, this study proposes a multivariate forecasting method

suitable for soil temperature forecasting. Initially, the influence of various

environmental factors on soil temperature is analyzed using the gradient

boosting tree model, and key environmental factors are selected for

multivariate forecasting. Concurrently, a point and interval forecasting model

combining the Neural Hierarchical Interpolation for Time Series Forecasting (N-

HiTS) and Gaussian likelihood function is proposed, providing stable soil

temperature forecasting for the next 20 to 120 minutes. Finally, a multi-

objective optimization algorithm is employed to search for optimal initial

parameters to ensure the best performance of the forecasting model.

Experiments have demonstrated that the proposed model outperforms

common models in predictive performance. Compared to Long Short-Term

Memory (LSTM) model, the proposed model reduces the Mean Absolute Error

(MAE) for forecasting soil temperatures over the next 20, 60, and 120 minutes by

0.065, 0.138, and 0.125, respectively. Moreover, the model can output stable

forecasting intervals, effectively mitigating the instability associated with multi-

step point forecasts. This research provides a scientific method for precise

regulation and disaster early warning in facility cultivation environments.
KEYWORDS

soil temperature forecasting, multivariate forecasting, N-HiTS, Gaussian likelihood,
multi-objective optimization, interval forecasting
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1 Introduction

Foliage plants are cultivated primarily for their ornamental

qualities, particularly the unique forms, colors, and textures of

their leaves. These plants are valued not only for their aesthetic

appeal but also for their ability to purify the air and promote

emotional well-being (Han and Li-Wen, 2020; Kim et al., 2020).

Consequently, they hold significant economic and practical

potential. Foliage plants like Aglaonema require a precise growth

environment. Their growth halts if the soil temperature deviates

from 25-30°C during the day or 20-25°C at night (Lin, 2023). Thus,

maintaining environmental parameters within a suitable and stable

range is crucial for plant growth, as it can significantly enhance the

quality of foliage plants in facility cultivation environments. Among

numerous environmental factors, soil temperature (ST) stands out

as a pivotal indicator (Chaipong, 2020). It significantly influences

key aspects of plant development, such as seed germination, root

growth, and the maturation of stems and leaves. Moreover, it is

intricately associated with soil moisture levels, microbial activity,

and the transformation of organic matter (Myster and Roar, 1995;

Heinze et al., 2017; Noia et al., 2018). Therefore, establishing a

precise ST forecasting model holds significant value for the

management and regulating of plant growth, health, and

irrigation practices (Tsai et al., 2020).

ST variations exhibit non-linearity and temporal lag, influenced

by various environmental factors such as air temperature, air

humidity, soil moisture, and solar radiation. Therefore,

forecasting ST is a typical multivariate time series forecasting

task. Soil temperature forecasting mainly includes three

developmental stages: mechanistic models, machine learning, and

deep learning. Early experts established some mechanistic models

such as dynamic model (Kıyan et al., 2013; Joudi and Farhan, 2015)

and thermodynamic model (Ali et al., 2020) for predicting

greenhouse environmental factors. However, these methods are

susceptible to external conditions and parameter settings, making

them unstable. With the rapid development of Internet of Things

(IoT) technology, various data-driven models based on machine

learning, including Random Forests (Hamrani et al., 2020), Support

Vector Regression (Yu et al., 2016), Seasonal Autoregressive

Integrated Moving Average (Zeynoddin et al., 2020), Artificial

Neural Networks (Petrakis et al., 2022), have been employed

for short-term single-step forecasting studies of greenhouse

environmental factors. However, the cultivation of foliage plants

is a ongoing endeavor, and single-step forecasts cannot fully meet

the needs of precise environmental regulation. Therefore, there

is a pressing need for research focused on multi-step forecasting.

In recent years, the emergence of deep learning models has

presented new opportunities to address the challenge of

multivariate multi-step forecasting in greenhouse environments.

Liu et al. (2022) combined the Long Short-Term Memory (LSTM)

model with multiple environmental variables to preliminarily

achieve multi-step forecasting of ST. He et al. (2022) tested the

potential the Gated Recurrent Unit (GRU) model in multivariate

multi-step forecasting within greenhouse environmental factors,

affirming the GRU model outperforms machine learning models.

However, the environmental factors in a greenhouse are highly
Frontiers in Plant Science 02
interrelated and complex, and a single recurrent neural network

lacks the capacity to effectively capture the dependencies within

high-dimensional data (Javed et al., 2022). In response to this

challenge, some researchers (Jin et al., 2021; Yang et al., 2023; Li

et al., 2024) introduced attention mechanisms to conduct deeper

feature extraction on multivariate environmental data, thereby

further enhancing the multi-step forecasting performance of

baseline models for environmental factors, but attention

mechanisms also increased the inference time and the risk of

overfitting (Liu et al., 2024). Besides, Shi et al. (2024) integrated

convolutional neural networks (CNN), LSTM, and the sparrow

search algorithm (SSA) to establish a greenhouse environment

forecasting model, achieving more precise results compared to

individual models. However, this approach also led to increased

inference time and a larger model size

Although past research has made significant progress in

improving model accuracy, there are limitations in model stability

and real-time performance: i) While stacking models and

integrating attention mechanisms can improve predictive

performance, these enhancements typically come at the expense

of increased model complexity and longer training time, posing

challenges for real-time inference and edge deployment. ii) In

relatively enclosed environments of facility cultivation, soil

temperature variations are sensitive to microclimate changes

induced by sunlight, temperature fluctuations, and human

activities, often exhibiting short-term fluctuations, which indicates

that multi-step point forecasts inevitably contain errors,

introducing uncertainty into decision-making processes. iii)

Determining the hyperparameters of neural networks presents

challenges. Common tuning methods, such as grid search, have

computational burdens and time requirements that grow

exponentially with the number of hyperparameters, making it

tough to determine them quickly.

To alleviate these challenges, this study aims to propose an

efficient and swift method for short-term multi-step forecasting,

which is intended for precise ST management and dynamic

regulation in the cultivation process of foliage plants. It innovatively

integrates multivariate forecasting, interval forecasting, and multi-

objective optimization algorithms. The specific contributions of this

research are as follows:
1. This study focus on multivariate time series forecasting and

introduces a feature analysis framework based on gradient

boosting tree models. The goal is to enhance the accuracy

and stability of ST forecasting by integrating various

environmental factors. Key characteristics of this method

include its straightforward operation, efficient execution

speed, and its ability to perform objective and

comprehensive feature extraction.

