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Comparing performances of
different statistical models and
multiple threshold methods in a
nested association mapping
population of wheat
Karansher S. Sandhu, Adrienne B. Burke, Lance F. Merrick,
Michael O. Pumphrey and Arron H. Carter*

Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
Nested association mapping (NAM) populations emerged as a multi-parental

strategy that combines the high statistical power of biparental linkage mapping

with greater allelic richness of association mapping. Several statistical models

have been developed for marker-trait associations (MTAs) in genome-wide

association studies (GWAS), which ranges from simple to increasingly complex

models. These statistical models vary in their performance for detecting real

association with the avoidance of false positives and false negatives.

Furthermore, significant threshold methods play an equally important role for

controlling spurious associations. In this study, we compared the performance of

seven different statistical models ranging from single to multi-locus models on

eight different simulated traits with varied genetic architecture for a NAM

population of spring wheat (Triticum aestivum L.). The best identified model

was further used to identify MTAs for 11 different agronomic and spectral

reflectance traits, which were collected on the NAM population between 2014

and 2016. The “Bayesian information and linkage disequilibrium iteratively nested

keyway (BLINK)” model performed better than all other models observed based

on QQ plots and detection of real association in a simulated data set. The results

from model comparison suggest that BLINK controls both false positives and

false negatives under the different genetic architecture of simulated traits.

Comparison of multiple significant threshold methods suggests that Bonferroni

correction performed superior for controlling false positives and false negatives

and complements the performance of GWAS models. BLINK identified 45 MTAs

using Bonferroni correction of 0.05 for 11 different phenotypic traits in the NAM

population. This study helps identify the best statistical model and significant

threshold method for performing association analysis in subsequent NAM

population studies.
KEYWORDS

false positives and false negatives, genome-wide association studies, nested association
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Introduction

Connecting phenotypes with genotypes provides a vital tool for

crop breeding and improvement. The most commonly exploited

approaches for genetic mapping include biparental linkage

mapping and association mapping. Biparental linkage mapping

requires developing a large recombinant population for linkage-

based mapping of quantitative trait loci (QTLs) (Lander and

Botstein, 1989). Methods for linkage mapping range from single

marker analysis to more sophisticated methods such as interval

mapping, composite interval mapping, multiple regression, and

joint mapping (Li et al., 2010). However, the excitement of

linkage mapping was surpassed by association mapping in the

mid-2000s because of its two main advantages. First, association

mapping does not require the time, cost, and effort needed to create

recombinant inbred lines. Second, association mapping provides a

high resolution compared to biparental mapping, as they have

numerous crossover events (Zhu et al., 2008). However,

association mapping has low power for rare alleles compared to

linkage mapping; that is why both techniques are not separated

from each other and are used interchangeably (Bernardo, 2008).

Nested association mapping (NAM) populations emerged as a

multi-parental strategy that combines the high statistical power of

biparental linkage mapping with greater allelic richness of

association mapping (Yu et al., 2008). NAM provides a higher

genetic variation, reduces linkage disequilibrium, increases

mapping resolution, and reduces population structure (Yu et al.,

2008). Even though population structure is typically ignored due to

genome reshuffling, it can still be accounted for in the model for

controlling spurious association (McMullen et al., 2009a). Analysis

of NAM populations has yielded high confidence for marker-trait

association (MTAs) in maize (Zea mays L.) (McMullen et al.,

2009b), soybean (Glycine max L.) (Song et al., 2017), and barley

(Hordeum vulgare L.) (Nice et al., 2017). MTAs for a NAM

population can be performed with joint linkage association

mapping and genome-wide association studies (GWAS) (Kaur

et al., 2021). Joint linkage association mapping involves nesting

the QTL term within families allowing the differentiating of allelic

variations from linked genes (Li et al., 2011).

Several statistical models have been developed for MTAs in

GWAS, which range from simple to increasingly complex (Liu et al.,

2016). With an increase in genotyping information, statistical models

that can separate the real biological association from false positives are

required without comprising real association (false negatives). False

positives in models are also observed when familial relatedness or

common ancestry between the genotypes is not accounted for.

Structure, discriminant analysis, and principal components analysis

(PCA) are routinely used as a covariate in statistical models to account

for population structure (Pritchard et al., 2000; Price et al., 2006).

However, PCA is getting more attention because of its consistent

performance with structure, and it is computationally cheap to

generate the covariates (Wang et al., 2009; Wu et al., 2011). Identity

by descent is one of the traditionally used approaches for observing

familial relatedness. Recently, the kinship matrix calculated from

genotyping information has been used as a covariate in the mixed

linear models (MLMs) (VanRaden, 2008).
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Most simple GWAS analysis involves a general linear model

(GLM) where single nucleotide polymorphism (SNP) and

population structure are used as a fixed effect, but GLM results in

a large number of false positives (Singh et al., 2023). The MLM was

further developed to include population structure as a fixed effect

and kinship as a random effect in the model to control for false-

positive associations (Yu et al., 2006). The MLM treats each

individual separately in the model, making it computationally

very expensive. The compressed mixed linear model (CMLM)

was developed to decrease the computational time of MLM by

grouping individuals in the random effect model and has similar or

higher statistical power than MLM (Zhang et al., 2010). These

models use all the set of SNPs in the analysis, but the “settlement of

MLM under progressively exclusive relationship (SUPER)” model

extracts a small number of SNP called pseudo quantitative trait

nucleotide (QTN) for obtaining kinship, giving higher power

and being less computationally intensive than previous models

(Wang Q. et al., 2014).

One thing about all these GWAS models is that they are single-

locus models, which include scanning one marker at a time, and this

process is repeated iteratively for each marker. These single-locus

models fail to imitate the real genetic makeup of complex traits,

which are controlled by a large number of QTLs and their

interactions. Segura et al. (2012) solved this issue with the

inclusion of multi-locus association analysis using heritable

variance estimate criteria for inclusion of factors in the forward

and backward elimination in the multi-locus mixed model

(MLMM). This model is shown to induce false negatives because

of overfitting in the model and missing the true associations (Liu

et al., 2016). A “fixed and random circulating probability unification

model (FarmCPU)” is a novel multi-locus model controlling both

false negatives and false positives while being computationally

very efficient.