2. In response to the issues of model over-complexity and the

risk of multi-step forecasting errors, this study establishes

the N-HiTS-G model for point and interval forecasting of

soil temperatures. This model combines the neural

hierarchical interpolation for time series forecasting

methodology with Gaussian likelihood function,

effectively enhancing the precision and stability of model.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1460654
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yin et al. 10.3389/fpls.2024.1460654

Fron
Compared to existing models based on RNNs and attention

mechanisms, the proposed model not only achieves faster

inference speed and higher forecasting accuracy but also

produces stable forecasting intervals, enhancing its

suitability for deployment and utilization in foliage plant

facility cultivation environments.

3. To reduce the time and labor costs associated with finding

the optimal hyperparameters for the model, this study

utilizes the multi-objective optimization algorithm to

optimize the parameters of the model and further

proposes the SP-N-HiTS-G model. Multi-objective

optimization algorithm not only ensures the effectiveness

of point and interval forecasting but also thoroughly

explores the predictive performance of the model. The

result indicates that the SP-N-HiTS-G model achieves

more precise and stable multi-step forecasting of soil

temperature in facility cultivation environments.
2 Methodology

2.1 Soil temperature forecasting framework

The architectural overview of the ST forecasting method

proposed in this study primarily consists of three modules: data

acquisition and preprocessing, selection of critical environmental

factors, and forecasting of soil temperature. The initial module

predominantly involves the utilization of various IoT sensors to
tiers in Plant Science 03
gather environmental data within the greenhouse, and

supplemented by employing linear interpolation techniques to

address missing values, thus ensuring data integrity. The second

module serves as a feature selection component, wherein we employ

advanced gradient boosting tree models including XGBoost,

LightGBM, and CatBoost to analyze and select important

environmental factors pertinent to ST. This aids in reducing

training time and enhancing predictive accuracy, thereby

elevating model performance. In the third module, we establish a

novel forecasting model based on SP-N-HiTS-G, which features

high accuracy, rapid inference, and the ability to generate

forecasting intervals. This model can reliably achieve precise and

stable 1-step (20 minutes ahead), 3-step (60 minutes ahead), and 6-

step (120 minutes ahead) point and interval forecasting of ST. The

architectural diagram is depicted in Figure 1.
2.2 Study area and data sources

The experimental site for this study is located at the plant

cultivation base in Yunfu City, Guangdong Province, China

(latitude 22°97’’N, longitude 111°82’’E). The distribution and real

conditions of the base are illustrated in Figure 2. The Big Apple is

currently one of the most popular varieties of Aglaonema in the

potted plant market (Hui et al., 2023). With its vivid crimson

foliage, the Big Apple symbolizes prosperity and good fortune.

Placing the Big Apple within homes or gardens not only offers a

heightened aesthetic appeal but also carries profound symbolic

significance. Thriving in warmth, the Big Apple exhibits
FIGURE 1

Short-term multi-step forecasting method architecture for soil temperature.
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remarkable sensitivity to environmental fluctuations. Optimal soil

temperatures for its growth range around 27°C during the day and

22°C at night. While it can withstand temperatures as low as 15°C in

winter, ensuring a minimum temperature above 20 °C is essential

for sustaining its normal growth (You et al., 2024).

To ensure the smooth progression of experiments, research

team established a IoT remote monitoring platform. As illustrated

in Figure 3, we utilized an array of IoT sensors to collect

environmental data including air temperature, air humidity,
Frontiers in Plant Science 04
carbon dioxide, soil temperature, soil moisture, and soil

conductivity. The specific parameters of the sensor devices are

detailed in Table 1. Soil monitoring sensors are positioned

approximately 15 centimeters deep within the soil, while

environmental monitoring sensors are installed at a height of 2.4

meters above the ground, obtaining data with minimal interference

(Placidi et al., 2021; Yang et al., 2023). The collected real-time

environmental data is transmitted through router nodes to both the

on-site monitoring workstation and the remote cloud platform. The
FIGURE 3

Topology diagram of remote monitoring platform.
FIGURE 2

Research area distribution.
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on-site monitoring workstation is equipped with relevant predictive

algorithms, which facilitate real-time forecasting of environmental

factors. It integrates personalized managements with facility

equipment (such as water containers, air conditioners, and fans)

to achieve effective environmental control and adjustment, thereby

precisely establishing the optimal cultivation environment for

foliage plants. Moreover, the remote cloud platform enables

management personnel to conveniently access and download

relevant data via personal computers or mobile devices,

facilitating further data analysis and research.
2.3 Selection of input variables

Environmental regulation under complex settings in facility

cultivation is a typical multivariable time series forecasting task.

Combining multiple environmental factors from on-site for

multivariate ST forecasting can improve predictive performance.

Nevertheless, directly using all environmental variables for training

increases both model training time and complexity. Moreover,

irrelevant environmental factors could potentially decrease

predictive accuracy. Therefore, precise feature selection is crucial.

Previous studies predominantly relied on traditional statistical

feature selection methods, such as association and correlation

analysis (He et al., 2022; Li et al., 2024). Although these methods

are simple and convenient, they have several limitations, including

stringent statistical assumptions, an emphasis on relationship

strength while overlooking trends, and subjectivity in assessing

feature importance (Asamoah, 2014). These issues considerably

diminish their effectiveness in the complex environments of facility

cultivation. Gradient boosting tree models, such as XGBoost (Chen

and Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost

(Prokhorenkova et al., 2018), use decision trees as weak learners.

These models not only provide feature importance ranking but,

similar to deep learning models, learn by optimizing the loss

function. This makes them particularly well-suited for feature

extraction in high-dimensional and long data scenarios.

The feature selection approach based on gradient boosting tree

models is outlined as follows: XGBoost, LightGBM, and CatBoost

models employ split gain as a metric for feature measurement and

use ensemble learning to rank the importance of features related to

the target. They utilize method of progressively eliminating less

important features and iteratively training the model for

optimization. This means that the three models gradually select
Frontiers in Plant Science 05
features while observing training results and ensuring that model

accuracy remains intact until the best forecasting performance is

achieved. This method effectively selects important features

contributing to the target while discarding irrelevant ones, thereby

reducing data dimensionality and enhancing computational

efficiency. The results from the three sets of experiments not only

complement each other but also serve as mutual references, ensuring

the robustness and reliability of the experiments while preventing

experimental randomness.
2.4 Soil temperature forecasting model

2.4.1 N-HiTS model
BN Oreshkin et al. (Oreshkin et al., 2019) introduced the N-

BEATS model in 2019 for time series forecasting tasks, showcasing

state-of-the-art performance on the time series forecasting task. The

N-BEATSmodel not only efficiently handles various types of trends,

cycles, and seasonality in time series but also addresses multivariate

and long-term forecasting problems more effectively. The core

principle of the N-BEATS model lies in its utilization of stacked

fully connected neural network blocks, with each block capable of

handling patterns at different time scales. This architecture enables

the model to discern both short-term fluctuations and long-term

trends in time series data. Specifically, the input of each block is the

previous block’s input subtracted by the output of the previous

block. In this manner, each layer of the block handles the residuals

that previous layers failed to properly fit, serving to decompose and

forecast the time series in a layered manner. Additionally, the N-

BEATS model incorporates multiple forecasting stacks, each tasked

with forecasting different features or time ranges within the time

series. By employing a weighted loss function to balance the

contributions of various scales, the model achieves more

precise forecasting.

N-HiTS represents a refinement of the N-BEATS model, aimed

at further elevating its multi-step forecasting abilities (Challu et al.,

2023). N-HiTS introduces innovative techniques such as multiple-

rate sampling and multi-level hierarchical interpolation, which not

only reduce computational demands but also enhance predictive

accuracy effectively. As shown in Figure 4. Specifically, expanding

upon the foundation laid by N-BEATS, N-HiTS incorporates a

MaxPool layer before each block for pooling operations, effectively

sampling the time series into sequences of multiple granularities. The

frequency or scale of the time series is related to the pooling kernel
TABLE 1 Internet of things sensor parameters.

Environmental factors Measurement range Monitoring accuracy Protocol

Air humidity (%) 0~100 ± 5 IIC

Air temperature (°C) -40~105 ± 0.4 IIC

Carbon dioxide (ppm) 0~50000 ± 10 PWM

Soil temperature (°C) -20~75 ± 0.3 Modbus

Soil moisture (%) 0~100 ± 5 Modbus

Soil conductivity (μs/cm) 0~999.9 ± 5 Modbus
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size of the MaxPool layer. This approach not only simplifies model

training complexity but also boosts forecasting efficiency while

curbing the risk of overfitting. Since each input sequence undergoes

down-sampling, interpolation is required for the block outputs to up-

sample the output quantity to match the forecasting horizon. Overall,

the model is capable of efficiently and accurately handling

multivariate forecasting tasks, making it well-suited for timely early

warning and control in facility cultivation environments.
2.4.2 N-HiTS-Gaussian likelihood
distribution model

The N-HiTS model demonstrates swift inference speed and

excellent multi-step forecasting capabilities, particularly in

capturing temporal trends. However, errors remain inevitable in

multi-step forecasting, introducing uncertainty into the assessment

and management of soil conditions. Therefore, adopting interval

forecasting methods becomes essential to quantify the risks

associated with point forecasting errors. In pursuit of soil

temperature interval forecasting, we propose an interval

forecasting model based on N-HiTS and Gaussian likelihood

distribution. The Gaussian likelihood distribution is a novel

approach for constructing forecasting intervals, primarily utilizing

the Gaussian likelihood function as the loss function to guide the

model training and output the probability distribution parameters

of future data. The method is characterized by its simplicity in

objectives, fewer parameters, and direct output of interval

distributions, and high robustness. For clarity in subsequent
Frontiers in Plant Science 06
discussions, we name this model N-HiTS-G, where G represents

the Gaussian likelihood distribution.

As shown in Figure 5, the inputs for training our model primarily

consist of historical targets Xt = ½x1, x2,…, xT0−2, xT0� and historical

covariates Zt = ½z1, z2,…, zT0−2, zT0�. Xt and Zt together form a

multivariate time series. Besides, our target forecasting is

denoted by  Ct = ½xT0+1, xT0+2,…, xT−1, xT�, representing future data

of observations. The primary objective of the model is to forecast the

probability distribution p of each subsequent observation for T − T0

based on a historical data sequence of length T0. We can define the

probability distribution p for future observations as follows:

pQ(cT0 :Tjx1 :T, z1 :T) =
YT
t=t0

pQ(ct x1 : t−1, z1 : t−1)

=
YT
t=t0

ℓ(ctjq(ht,Q)) (1)

ht = h(ht−1, zt−1xt−1,Q) (2)

Here, h represents the N-HiTS forecasting model, ht signifies

the output of N-HiTS at time point t, Q stands for the model

parameters of N-HiTS-G, and q denotes the likelihood parameters

of the Gaussian likelihood function.

Specifically, during training, at each time point, the network

input comprising the target data Xt and covariates Zt from the

previous T0 time periods, along with the output ht−1 of the neural

network at the previous time step. The model’s internal parameters
FIGURE 4

N-HiTS structure.
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are updated by maximizing the log-likelihood function lG(cjm,s).
Subsequently, the final layer of the stack is replaced with two

multilayer perceptron (MLP) layers, which output the median

and variance of the probability distribution for the target values.

Monte Carlo (MC) methods are employed to resample the data,

generating interval distributions for future target values. During the

training of N-HiTS-G, the median of the forecasting interval is used

as the point forecast output for fitting the residuals between

different blocks. The Gaussian likelihood function lG(cjm,s) is

defined as follows:

lG(cjm,s) =
1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e
−(z−m)2

2s2 (3)

As for the parameters of the mean m(ht) and the standard

deviation s(ht) in these likelihood functions, we map them through

the output ht of N-HiTS, with the calculation formula as follows:

m(ht) = wht + b (4)

s(ht) = lg(1 + exp(wht + b)) (5)

Based on this, data analysis of the forecasting interval

distribution is conducted. The median of the forecasting interval

distribution serves as the point forecasting value. Additionally, a

specified confidence level is set to derive the final forecasting

interval. This confidence level not only provides the range where

the target is likely to lie but also indicates its accuracy, offering

richer and more reliable information than point forecasts, which

aids in risk management.