Recently, the “Bayesian information and linkage disequilibrium

iteratively nested keyway (BLINK)” model was developed, which

combines better computational efficiency with higher statistical

power (Huang et al., 2018). This model avoids the biggest

limitation of all the mixed models which assumes that causal genes

are distributed uniformly over the genome, which usually results in

the inclusion of non-causal genes or the missing of two causal genes

present in the same bin (Huang et al., 2018). Contrastingly, BLINK

works directly based on linkage disequilibrium (LD) information

compared to bin method. Furthermore, this model uses Bayesian

information content to obtain the maximum likelihood for selecting

the associated markers. As both the testing of markers and selecting

associated markers are performed as a cofactor in the fixed effect

model, there is a significantly higher computational advantage

provided with this model (Huang et al., 2018).

False negatives cannot only arise because of overfitting in the

model but can also be due to over conservative thresholds applied

for determining the significant threshold (Pe’er et al., 2008;

Dudbridge and Gusnanto, 2008). The most commonly used

multi-comparison thresholds in GWAS studies are the false

discovery rate (FDR), positive FDR, and Bonferroni correction

(Holm, 1978; Benjamini and Hochberg, 1995; Johnson et al.,

2010). Therefore, selecting the appropriate threshold and model
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for association studies is essential for controlling both false

negatives and false positives.

The objectives of this study were to compare seven different

GWAS models varying from single to multi-locus in a spring wheat

NAM population. The model’s performances were validated on

eight different simulated traits having varied genetic architecture.

The NAM population was selected in this study to identify the most

appropriate GWAS model. We also evaluated four different multi-

comparison methods for identifying significant associations.

Finally, we identified the MTAs for 11 different phenotypic traits

collected from the NAM population using the best identified model.
Materials and methods

Plant material

The dataset used in this study consisted of a three-year (2014–

2016) field trial of 650 recombinant inbred lines (RIL) from a NAM

population described previously (Sandhu et al., 2021d). The

complete information about parents, population development,

and field trial is referred to in previous publications (Sandhu

et al., 2021a, Sandhu et al., 2021c; Blake et al., 2019; Jordan et al.,

2018). Briefly, the NAM population consisted of 26 founder parents

crossed to a common cultivar Berkut to obtain the population. A

modified augmented design was used for planting 650 RILs at

Spillman Agronomy Farm near Pullman, WA. Five different data

points, namely, plant height (PH), days to heading (DTH), test

weight (TSTWT), grain protein content (GPC), and grain yield

(GY) were collected. In addition, six spectral reflectance indices

(SRIs) were obtained using a handheld CROPSCAN multi-spectral

radiometer (CROPSCAN, Inc. Rochester, MN, USA) at the grain-

filling stage. These indices were normalized difference vegetation

index (NDVI), normalized water index (NWI), photochemical

reflectance index (PRI), anthocyanin reflectance index (ARI),

normalized chlorophyll pigment ratio index (NCPI), and green

normalized difference vegetation index (GNDVI). The complete

details about the collection of spectral information and extraction of

these indices can be referred to in Sandhu et al. (2021a, c).
Statistical data analysis

Best linear unbiased predictors (BLUPs) for all the traits were

obtained using an augmented complete block design (ACBD)

model implemented in R (Rodrıǵuez et al., 2018; R Core Team,

2020). BLUPs were obtained for combined analysis across the

environments using the model:

Yijkl = μ + Blocki + Genj + Checkk + Envl + Envl ⊗Genj + eijkl

where Yijkl is the trait of interest, μ is the mean effect, Blocki is

the fixed effect of the ith block, Genj is the random effect of

unreplicated genotypes j and distributed as independent and

identically distributed, Genj ~ N(0, s2g), Checkk represents the

fixed effect of each replicated check cultivar in the block, Envl is the
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fixed effect of the lth environment, Envl ⨂ Genj are the random

effects of environment and genotype interaction, and eijkl is the

standard normal error distributed as eij ~ N(0, s2e).
Broad sense heritability of each trait was calculated across the

environments using the formula:

H2 = 1 −  �vD :
BLUP  =2s2g

where H2 is broad sense heritability, s2g is the genotypic variance,
and �vD : 

BLUP is mean variance of the BLUPs (Cullis et al., 2006).
Genotypic data and population
structure analysis

The whole NAMpopulation was genotyped with the Illumina 90K

SNP array and genotyping by sequencing (Wang S. et al., 2014; Poland

et al., 2012). The complete set of markers consisted of 73,345

polymorphic markers anchored to the Chinese Spring RefSeqv1

(Jordan et al., 2018). Detailed procedures about genotyping, marker

calling, and map construction are reported previously Sandhu et al.,

2021b; Sandhu et al., 2021). Quality control was performed where RILs

missing phenotyping data were removed from the analysis. Markers

with minor frequency less than 0.10 had missing data more than 20%,

or were monomorphic, and RILs missing more than 10% of the

genotypic data were discarded for further analysis. In the end, we were

left with 635 RILs with 44,000 SNP markers. The PCA was performed

for assessing the population structure present in the population using

the whole set of 44,000 SNP markers using “prcomp” function in R

(R Development Core Team, 2020; Price et al., 2006).
Simulation of traits

We simulated eight different traits with varying heritability and

number of QTLs. These traits were simulated by using the genotypic

information described above in R using “GAPIT” and “bigmemory”

packages (Lipka et al., 2012; R Development Core Team, 2020). The

traits were simulated tomimic the trait having a particular heritability

and genetic architecture. These simulated traits were generated using

the same genotypic markers that were used for NAM population.

These data were simulated to have random QTL effects. The

simulated traits were having H2 = 20% and QTLs = 10 (H20_Q10),

H2 = 40% and QTLs = 10 (H40_Q10), H2 = 60% and QTLs = 10

(H60_Q10), H2 = 80% and QTLs = 10 (H80_Q10), H2 = 20% and

QTLs = 20 (H20_Q20), H2 = 40% and QTLs = 20 (H40_Q20),

H2 = 60% and QTLs = 20 (H60_Q20), and H2 = 80% and QTLs = 20

(H80_Q20). The whole NAM population was simulated for having a

random QTL effect with different heritabilities.
GWAS models

We evaluated seven different GWAS models for association

analysis in a NAM population. These models varied from simple to

increasingly complex, namely, (a) GLM (Price et al., 2006), (b)
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MLM (Yu et al., 2006), (c) CMLM (Zhang et al., 2010), (d) SUPER

(Wang et al., 2014), (e) MLMM (Segura et al., 2012), (f) FarmCPU

(Liu et al., 2016), and (g) BLINK (Huang et al., 2018).

GLM is the simplest GWAS model fitting only population

structure and testing each SNP one at a time in the fixed effect

model. The GLM can be represented as

Y = SNP + Q½PCs� + e

where Y is a matrix of phenotypic information, SNP represents

the matrix of markers, Q represents the population structure, and e

is the residual error (Price et al., 2006).

GLM results in false positives, and this was avoided by MLM

with inclusion of family relatedness in the model. MLM includes the

kinship matrix as random effect in the mixed effect model andMLM

can be represented as

Y = SNP + Q½PCs� + Kinship + e

Kinship represents the relationship matrix between the

individuals included in the model. All other variables of this

equation are described above. SNP and Q are set as fixed effects,

while kinship is random effect in the model (Yu et al., 2006).

MLM was computationally very intensive, because

computational time varies with the third power of number of

individuals in the random effect model. Furthermore, there were

confounding issues between testing marker, structure, and kinship

matrix as same set of markers were double counted. CMLM clustered

the individuals into different groups resulting in a reduction of

effective size of random effect model (Zhang et al., 2010). CMLM

obtains the kinship among the groups and is computationally more

efficient than MLM. CMLM can be represented as

Y = SNP + Q½PCs� + Kinship + e

where kinship is the relationship matrix among the groups and

other terms are the same as MLM described above.

The SUPER model uses only associated markers known as QTN

for calculating the complementary kinship with exclusion of the

associated QTN. This model removes the individual markers from

the kinship if the testing marker is in LD with it regardless of the

physical distance between them (Wang et al., 2014). This model is

shown to provide higher computational power using a set of QTN

for obtaining the kinship and can be represented as

Y = SNP + Q½PCs� + Complementary   kinship + e

where complementary kinship is obtained using pseudo QTN,

and other terms are same as MLM described above.

All the above models are single locus models, which are not

appropriate for most of complex traits in the wheat. MLMM includes

testing of multiple markers at a time, and it is more important for

wheat as confounding effects are present across the genome. MLMM

uses forward inclusion of markers using heritable variance as an

estimate to stop the inclusion of the marker. Then backward

elimination conducted from the last forward model is used to

completely explore the model space. The MLMM can be

represented as
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Y = SNP + QTN1 + QTN2 + QTNn +  Q½PCs� + Kinship + e

where QTN1 to QTNn represents the pseudo QTN included in

the model using forward inclusion and backward elimination. All

other terms of the equation are similar to MLM.

MLMM tests multiple markers as covariates in stepwise

regression to remove the confounding effects between markers and

kinship. To fully remove the confounding problem, MLMM is

divided into fixed and random effect models in the FarmCPU

model. The fixed effect model tests single markers at a time with

multiple associated markers as a covariate to control for false

positives. Furthermore, model overfitting is avoided in the random

effect model by obtaining kinship using multiple associated markers.

The p-value of each tested and associated marker is unified at each

iteration. The FarmCPU model can be represented as

Y = SNP + QTN1 + QTN2 + QTNn +  Q½PCs� + e

This is the fixed effect component of the FarmCPU model, with

individual markers tested one at a time and other terms of the

equation as described previously.

Y = Q½PCs� + Kinship + e

This is the random effect component of the FarmCPU model,

and all terms of the equation are described previously.

FarmCPU has an efficient fixed model, but it has

computationally expensive random effect model. Furthermore,

QTNs in random effect models were selected based on their even

distribution over the genome. To increase the computational

efficiency, the random effect model was replaced with a fixed

effect model using Bayesian information criteria. This new

method is known as “BLINK” as QTNs were selected based on

the linkage disequilibrium information.
Interpretation of Q-Q plots and simulated
data output

False positives and false negatives can be interpreted by looking at

the Q-Q plots generated by the model. The Q-Q plots depict the

observed negative log of association of probability across all markers

(y-axis) to the expected negative log of association probability (x-

axis). If the Q-Q plot has a straight line with 1:1 with absence of any

tail, this suggests that data follow the normal distribution and the null

hypothesis is true, meaning there is no true or significant association

(Würschum et al., 2012; Stich et al., 2008). If the line does not follow

1:1, it suggests that null hypothesis is not true and there are significant

associations present. In the case the Q-Q plot has an upward

inflation, there are false positives, while downward inflation depicts

presence of false negatives. On the other hand, if the Q-Q plot has a

straight 1:1 line with a sharp upward tail at the end, this suggests that

both false positives and false negatives are controlled, and only real

associations are visible. This happens because most of the p-values

follow a uniform distribution, while few have deviations, suggesting

that those associations are in linkage disequilibrium with the causal

polymorphism (Würschum et al., 2012; Stich et al., 2008).
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Furthermore, output of each model was used to compute the true

associations, false positives, and false negatives associations under

each simulation scenario to assess the performance.
Models evaluation

Model performances were evaluated by looking at the Q-Q plots

for identifying the false positives and false negatives. Models were

also evaluated by looking at the simulated data to observe how

many simulated QTNs are detected by the models. Furthermore,

false positives and false negatives were identified using each model

for assessing their performances. The best identified model was later

used for MTAs for 11 phenotyping traits collected from the

NAM population.
Evaluation of multiple comparisons
methods for significant threshold

We evaluated four different multiple comparisons methods for

determining the significant threshold to determine association. These

methods were the FDR, Bonferroni correction, positive FDR, and

log103. All these comparisons were made using multiple methods

comparison methods in JMP Genomics 6.0 (SAS Institute Inc, 2011).