2.4.3 Soil temperature forecasting based
on SP-N-HiTS-G model
2.4.3.1 Parameter determination issue

Although N-HiTS-G has the potential to demonstrate superior

point forecasting and interval forecasting performance, it is
Frontiers in Plant Science 07
constrained by initialization parameters. Due to the continual

stacking of MLP blocks and utilization of pooling layers, N-HiTS-

G involves a greater number of hyperparameters compared to

typical time series forecasting models. The increased scale and

sensitivity of the hyperparameters significantly reduces the

practicality of traditional grid search methods. Therefore, to

address the issue of parameter determination, this study employs

the multi-objective optimization algorithm to optimize the

initialization parameters of N-HiTS-G. In order to simultaneously

ensure both the point and interval forecasting performance of N-

HiTS-G, the optimization objectives of optimization algorithm are

defined as the point forecasting metric MAE and the interval

forecasting metric CWC.
2.4.3.2 Speed-constrained multi-objective particle swarm
optimization algorithm

Particle Swarm Optimization (PSO) is a swarm intelligence

optimization algorithm inspired by the foraging behavior of birds

(Kennedy and Eberhart, 1995). This algorithm mimics the behavior

of birds searching for food in a search space. When the bird swarm

does is unaware of the exact location of food, individual birds rely

on their memory of the best position and the collective experience

of the bird swarm to search for food.

To further expand the application of the PSO algorithm,

scholars have endeavored its applicability to Multi-objective

optimization. They have proposed the Multi-objective Particle

Swarm Optimization (MOPSO) algorithm, incorporating the

notions of external archives and the Pareto dominance principle

(Coello and Lechuga, 2002). Despite its merits, MOPSO encounters

challenges related to convergence and search capabilities. In

response, Myster and Moe (1995) introduced the Speed-

constrained Multi-objective Particle Swarm Optimization

(SMPSO) as an enhancement to MOPSO. Building upon the

foundation of MOPSO, SMPSO imposes constraints on particle
FIGURE 5

N-HiTS-G structure.
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velocities to prevent them from straying beyond the feasible

solution space, thereby ensuring the stability of particle movement.
2.4.3.3 Operational steps of the SP-N-HiTS-G model

To search for the optimal hyperparameters of N-HiTS-G, start

by defining the hyperparameter space as a unified entity, where each

instance represents a unique combination of hyperparameters.

Next, utilize the SMPSO algorithm to initialize this space,

evaluating the fitness of each hyperparameter combination.

Subsequently, refine both the particle swarm information and the

Pareto archive. For ease of discussion, we refer to the N-HiTS-G

model optimized by SMPSO as the SP-N-HiTS-G model, where SP

denotes the SMPSO algorithm. The optimization process of SP-N-

HiTS is shown in Figure 6, with the optimization approach outlined

as follows:

Step 1: Define the hyperparameters of the N-HiTS-G model

to be optimized along with their ranges, setting Mean

Absolute Error (MAE) and Coverage Width Standard (CWC) as

objective functions. The parameter search range for N-HiTS-G is

outlined in Table 2, with all parameters ultimately yielding

integer values.

Step 2: Initialize the parameters of SMPSO, update the

individual best positions and global best position of the particle

swarm, and establish the Pareto particle archive.

Step 3: Iteratively update the individual information (velocity,

position) of the particle swarm and the global best position.

Step 4: Calculate MAE and CWC of N-HiTS-G based on the

parameter combinations optimized by SMPSO.
Frontiers in Plant Science 08
Step 5: Determine if the maximum iteration count has been

reached. If satisfied, proceed to Step 6; otherwise, return to Step 3

for further iteration.

Step 6: Conclusion, returning the optimal parameter

combination for the N-HiTS-G model.
2.5 Data preprocessing

2.5.1 Missing data repair
The experiment utilized greenhouse environmental data

collected from February 14, 2024, to May 4, 2024, with a

sampling interval of 20 minutes, yielding a total of 5767 data

points. Due to the influence of climate variations and network

fluctuations, a negligible amount of data was unavoidably lost

during the data collection process by the IoT sensors. However,

leaving these gaps untreated would render the model unable to

train. Based on the inherent characteristics of time series data, this

study employed linear interpolation to fill in missing values.

Assuming there is a missing value y at a certain position x

between coordinates (x0,  y0) and (x1, y1), the linear interpolation

formula is:

y = y0 + (x − x0)
y1 − y0
x1 − x0

(6)
2.5.2 Data and normalization
This study selected the first 4036 data samples (70%) as the

training set and 866 data samples (15%) as the validation set for
FIGURE 6

The flowchart of the SP-N-HiTS-G model.
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model parameter tuning. Subsequently, 865 data samples (15%)

were chosen as the test set to assess and compare the point and

interval forecasting performance of various models. To address

potential inconsistencies in data dimensions and enhance

forecasting model performance, we applied Min-Max

normalization for data scaling.

xnew =
x − xmin

xmax − xmin
(7)
2.6 Evaluation metrics

2.6.1 Point forecasting evaluation metrics
In this study, we evaluate the performance of point forecasting

models using Root Mean Square Error (RMSE), Mean Absolute

Error (MAE), and Mean Absolute Percentage Error (MAPE). The

calculation formulas are as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Yi − yi)

2

s
(8)

MAE =
1
no

n

i=1
Yi − yij j (9)

MAPE =
100%
n o

n

i=1

Yi − yi
yi

����
���� (10)

Here, Yi denotes the predicted value at time point i, while yi 
represents the observed value at time point i.

2.6.2 Interval forecasting evaluation metrics
This study evaluates the performance of interval forecasting

models using Prediction Interval Coverage Probability (PICP),

Prediction Interval Normalized Root Width (PINRW), Prediction

Interval Normalized Average Width (PINAW), and Coverage

Width Standard (CWC). Specifically, PICP reflects the coverage

probability of the forecasting interval for observed values, with

values ranging from 0 to 1. A higher PICP suggests that more

observed values fall within the interval, indicating better forecasting

performance. PINAW and PINRW metrics evaluate the width of
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the forecasting interval. A excessively wide forecasting interval

diminishes the credibility of the information and fails to

effectively characterize uncertainty. CWC, on the other hand,

serves as a comprehensive metric that simultaneously considers

both the coverage probability and width of the forecasting interval,

providing a more intuitive measure of the forecasting interval

quality.