The FDR method, based on the Benjamini–Hochberg

procedure, controls the expected proportion of false positives

among the declared significant results. It calculates the

significance threshold by adjusting the p-values according to their

rank (k) relative to the total number of tests (m) and the desired

significance level (a), using the equation:

FDR = k=m� a

The Bonferroni correction is a more conservative approach that

controls the family-wise error rate by dividing the significance level by

the number of comparisons (m), resulting in an adjusted threshold (a):

a0 = a=m

The positive FDR (pFDR) method focuses on the proportion of

false discoveries among all discoveries, conditional on there being at
Frontiers in Plant Science 05
least one discovery. The pFDR is calculated using the expectation of

false positives (V) relative to the number of rejected hypotheses (R):

pFDR = E½V ∣R > 0�=R
Finally, the log10-transformed p-values method provides an

alternative way to interpret small p-values by transforming them

using the log base 10. The transformed p-value (plog10p_{\text

{log10}}plog10) is calculated as:

plog10 = −log10(p)

This transformation allows for easier interpretation of

extremely small p-values, though it does not directly control for

multiple comparisons.
Results

Phenotypic data summary

The 11 different traits used in this study have a broad phenotypic

range as observed (Table 1), which is relevant for performing

association analysis. Broad sense heritability ranged from 34% to

90% providing detailed variation for dissecting the model’s

performance. All these traits have different genetic architecture,

which will help validate the performance of GWAS models using

Q-Q plots to identify false positives and false negatives.
Model comparisons with simulated data
set using Q-Q plots and true associations

Seven different GWAS models which varied from simple to

complex were used to compare their performances over the

simulated dataset of a NAM population. The Q-Q plots for

eight different simulated traits with seven GWAS models are

provided in Figure 1. Among the seven evaluated GWAS

models, BLINK performed best regarding control of false

positives and false negatives. In the case of H20_Q10, all models

performed similarly because of the small amount of genetic

variation (Figure 1A) (Table 2). We showed the results for the

true associations, false positives, and false negatives associations
TABLE 1 Phenotypic information and broad sense heritability for 11 different traits collected from a nested association mapping population of spring
wheat planted in the U.S. Pacific Northwest.

GY
(t/ha)

GPC
(%)

TSTWT
(kg/hl)

PH
(cm)

DTH NDVI NWI GNDVI PRI NCPI ARI

Mean 2.08 13.03 73.97 92.28 169.1 0.72 0.06 0.68 −0.12 0.34 1.13

Minimum 1.00 11.22 69.13 77.70 163.9 0.51 0.03 0.55 −0.18 0.19 0.11

Maximum 2.82 15.61 77.62 109.80 178.1 0.86 0.09 0.77 −0.09 0.48 1.71

Heritability 0.34 0.66 0.69 0.72 0.90 0.74 0.67 0.71 0.69 0.55 0.61
fro
GY is grain yield, GPC is grain protein content, TSTWT is test weight, PH is plant height, DTH is days to heading, NDVI is normalized difference vegetation index, NWI is normalized water
index, GNDVI is green normalized difference vegetation index, PRI is photochemical reflectance index, NCPI is normalized chlorophyll pigment ratio index, and ARI is anthocyanin
reflectance index.
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by each model for H20_Q10 scenario (Table 2). As we move

towards H80_Q20, a clear difference in performance is seen for

each model (Figure 1) (Table 2). GLM, SUPER, and FarmCPU

result in false positives for all eight simulated traits as evident from

slightly deviated tails compared to the straight 1:1 line for BLINK

(Figure 1). Furthermore, when the number of simulated QTLs

increased to 20, MLM, CMLM, and MLMM also showed an

inflation of false positives in addition to GLM, SUPER, and

FarmCPU (Figures 1B, D, F, H). We showed the results for the

true associations, false positives, and false negatives associations

by each model for H80_Q20 scenario (Table 2). This further

strengthens that the recently developed model BLINK performed

superior in controlling false positives for the tested spring wheat

NAM population.
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Model comparisons with simulated data
set using Manhattan plots

The results from simulation studies were shown in the form of

Manhattan plots to observe the true associations, false positives, and

false negatives.We observed a similar trend in the model performance

for all of the eight simulated traits, with BLINK being most reliable in

regard to detecting true associations and controlling the false positives

and false negatives. Due to space constraints, we provided results from

the two extreme simulated traits namely H80_Q20 and H20_Q10

(Figures 2, 3) (Table 2), but the same trends were observed for the

remaining simulated traits. For H80_Q20, we simulated models to

have 20 QTLs, which can explain 80% of the genetic variation. The

GLM and SUPER models performed worse giving many false
TABLE 2 True associations, false positives and false negatives association detected using seven different GWAS models namely general GLM, MLM,
CMLM, SUPER, MLMM, FarmCPU, and BLINK for H20_Q10 and H80_Q20 simulated scenario.

Model type

GLM MLM CMLM SUPER MLMM FarmCPU BLINK

H20_Q10 True associations 2 1 1 1 2 3 4

False positives 2 0 0 3 0 1 0

False negatives 8 9 9 9 8 7 6

H80_Q20 True associations 8 5 5 13 11 13 15

False positives 3151 0 0 869 0 2 0

False negatives 12 15 15 7 9 7 5
FIGURE 1

Q-Q plots for the seven different GWAS models, namely, general GLM, MLM, CMLM, SUPER, MLMM, FarmCPU, and BLINK for comparing
performances of eight simulated traits including H = 20% and Q = 10 (H20_Q10) (A), H = 20% and Q = 20 (H20_Q20) (B), H = 40% and Q = 10
(H40_Q10) (C), H = 40% and Q = 20 (H40_Q20) (D), H = 60% and Q = 10 (H60_Q10) (E), H = 60% and Q = 20 (H60_Q20) (F), H = 80% and Q = 10
(H80_Q10) (G), and H = 80% and Q = 20 (H80_Q20) (H) for a nested association mapping population of wheat.
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positives as evident from Figures 2A, D. Moreover, MLM and CMLM

performed similarly by detecting five out of the 20 real QTLs, thus

giving us a large number of false negatives, suggesting overfitting of

the model (Figures 2B, C). MLMM was able to detect 11 of the 20

QTLs, but the number of false negatives was still high (Figure 2E).

FarmCPU reduced the number of false negatives compared to

MLMM by detecting 13 QTLs, but this model produced a couple of

false positives (Figure 2F). Finally, BLINK performed superior

compared to the above six models by detecting 15 of the 20

simulated QTLS with no false positives (Figure 2G). These results

suggest that BLINK should be used if a trait has high heritability and

controlled by a large number of QTLs.

A similar trend was observed for the H20_Q10 simulated trait,

with the amount of genetic variation controlled being comparatively

less than the H80 simulations. We observed that none of the models

were able to detect all the simulated QTLs, but BLINK still

performed better than all other models. GLM was able to detect

two true associations with two false positives (Figure 3A). MLM,

CMLMM, and SUPER were only able to detect one true association
Frontiers in Plant Science 07
out of the 10 simulated QTLs (Figures 3B–D). MLMM performed

better than the above four models by detecting two real associations

and avoiding false positives (Figure 3E). Even though FarmCPU

was able to detect three real associations, it produced one false

positive (Figure 3F). Finally, BLINK was able to detect four real

associations with complete avoidance of false positives (Figure 3G).

These results were consistent with H80_Q20, as BLINK performed

best under both scenarios, and Q-Q plots also clearly demonstrated

the superiority of this model. These two analyses validated that

BLINK should be used for mapping studies in the NAM population.
Multiple threshold methods for
significant associations

Multiple comparison methods, namely, Bonferroni correction,

FDR, and positive FDR, were compared for significant association

with a cutoff P-value of 0.05 for all methods. We performed the

multiple comparisons for all simulated traits but for brevity, results
FIGURE 2

Manhattan plots for H80_Q20 simulated trait where quantitative trait loci (QTLs) had H = 80% and Q = 20 for seven different GWAS models
including GLM (A), MLM (B), CMLM (C), SUPER (D), MLMM (E), FarmCPU (F), and BLINK (G). The real QTLs are represented with the black circle over
the SNP markers and Bonferroni correction of 0.05 was used for detecting the significant associations. The total number of real associations, false
positives, and false negatives were assessed for each model to compare their performances.
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for the H80_Q20 simulated trait is provided (Table 3). However, the

results for all other simulated traits were similar (results not shown).

We compared the number of significant associations identified after

multiple comparison adjustments. In the case of GLM and SUPER,

even after multiple comparison adjustments, there were a large

number of false positives, suggesting the loose fitting of these

models (Table 3). Similar results were observed from the Q-Q

plot of GLM and SUPER, where a large number of false positives

were evident (Figures 1A, D). Complex models, namely MLM,

CMLM, MLMM, and FarmCPU were able to control the false

positives after performing multiple comparison adjustments,

especially using the Bonferroni correction (Table 3). However,

there were false negatives for these complex models due to over-

conservative nature of the Bonferroni threshold. In the case of

BLINK, we were able to identify 15 and 18 significant associations

with the Bonferroni correction and FDR, respectively. These results

suggest that multiple comparison methods should be employed for

controlling false positives and false negatives, in addition to the

different statistical models.
Frontiers in Plant Science 08
Marker trait associations in the
NAM population

PCA showed the presence of two main subgroups in the NAM,

but the distinction among the different RILs was not clear

(Figure 4). Furthermore, the first PC1 explained only 5% of the

variation, while the second PC2 explained only 4% of the total

variation in the population (Figure 4). The first two PCs were

included as the covariate in the GWAS models to adjust for small

subgroups observed in PCA.

Q-Q plots were assessed for these 11 phenotypic traits, and we

observed that BLINK performed the best for controlling the false

positives and false negatives (results not shown). Even the simulated

studies suggested that BLINK should be used for the NAM

population of wheat (Figures 1–3). Hence, MTAs for all

phenotypic traits were performed using the BLINK model. We

observed 45 MTAs for these traits, and the majority of these were

distributed over the A and B genomes of wheat (Table 4). We

identified three MTAs for plant height, which cumulatively
FIGURE 3

Manhattan plots for H20_Q10 simulated trait where quantitative trait loci (QTLs) had H = 20% and Q = 10 for seven different GWAS models including
GLM (A), MLM (B), CMLM (C), SUPER (D), MLMM (E), FarmCPU (F), and BLINK (G). The real QTLs are represented with the black circle over the SNP
markers and Bonferroni correction of 0.05 was used for detecting the significant associations. The total number of real associations, false positives,
and false negatives were assessed for each model to compare their performances.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1460353
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sandhu et al. 10.3389/fpls.2024.1460353
explained 39.6% of the total variation and were located on

chromosome 4B and 6B. In the case of days to heading and test

weight, there were four and five significant MTAs, which

cumulatively explained 16.9% and 17.1% of the total variation,

respectively (Table 4). Furthermore, one, three, three, eight, nine,

and one significant MTAs were obtained for NDVI, NWI, GNDVI,

PRI, NCPI, and ARI, that cumulatively explain the 6.2%, 11.9%,

12.2%, 49.0%, 39.2%, and 2.2% of the total variations, respectively

(Table 4). The chromosomal region 6A (CAP7_c4283_67) was

shared among the NDVI and GNDVI indices. Similarly,

chromosomal region 3A (SpringWheatNAM_tag_83405:72) and

7A (SpringWheatNAM_tag_104471) were shared between NWI

and NCPI, and PRI and NCPI, respectively.
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Model performance for height in wheat

We identified the MTA of IAAV971 SNP marker with plant

height that is located on 4BS at 40752468 bp. We validated the

presence of Rht1 genes (Rh1-B1a/Rht1-B1b) in these RILs with the

use of kompetitive allele-specific polymorphic (KASP) markers

(results not shown) (Grogan et al., 2016; Blake et al., 2019). Due to

known position of the Rht1 gene, plant height is the best trait in

our population to compare the models which identify the best

significant association. Q-Q plots were compared for all seven

models used in this study and BLINK performed best regarding

the control of false positives (Figure 5). We also showed the MTAs

for plant height with two models, namely, MLM and BLINK.