PICP = 1
N (o

N

i=1
Ci)

Ci =
1, yi ∈ ½yUi , yLi �
0, yi ∉ ½yUi , yLi �

( (11)

PINAW =
1
NAo

N

i=1
yUi − yLi
�� �� (12)

PINRW =
1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(y

U
i − yLi )

2

r
(13)

CWC = PINAW(1 + g e−h(PICP−m))

g =
0, PICP ≥ m

1, PICP < m

(
(14)

Xi represents the true value of the target variable, yUi and yLi
represent the upper and lower bounds of the forecasting interval,

respectively. A is the range of the target values used for data

normalization, m is the minimum threshold for the PICP, set here

as 0.80. A low PICP indicates a lack of confidence in the forecasting

interval. h is the penalty coefficient for forecasting intervals with low

PICP, set to 1 in this experiment. If the PICP is satisfactory, the

CWC is not affected by the PICP.
3 Result and discussion

3.1 Experimental environment

The experiment was conducted on a workstation running

Ubuntu 18.04 Linux operating system, featuring an Intel(R) I7-

13700H 5.0 GHz CPU, 16GB RAM, and an NVIDIA GeForce

RTX3060 GPU. The algorithmic model was trained and tested in an

environment utilizing Python 3.8.5, Scikit-Learn 1.1.1, and PyTorch

2.1.0. During the process of feature selection, experiments were

performed using default parameters of XGBoost, LightGBM,

and CatBoost.
3.2 Analysis and selection of important
environmental factors

ST forecasting can be regarded as a time series forecasting

problem, utilizing environmental data from previous time periods,

including ST and other environmental factors, to forecast ST for the
TABLE 2 Search range of hyperparameters for N-HiTS-G.

hyperparameters Describe Range

n_blocks Number of blocks for each stack [1-5]

mlp_units
Structure of hidden layers for each

stack type
[100-500]

n_pool_kernel_size
List with the size of the windows to

take a max over
[2-5]

n_freq_downsample List with the stack’s coefficients [1-5]

lookback period
Time window of historical data used

to predict future data
[5-24]
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subsequent time period. Therefore, the initial step involves

transforming the raw data into supervised learning data using a

time lag method, followed by training with XGBoost, LightGBM

and CatBoost models. During the training process, we obtained

rankings for feature importance and iteratively reduced the number

of features. The RMSE was used as the evaluation metric to assess

the predictive performance of the model. The experimental results

are presented in Table 3 and Figure 7. Although there are slight

differences in the feature importance scores among the three

models, they exhibit a consistent overall ranking of feature

importance. From highest to lowest importance, the order of

features is consistently as follows across all models: soil

temperature, air temperature, air humidity, soil moisture, light,

soil conductivity, and carbon dioxide.

Moreover, from Figure 7, we observe that regardless of whether

it is XGBoost, LightGBM, or CatBoost, when the number of features

is set to three, including the previous soil temperature, previous

temperature, and previous humidity, the three models exhibit the

best forecasting performance. Their RMSE values are 0.175, 0.183,

and 0.192 respectively. In contrast, other feature combinations

result in increased forecasting errors. Therefore, in this

experiment, utilizing previous soil temperature, previous air

temperature, and previous air humidity data as crucial features,

and feeding them into the final forecasting model to enhances ST

predictive accuracy. We will further demonstrate the efficacy of this

feature selection method in Experiment 3.6.
3.3 Performance of different forecasting
models of soil temperature

To validate the point and interval forecasting performance of

the SP-N-HiTS-G model, this study conducted comprehensive

experiments and comparisons with a range of common and

advanced forecasting models. For point forecasting, the

comparative models primarily including ARIMA, LSTM, GRU,

LSTM-Attention, N-HiTS, Temporal Fusion Transformer (TFT)

(Lim et al., 2021), and Informer (Zhou et al, 2021). ARIMA, LSTM,

GRU, and LSTM-Attention are among the most widely used time

series models in past studies on greenhouse environment

forecasting (Zeynoddin et al., 2020; Liu et al., 2022; He et al.,
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2022; Yang et al., 2023), while TFT and Informer represent

advanced forecasting models known for their innovative use of

attention mechanisms. By optimizing the attention mechanism

module, their excellent forecasting capability has been validated

in various fields, including energy and transportation (Wei et al.,

2023; Zhang et al., 2022).

For interval forecasting, the study compared the SP-N-HiTS-G

model with DeepAR and MQRNN models (Salinas et al., 2020; Wen

et al., 2017). DeepAR, similar to our proposed model, employs

maximum likelihood estimation for updating parameters in interval

forecasting. However, it utilizes the LSTM as a feature extractor and

follows a recursive forecasting approach. In addition, the MQRNN

model combines efficient local information handling using CNNs with

sequence modeling capabilities of RNNs, demonstrating commendable

forecasting performance. Furthermore, the experiments were

complemented with three commonly used interval construction

methods: error fitting, bootstrap, and quantile Loss method (Niu

et al., 2022; Xiao et al., 2022; Li et al., 2023). The error fitting

method primarily constructs intervals using parameters or non-

parameter fitting results of point forecasting errors, often employing

kernel density estimation. Bootstrap, on the other hand, approximates

forecasting intervals by resampling and randomly selecting results

from point forecasting errors. Moreover, The quantile loss is a

regression loss function based on quantiles. It partitions predicted

values into different quantiles and measures the loss of actual values at

corresponding quantiles in the predicted distribution. For clarity in

subsequent discussions, we named these three interval construction

methodmodels respectively as N-HiTS-E (E for error fitting), N-HiTS-

B (B for bootstrap), and N-HiTS-Q (Q for quantile loss).

To ensure the fairness and rigor of the experiments, we

maintained consistency across all models by using identical inputs

and outputs. Furthermore, we used an early stopping mechanism to

prevent over-fitting and promote model generalization. If the model

performance on the validation set does not improve for more than

50 epochs, training was terminated to reduce unnecessary

computational expenses. This study encompassed three distinct

forecasting tasks: 1 step (20 minutes ahead) forecasting, 3-step

(60 minutes ahead) forecasting, and 6-step (120 minutes ahead)

forecasting of ST. Regarding the hyperparameter selection for

models other than SP-N-HiTS, a hybrid approach combining grid

search and manual fine-tuning methods was adopted. This method

enabled us to explore optimal parameters within a reasonable range

for the baseline forecasting models. The experimental findings are

presented in Tables 4–6, and Figure 8, we observe that all models

perform well in single-step forecasting. However, as the forecast

horizon extends, the predictive performance of ARIMA deteriorates

significantly, revealing the difficulty of mathematical models in

achieving accurate multivariate multi-step forecasts. Furthermore,

the forecasting curves of models from previous studies, such as

LSTM and LSTM-Attention, exhibit a significant decline in their

alignment with the original values, accompanied by substantial

fluctuations, which indicates instability and reduces their practical

value. Overall, the SP-N-HiTS-G model proposed in this study

exhibits the most stable point forecasting performance across

varying forecast horizons, surpassing both models from prior

research and other advanced forecasting approaches.
TABLE 3 Ranking of the importance of different environmental factors.