BLINK was able to separate a clear association with one SNP

marker compared to MLM that provided many MTAs on 4B

(Figure 6). Even though the marker having the highest significant

threshold was the same for both models, BLINK was able to

control all the linked markers by using its linkage-based

mapping criteria.
Discussion

The best statistical model for MTAs in the
NAM population

This study’s main aim was to compare seven different single and

multi-locus models for MTAs in a NAM population of wheat for

simulated and complex quantitative traits. The GLM resulted in a

large deviation of the Q-Q plot from the 1:1 line (Figure 1) and a

large number of false positives as evident from Manhattan plots

(Figures 2, 3), thus indicating this model is not appropriate for
FIGURE 4

Principal components analysis of the NAM population containing 26 diverse founder parents. The absence of clear distinction among subpopulations
is due to the use of common parents for obtaining the population. All the 26 founder parents’ families are represented for the reference.
TABLE 3 Total significant association detected for H80_Q20 simulated
trait using four multiple threshold comparison methods, namely
Bonferroni correction, FDR, PFDR, and −Log10 P > 3.5 for all seven
models evaluated in this study.

Model Bonferroni
correction

False
discovery
rate (FDR)

Positive
false

discovery
rate

(PFDR)

−Log10
P > 3.5

GLM 3159 11,629 14,623 9102

MLM 8 9 9 263

CMLM 8 9 9 263

SUPER 868 1992 2531 6732

MLMM 12 52 68 1967

FarmCPU 15 33 46 2009

BLINK 15 18 18 1946
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TABLE 4 Marker trait association for the eleven phenotypic traits obtained using the BLINK model for the NAM population of spring wheat planted for three years (2014–2016) in the U.S. Pacific Northwest.

Minor
allele
frequency

R2 P-value

0.47 31.4 9.75E-37

0.12 2.2 5.81E-12

0.49 6.0 1.37E-07

0.16 5.6 5.02E-08

0.31 7.9 2.13E-07

0.47 2.3 1.36E-07

0.13 1.04 1.22E-07

0.32 0.21 1.26E-06

0.16 4.36 1.16E-06

0.24 4.00 3.80E-07

0.20 4.30 3.10E-10

0.21 4.2 1.21E-08

0.14 6.21 1.38E-07

0.32 4.89 2.56E-07

0.49 0.01 2.46E-07

0.33 6.96 1.77E-08

0.13 0.45 7.59E-07

0.15 5.83 1.55E-07

0.14 5.95 2.05E-07

0.36 11.69 1.51E-26

0.46 0.067 9.19E-08

0.11 12.66 4.96E-08

0.28 1.98 4.45E-07

0.19 11.93 8.67E-07

0.20 1.87 2.93E-07

0.28 3.07 4.04E-07
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Trait Sr. No. SNP name Chromosome Position on
chromosome
(cM)

Alleles

Plant height 1 IAAV971 4B 40752468 A/T

2 Excalibur_c17206_329 4B 573275528 C/T

3 SpringWheatNAM_tag_77531 6B 715850864 A/G

Days to heading 1 RAC875_c9833_297 1A 394260203 A/C

2 SpringWheatNAM_tag_1669:12 1B 420423385 C/T

3 SpringWheatNAM_tag_206792 6A 122815244 A/T

4 SpringWheatNAM_tag_119869 7D 58770625 G/T

Test weight 1 SpringWheatNAM_tag_312652 1D 432302805 T/C

2 SpringWheatNAM_tag_178261:78 2B 545760724 C/T

3 SpringWheatNAM_tag_54608 2D 20750397 C/T

4 SpringWheatNAM_tag_30111:80 4B 637388295 C/G

5 SpringWheatNAM_tag_73760:49 5B 586876059 G/C

NDVI 1 CAP7_c4283_67 6A 581746429 T/G

NWI 1 RAC875_rep_c112916_263 2B 762708836 T/A

2 SpringWheatNAM_tag_176235 2D 11052027 C/A

3 SpringWheatNAM_tag_83405:72 3A 55486364 A/G

GNDVI 1 SpringWheatNAM_tag_284432 2B 49546799 G/T

2 Ku_c2936_1987 2B 782154354 G/A

3 CAP7_c4283_67 6A 581746429 T/G

PRI 1 BS00087757_51 3B 6250439 A/C

2 SpringWheatNAM_tag_81419 4B 480696216 A/T

3 SpringWheatNAM_tag_150054:75 5B 476890298 T/C

4 SpringWheatNAM_tag_99841 5B 702607859 T/G

5 SpringWheatNAM_tag_110769 6B 615640864 G/C

6 RAC875_c13216_111 6B 645353741 C/G

7 SpringWheatNAM_tag_11038 7A 12697901 C/T
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TABLE 4 Continued

osition on
hromosome
cM)

Alleles Minor
allele
frequency

R2 P-value

20164337 C/A 0.25 5.74 2.47E-07

18967996 A/G 0.23 8.94 2.76E-08

5486364 A/G 0.33 7.90 4.24E-07

40216648 T/C 0.37 0.76 9.74E-07

55303120 G/T 0.29 0.88 6.13E-08

72100114 G/A 0.13 0.87 4.55E-07

6455135 C/T 0.25 7.52 7.58E-09

7849285 A/C 0.11 4.40 5.87E-07

2543505 G/A 0.39 2.34 7.46E-07

20164337 C/A 0.25 5.59 1.11E-06

12271965 T/C 0.12 2.16 2.46E-06

79665943 T/G 0.14 5.10 7.96E-08

97964122 A/G 0.16 0.53 4.50E-07

02127283 A/T 0.47 2.81 6.32E-08

12814970 G/A 0.16 4.04 6.55E-08

37172173 G/C 0.31 0.51 8.41E-09

49883322 C/A 0.28 6.11 5.06E-08

37437644 A/T 0.36 4.31 8.79E-08

0752468 A/T 0.46 12.33 4.10E-13
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Trait Sr. No. SNP name Chromosome P
c
(

8 SpringWheatNAM_tag_104471 7A 6

NCPI 1 Tdurum_contig54784_485 2B 7

2 SpringWheatNAM_tag_83405:72 3A 5

3 SpringWheatNAM_tag_7460 3B 3

4 SpringWheatNAM_tag_93215 3B 6

5 SpringWheatNAM_tag_1115 4A 6

6 SpringWheatNAM_tag_73855:52 4B 3

7 Excalibur_rep_c109299_159 6B 4

8 SpringWheatNAM_tag_21926:27 6B 8

9 SpringWheatNAM_tag_104471 7A 6

ARI 1 SpringWheatNAM_tag_233767 5B 4

Grain
protein content

1 wsnp_Ex_c23795_33033150 5A 6

2 SpringWheatNAM_tag_30378:21 5B 3

3 Kukri_c31995_1948 6D 4

4 SpringWheatNAM_tag_37052 7A 7

5 SpringWheatNAM_tag_103903 7B 4

6 SpringWheatNAM_tag_78736 7B 4

Grain yield 1 SpringWheatNAM_tag_65895 1B 2

2 IAAV971 4B 4
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MTAs in this NAM population of wheat. These results are similar to

previous studies conducted in humans, maize, and Arabidopsis,

thus validating that GLM model is not appropriate for mapping

complex quantitative traits (Huang et al., 2018; Liu et al., 2016;

Zhang et al., 2010). The large number of false positives in GLM is

due to ignoring relatedness among the individuals, which are not

completely accounted for by population structure parameters

(Zhang et al., 2010).

Complex GWAS models, namely, MLM, CMLM, MLMM, and

FarmCPU, efficiently control for false positives but comparatively

result in several false negatives in simulated studies, except when the

trait has a low heritability (Figures 2, 3). These false negatives were

produced due to overfitting in these models (Huang et al., 2018). The

MLM and CMLM usually result in false negatives for complex traits,

and these results were validated in previous studies (Liu et al., 2016;

Kaler et al., 2020). This is because these models test a single marker at
Frontiers in Plant Science 12
a time, thus completely ignoring the genetic makeup of complex

traits, which causes omission of other small effect associations (Segura

et al., 2012). MLMM tests multiple QTNs as a cofactor in the stepwise

regression MLM, using heritable variance criteria for forward

inclusion and backward elimination of QTNs. However, this model

is shown to perform superior for large effect QTLs and thus produces

false negatives, especially for the small effect QTLs in our study.

Similar results were previously reported from other studies

(Wen et al., 2018; Liu et al., 2016; Kaler et al., 2020).

FarmCPU performed superior to all other models except

BLINK; this is because FarmCPU divides the MLM into a fixed

and random effect model. The fixed effect tests multiple markers at a

time, and the random effect model selected the associated markers

to obtain kinship. These two processes are performed iteratively and

control the false positives in the model (Liu et al., 2016). In this

study, the recently developed BLINK model performed superior to
FIGURE 5

Comparison of Q-Q plots for seven different GWAS models, namely, GLM, MLM, CMLM, SUPER, MLMM, FarmCPU, and BLINK for marker trait
associations for plant height in a NAM population of spring wheat.
FIGURE 6

Manhattan plots for marker-trait associations for plant height using MLM (A) and BLINK (B) in the NAM population of spring wheat.
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detect real associations with control of false positives and false

negatives for the simulation experiment. This model was better than

the FarmCPU model, as FarmCPU assumes that QTN bins are

evenly distributed over the genome, completely ignoring linkage

disequilibrium information. However, BLINK replaced the even

distribution of QTN bins with linkage disequilibrium information

(Huang et al., 2018).
Multiple threshold methods comparison
for significant associations

False positives and false negatives arise not only by selection of

GWAS models but also due to less stringent or over conservative

thresholds. Herein, we compared the results from four multiple

threshold methods, namely, Bonferroni correction, FDR, PFRD,

and −Log10 P > 3.5 under simulation studies from all the seven

GWAS models (Table 2). Our results suggest that significant

threshold methods play an equally important role in controlling

spurious associations, in addition to the GWAS models. Bonferroni

correction was observed to be a superior threshold method in the

simulation studies for the majority of the GWAS models used. Even

though Bonferroni correction was not able to reduce the number of

false positives when used with GLM and MLMM, it did perform

efficiently for all other models (Table 2).

The number of false negatives observed for complex models

such as MLM, CMLM, MLMM, and FarmCPU with Bonferroni

correction of 0.05 was not due to this threshold, but it was due to

the GWAS model’s performance (Figures 2, 3). Manhattan plots

from simulation studies for MLM, CMLM, MLMM, and

FarmCPU show that false negatives were not due to Bonferroni

threshold, but due to very low cutoff p-values, and suggests the

inefficiency of the associated models. Furthermore, Bonferroni

correction, FDR, and PFDR performed similarly for the BLINK

model with complete avoidance of false negatives and false

positives (Table 3). These results suggest that the utilization of

an efficient GWAS model should be complemented with the best

significant threshold method for obtaining true associations

within breeding programs. The probable reason for the same

performance of all multi-comparison threshold methods in the

case of BLINK is due to the working principle of the model.

BLINK efficiently controls spurious associations with utilization of

linkage disequilibrium present among the QTNs throughout the

genome (Huang et al., 2018).