Environmental
factors (previous

time period)
LightGBM XGBoost CatBoost

Soil temperature 0.256 0.868 0.670

Air temperature 0.147 0.085 0.229

Air humidity 0.147 0.024 0.029

Soil moisture 0.127 0.015 0.028

Light 0.127 0.004 0.020

Soil conductivity 0.125 0.001 0.124

Carbon dioxide 0.069 3*10-4 0.009
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3.4 Analysis of point forecasting model
performance for different models

In single step forecasting, as illustrated in Table 4, the SP-N-

HiTS-G model demonstrates excellent point forecasting

performance to the advanced attention models such as TFT and

Informer. Compared to the widely used LSTM model in previous

studies, the SP-N-HiTS-G model demonstrates significant

improvements in RMSE, MAE, and MAPE, with reductions of

0.102, 0.065, and 0.257, respectively. These results highlight the

effectiveness of the method for ultra-short-term forecasting tasks.

Furthermore, in contrast to the Informer model, which boasts
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optimal short-term point forecasting performance, the SP-N-HiTS-

G model exhibits a significant reduction in training time on the

workstation, decreasing from 168.0 s to 17.18 s. This acceleration in

training speed caters to the need for swift decision-making and

precise regulation in facility cultivation environments.

In the 3-step forecasting task, our proposed model exhibits

optimal forecasting performance, with RMSE, MAE, and MAPE

values of 0.237, 0.136, and 0.541, respectively. Compared to the

LSTM model, the SP-N-HiTS-G model also shows significant

improvements in RMSE, MAE, and MAPE, with reductions of

0.198, 0.195, and 0.815, respectively, indicating a significant

enhancement in short-term multi-step predictive accuracy.
TABLE 4 Experimental results of 1-step soil forecasting (20 minutes ahead).

Model RMSE MAE MAPE PICP PINRW CWC Train-time (s)

ARIMA 0.204 0.136 0.504 / / / 19.12

LSTM 0.189 0.122 0.488 / / / 23.34

GRU 0.191 0.122 0.488 / / / 22.45

LSTM-Attention 0.149 0.103 0.415 / / / 44.26

TFT 0.086 0.057 0.230 / / / 62.32

Informer 0.085 0.056 0.229 / / / 168.00

N-HiTS 0.160 0.090 0.361 / / / 20.62

DeepAR 0.092 0.064 0.262 0.812 0.053 0.031 32.97

QRNN 0.089 0.058 0.241 0.812 0.053 0.031 33.88

N-HiTS-E / / / 0.814 0.041 0.027 20.73

N-HiTS-B / / / 0.812 0.043 0.028 20.81

N-HiTS-Q 0.092 0.064 0.264 0.812 0.037 0.025 20.92

N-HiTS-G 0.089 0.061 0.252 0.813 0.033 0.023 22.43

SP-N-HiTS-G 0.087 0.057 0.231 0.823 0.033 0.019 17.12
The bold represent superior performance.
FIGURE 7

Comparison of performance for different feature combinations.
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Besides, the Informer model was the traditionally top-performing

model for 3-step forecasting tasks, but the SP-N-HiTS-G model

surpasses it. Specifically, in comparison to the Informer model, The

SP-N-HiTS-G model exhibits increases of 2.4% in RMSE, 9.3% in

MAE, and 10.7% in MAPE when forecasting the next 3-step.

Moreover, the training time has been substantially reduced from

182.59s to 18.95s, representing a minor improvement in predictive

accuracy alongside a significant reduction in training time.

In terms of 6-step forecasting, the performance of the SP-N-

HiTS-G model significantly outpaces that of other baseline models.

Its predicted curve closely tracks the trend of the actual curve,

showcasing characteristics of high precision, stability, and rapid

inference. Compared to LSTM model, the SP-N-HiTS-G model

demonstrates reductions of 0.086, 0.133, and 0.608 in RMSE, MAE,

and MAPE, respectively, for forecasting the next 6-step. Following

closely behind the N-HiTS series models, TFT model emerges as the

second most accurate model for 6-step forecasting. Compared to

TFT model, the SP-N-HiTS-G model exhibits a 14.7%, 10%, and

9.6% increase in RMSE, MAE, and MAPE for forecasting the next 6

steps, respectively, while the training time decreases from 72.35 s to

21.72 s. In summary, the SP-N-HiTS-G model proposed in this

study exhibits excellent and stable point forecasting performance

across various time scales. Besides, compared to all attention

mechanism models, the SP-N-HiTS-G model offers faster training

speed, thus effectively meeting the demands for model parameter

updates and real-time inference based on new data. This approach

enables real-time training and updating of the model during data

collection intervals, which holds significant value for more precise

soil management practices.

Table 6 and Figure 8 illuminate on a notable trend: common

benchmark models like LSTM and GRU exhibit a significant

increase in errors, particularly in MAE and MAPE metrics, when

they are used for 6-step forecasting. This suggests that these
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benchmark models struggle in capturing the cyclical patterns

inherent in lengthy time series, leading to significant deviations

(Javed et al., 2022). Moreover, Figure 8 highlights a distinct

behavior observed in models incorporating attention mechanisms,

including LSTM-Attention, Informer and TFT. They tend to

manifest errors at the sharp edges of the test data, resulting in

higher RMSE metrics. This inclination towards over-fitting arises

from the attention mechanisms’ tendency to excessively exploit

correlations between environmental factors and soil temperature.

Such over-fitting is elusive during training, despite efforts to

mitigate it using validation sets (Liu et al., 2024). In contrast, the

N-HiTS model adopts a unique approach to feature extraction,

steering clear of an overemphasis on deep feature extraction.

Instead, it focuses on extracting temporal features from multiple

time scales and employs pooling layers to mitigate excessive data

information. This strategy yields greater stability in medium to long

-term forecasting performance. Although it may lag slightly in

single-step forecasting tasks, N-HiTS consistently demonstrates

robustness and reliability in multi-step forecasting tasks.

Furthermore, Table 6 also reveals an interesting phenomenon

worth noting. In contrast to its performance in 1-step to 3-step

forecasting, DeepAR exhibits a notable decline in accuracy when

tasked with 6-step forecasting. The decline can be attributed to

DeepAR utilizing a recursive forecasting method, where the model

recursively incorporates uses predicted values to forecast the next

predicted value (In and Jung, 2022). The flaw in this approach lies in

its heavy reliance on the feature extraction performance of the

underlying model. Moreover, for data such as soil temperature

which is nonlinear and highly volatile, the errors gradually

accumulate as the forecasting steps increase, making it

challenging to achieve accurate multi-step forecasting tasks of soil

temperature. In contrast, the proposed model adopts a direct

forecasting method, utilizing past data to directly forecast all
TABLE 5 Experimental results of 3-step soil forecasting (60 minutes ahead).

Model RMSE MAE MAPE PICP PINRW CWC Train-time (s)

ARIMA 0.478 0.401 1.789 / / / 20.34

LSTM 0.409 0.274 1.107 / / / 24.35

GRU 0.363 0.277 1.150 / / / 23.78

LSTM-Attention 0.339 0.272 1.132 / / / 45.32

TFT 0.323 0.219 0.869 / / / 67.68

Informer 0.243 0.150 0.606 / / / 182.59

N-HiTS 0.247 0.151 0.608 / / / 23.91

DeepAR 0.291 0.180 0.720 0.700 0.069 0.105 32.28

QRNN 0.292 0.190 0.764 0.754 0.075 0.112 37.83

N-HiTS-E / / / 0.784 0.087 0.069 24.02

N-HiTS-B / / / 0.783 0.087 0.070 24.08

N-HiTS-Q 0.277 0.157 0.629 0.737 0.069 0.103 22.85

N-HiTS-G 0.241 0.137 0.541 0.853 0.082 0.057 20.99

SP-N-HiTS-G 0.237 0.136 0.541 0.815 0.077 0.053 18.95
The bold represent superior performance.
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TABLE 6 Experimental results of 6-step soil forecasting (120 minutes ahead).

Model RMSE MAE MAPE PICP PINRW CWC Train-time (s)

ARIMA 0.622 0.503 2.176 / / / 22.67

LSTM 0.479 0.379 1.581 / / / 28.38

GRU 0.539 0.464 1.938 / / / 29.30

LSTM-Attention 0.468 0.316 1.295 / / / 51.38

TFT 0.461 0.270 1.077 / / / 72.35

Informer 0.510 0.325 1.271 / / / 180.58

N-HiTS 0.445 0.270 1.076 / / / 33.76

DeepAR 0.562 0.357 1.422 0.724 0.141 0.228 28.97

QRNN 0.538 0.272 1.068 0.751 0.105 0.153 38.71

N-HiTS-E / / / 0.782 0.105 0.121 24.36

N-HiTS-B / / / 0.786 0.108 0.120 24.86

N-HiTS-Q 0.497 0.285 1.146 0.775 0.113 0.163 25.71

N-HiTS-G 0.420 0.254 1.016 0.802 0.115 0.077 22.17

SP-N-HiTS-G 0.393 0.243 0.973 0.801 0.116 0.077 21.72
F
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The bold represent superior performance.
FIGURE 8

Point forecasting results of different models.
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future observations within the forecast horizon. Although this

method is simple, it has proven to be effective, contributing to the

optimization and reduction of errors during model training

(Yaghoubirad et al., 2023). While its advantages may not be as

apparent in 1-step to 3-step forecasting tasks, they become evident

in the form of enhanced robustness and stability in 6-step

forecasting endeavors.
3.5 Analysis of interval forecasting model
performance for different models

Observations from Figure 8 reveal the adeptness of various

benchmark models in handling 1-step forecasting tasks. However,

as the forecasting horizon extends, discernible variances emerge in

the forecasting efficacy among these benchmarks. Moreover, all

models invariably generate some degree of point forecasting errors

in multi-step forecasting tasks, particularly within regions of
Frontiers in Plant Science 14
significant ST fluctuations. Therefore, the necessity of utilizing

interval forecasting methodologies becomes more apparent in

multi-step forecasting endeavors, facilitating a quantification of

risks associated with multi-step forecasting inaccuracies.

In regard to interval forecasting, it is evident from Tables 5 and

6 that, owing to the irregular variations in the ST data, especially its

instability at the peaks and corners of the change curve, common

interval forecasting methods typically demonstrate a low PICP,

particularly noticeable in multi-step forecasting scenarios. Figures 9

and 10 illustrate the multi-step interval forecasting effects of

different methods. It is worth noting that, with a 90% confidence

level, the DeepAR model, QRNN model, and N-HiTS-Q model

consistently show a low PICP, whereas the PINRW and CWC

metrics are excessively high. This indicates that the forecasting

intervals generated by these three models neither sufficiently

encompass the observed values nor are they of appropriate width,

resulting in a lack of credibility and stability. Therefore, they fail to

accurately quantify the bias introduced by point forecasting.
FIGURE 9

Performance comparison of different Interval forecasting methods in 3-step forecasting.
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Although the forecasting intervals formed based on Error Fitting

and Bootstrap exhibit an overall good width, they display locally

excessive intervals within the stable forecasting range. This occurs

because, during the experiment, the validation set error does not

perfectly mirror that of the test set. The fixed addition and

subtraction of error values amplify the uncertainty within the

forecasting intervals, lacking the requisite flexibility and diversity.

The forecasting interval generated by the SP-N-HiTS-G model

adeptly balances high interval coverage rates with appropriately

narrow interval widths. This achievement owes largely to the stable

time series feature extraction capabilities of the N-HiTS model and

the remarkable flexibility and adaptability of the Gaussian likelihood

distribution. In comparison to the DeepAR model, the proposed

model exhibits satisfactory interval forecasting performance, with

CWC improvements of 0.012, 0.111, and 0.302 for 1, 3, and 6-step

forecasting, respectively. Even amidst high data volatility scenarios,

this model accurately tracks the evolving trends of ST.
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3.6 Performance analysis of feature
selection method

Feature selection has the capability to enhance the predictive

accuracy of models and reduce their training duration. To elucidate

the efficacy of feature selection in optimizing the performance of

forecasting models, we inputted different feature combinations

obtained from the importance ranking in Experiment 3.2 into the

SP-N-HiTS-G model for training and testing in 6-step forecasting

task. The results from Table 7 show that the SP-N-HiTS-G model

achieves optimal predictive performance with three features,

validating the accuracy of the feature selection outcomes in

Experiment 3.2. After feature selection, the SP-N-HiTS-G

forecasting shows respective increases of 4.3%, 4.1%, and 11.6%

in RMSE, MAE, and CWC, compared to directly inputting all

features. In conclusion, the feature selection method proposed in

this study proves to be efficient.
FIGURE 10

Performance comparison of different Interval forecasting methods in 6-step forecasting.
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3.7 Comparison of different parameter
search methods

To assess the effectiveness of the SMPSO algorithm, we

conducted three sets of comparative experiments. The first set

used grid search, the second set applied the single-objective

optimization algorithms PSO and SSA, and the third set involved

the multi-objective optimization algorithms MOPSO and SMPSO.