Several studies suggest that Bonferroni correction should be

replaced with less stringent or novel thresholds such as FDR, PFDR,

permutation test, Sidak correction, and Bayesian approaches

(Hochberg, 1988; Holm, 1978; Benjamini and Hochberg, 1995;

Šidák, 1967). This is due to assumptions of this method, which

results in over-conservative significant threshold, obtained as the P-

value/number of independent tests, and this does not consider that

markers on the same chromosome could be independent (Hayes,

2013). However, in our simulation study, we observed that

Bonferroni correction should be utilized over the FDR, PFDR,

and random −log P-values as this method controls for both false
Frontiers in Plant Science 13
positives and false negatives. Kaler and Purcell (2019) suggested

that Bonferroni correction and FDR are highly conservative

thresholds, and both methods result in a large number of false

negatives. They developed a significant threshold using marker-

based and broad-sense heritability, which was less conservative than

the abovementioned thresholds in maize, soybean, and rice.

However, our simulation results suggest that Bonferroni

correction is the best regarding control of both false positives and

false negatives in the BLINK model, and this should be used to

report associations. Associations identified with Bonferroni

thresholds help provide enough confidence that these markers

can be used for marker-assisted selection, compared to less

stringent methods, which require further validation.
Marker trait associations for agronomic
traits in the NAM population

A total of 20 MTAs were identified for five agronomic traits

used in this study. Three loci were mapped on chromosomes 4B

and 6B for plant height (Table 4). The most significant locus was

mapped around the base position 40,752,468. This locus has a

positive effect on plant height. The increase in plant height in the

NAM population confirms that founder parents lack the Rht-B1

gene (Blake et al., 2019). The locus mapped on 6B was previously

mapped in several studies and has been validated that this locus is

responsible for reducing the plant height in wheat (Malik et al.,

2019; Zanke et al., 2014; Turuspekov et al., 2017). The same locus

was a l so a s soc i a t ed w i th y i e l d due to he i gh t and

lodging reduction.

Four loci were mapped on 1A, 1B, 6A, and 7D for regulating

the days to heading in the population. The MTAs on

chromosomes 1A, 1B, and 7D aid in reducing days to heading,

whereas the remaining MTA has a positive effect on days to

heading. The locus mapped on 7D was previously reported in a

soft red winter wheat population and suggests that this locus

controls heading time in wheat irrespective of wheat class and type

(Gaire et al., 2020). Similarly, MTAs on 6A was previously

reported to have a significant effect on heading date (Jamil et al.,

2019). The QTL for grain yield mapped on chromosome 4B was

also regulating height in this population (Peng et al., 1999),

supporting the semi-dwarf wheat leads to higher grain yield.

Furthermore, other MTAs mapped for grain protein content

and grain yield were novel and not reported in the previous

studies. The small effects of these gene regions suggest that

genomic selection is the best alternative for predicting these

complex traits in breeding programs (Bernardo, 2016).
Marker trait associations for spectral
reflectance indices in the NAM population

Spectral reflectance indices provide an indirect estimation of

various physiological processes occurring in plants and could

ultimately be used to select grain yield (Babar et al., 2006). In this
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study, 25 MTAs were associated with six SRIs, namely, NDVI, NWI,

GNDVI, PRI, NCPI, and ARI. The loci contributing to SRIs are

distributed across most of the chromosomes, suggesting widespread

variation for these traits. NDVI and GNDVI provide indirect

estimation about greenness, biomass content, chlorophyll

concentration, and plant health (Gitelson et al., 1996; Prasad et al.,

2007). NDVI and GNDVI measure reflection from the red and green

region of the electromagnetic spectrum, thus providing information

from different regions. We mapped a locus associated with marker

CAP7_c4283_67 on chromosome 6A, which is associated with both

NDVI and GNDVI. This locus has a negative effect on both indices

and will ultimately aid in selecting against this locus in the breeding

program. This locus was not identified in any other previous studies

for mapping regions for NDVI and GNDVI (Prasad et al., 2007;

Gizaw et al., 2018). The GDNVI locus mapped on 2B was previously

mapped around the same position in wheat and has a positive effect

on the trait (Gizaw et al., 2018).

PRI, NCPI, and ARI measure the reflection from the visible

region of the electromagnetic spectrum and provides information

about different pigments in the plants (Peñuelas et al., 1997). The

location of these indices was different from other agronomic traits

mapped in this study, and this will aid in the selection of these traits

independently. The genomic region determined by marker

SpringWheatNAM_tag_104471 on chromosome 7A was associated

with PRI and NCPI in this study, suggesting the pleiotropic nature of

this locus. The MTAs on chromosome 3B and 6B collocated with the

previously mapped agronomic and yield-related traits in wheat.

These are shown to have QTLs for grain filling duration, test

weight, and spikelet number (Edae et al., 2014). NCPI and PRI are

a good indicator of accessory pigments, chlorophyll concentration,

and photosynthesis efficiency (Peñuelas et al., 1994). Hence, MTAs

identified in this study will assist breeders in understanding how these

regions can be used as proxy for selecting genotypes based on their

physiological performance.
Conclusion

This study compared the performances of seven different

GWAS models on eight simulated and 11 real traits in a spring

wheat NAM population. The BLINK model was observed to be best

for association mapping in wheat, as observed from the Q-Q plots

and simulated QTLs identified by the GWAS models. This model

performed best for controlling false positives and false negatives

under all the genetic architecture of the simulated traits. We

observed that multiple threshold methods complement GWAS

models for controlling spurious associations, with the Bonferroni

correction observed to be best for controlling false positives and

false negatives under simulation studies. We concluded that the

BLINK model should be used for association mapping in wheat

with the Bonferroni correction as the significant threshold method.

Markers trait association for 11 different agronomic and spectral

traits identified 45 significant associations using a Bonferroni

correction of 0.05 with the BLINK model. As all the founder
Frontiers in Plant Science 14
parents of the NAM population were landraces, this study

identified various novel associations.
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