In the case of single-objective optimization, as only one objective

could be optimized, we chose the point forecast metrics MAE as the

optimization goal. Conversely, the multi-objective optimization

algorithms employed both the point forecast metrics MAE and

the interval forecast metric CWC as optimization objectives. The

results, as shown in Table 8 and Figure 11, reveal the following:
Fron
1. The grid search method produces a balanced model that

ensures good point forecast performance while also
tiers in Plant Science 16
considering interval forecast performance, making it a

reliable method, although it requires a significant amount

of time. However, its overall performance is not the best.

2. Single-objective optimization algorithms have the potential

to enhance model point forecast performance. However,

overall, the models optimized by PSO and SSA generate

inadequate forecasting intervals, evidenced by high CWC

metrics. This suggests that single-objective optimization

algorithms fail to consider both point and interval forecast

performances simultaneously, although it reduces the

parameter search time.

3. Multi-objective optimization algorithms not only optimize

the parameter search time but also ensure both accuracy

and stability in point and interval forecasting. Moreover,

compared to the MOPSO algorithm, the forecasting model

optimized by SMPSO achieves the best overall results in

both point and interval forecasts. This indicates that the

SMPSO algorithm has superior and stable parameter search

capabilities, making it highly practical for early warning

and dynamic regulation of soil conditions.
TABLE 7 Comparative analysis of forecasting performance of different
feature combinations.

Feature
number

RMSE MAE MAPE PICP PINRW CWC

1 0.457 0.298 1.182 0.803 0.142 0.090

2 0.418 0.248 0.985 0.805 0.125 0.082

3 0.393 0.243 0.973 0.801 0.116 0.077

4 0.397 0.247 0.977 0.800 0.120 0.080

5 0.420 0.251 1.004 0.801 0.118 0.077

6 0.425 0.257 1.036 0.808 0.125 0.082

7 0.411 0.253 1.017 0.806 0.133 0.086
The bold represent superior performance.
TABLE 8 Comparative analysis of forecasting performance of different
parameter search methods.

Method RMSE MAE MAPE PICP PINRW CWC

Grid Search 0.423 0.256 1.029 0.805 0.121 0.079

PSO 0.420 0.254 1.016 0.784 0.113 0.160

SSA 0.394 0.243 0.973 0.782 0.114 0.162

MOPSO 0.403 0.249 0.994 0.803 0.120 0.079

SMPSO 0.393 0.243 0.973 0.801 0.116 0.077
fronti
The bold represent superior performance.
FIGURE 11

Forecasting performance results of different parameter search methods on N-HiTS-G.
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4 Conclusion

Foliage plants are crucial for promoting urban greening and

agricultural economic development. These plants have high

requirements for environmental conditions, and a suitable soil

temperature range can effectively promote their growth and

development, ensuring stable yield and excellent ornamental

value. Given the coupling, non-linearity, and complexity of soil

temperature variations, this study proposes a rapid and efficient

multivariate forecasting method, which can accurately predict soil

temperature trends for the next 20, 60, and 120 minutes.

Experimental results show that our proposed multivariate, multi-

step forecasting model based on SP-N-HiTS-G outperforms other

models, demonstrating both superior accuracy and enhanced

stability in forecasting performance. The key research content is

as follows:
Fron
1. To address the issue of high-dimensional data, this study

employs Gradient Boosting Tree models as feature selectors

to identify important environmental factors related to soil

temperature. After feature selection, the proposed model

achieved reductions in RMSE, MAE, and CWC by 0.018,

0.010, and 0.044% respectively for forecasts up to 120 minutes,

demonstrating that this feature selection method can effectively

extract important environmental factors, reducing model

training time while enhancing predictive accuracy.

2. This study established a novel forecasting model based on

N-HiTS-G, which combines the N-HiTS model with a

Gaussian likelihood function. The model can accurately

forecast future soil temperature trends, with a stable

inference speed of around 20 seconds. Compared to

commonly used or advanced benchmark models, this

model offers higher predictive accuracy and faster

inference speeds. Furthermore, it produces reliable

forecasting intervals, effectively reducing the uncertainty

of multi-step forecasting.

3. This study employs the multi-objective optimization

algorithm SMPSO to address the parameter determination

problem in the forecasting model. Compared to grid

searching or manual tuning, this method significantly

reduces the labor and time costs associated with

determining model parameters. Moreover, compared to

single-objective optimization algorithms, multi-objective

optimization can train more precise and stable models. The

optimized SP-N-HiTS-G model provides forecasts with MAE

values of 0.057, 0.136, and 0.241 for 20, 60, and 120 minutes

into the future respectively, accompanied by outstanding

interval forecasting performance, making it more suitable

for facility cultivation environment applications.
This study provides guidance for important issues related to

environmental optimization in facility cultivation, helping to

optimize cultivation conditions, improve plant growth efficiency,

thus promoting the development of sustainable agriculture.
tiers in Plant Science 17
Moreover, this study also contributes to the application of

artificial intelligence technology in smart agriculture scenarios,

such as agricultural intelligent monitoring systems (Chamara

et al., 2022), multi-modal environmental monitoring that

integrates visual and temporal technologies (Li et al., 2024), and

the use of smart agricultural robots (Roldán et al., 2018). Our model

not only achieves accurate and reliable multi-step interval

forecasting but can also be widely applied in edge-side inference

for intelligent equipment, environmental optimization, and energy

conservation, demonstrating higher practical value in real-world

facility cultivation environments. In the future, we hope to further

refine our approach. Specifically, We will continue to apply

methods for real-time model updates under facility cultivation, as

well as conduct research on accurate forecasting models for longer

forecasting periods.
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