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Barrier-free tomato fruit
selection and location based on
optimized semantic
segmentation and obstacle
perception algorithm
Lingli Zhou1,2, Anqi Hu1,2, Yawen Cheng1,2, Wenxiang Zhang1,2,
Bingyuan Zhang1,2, Xinyu Lu1,2, Qian Wu1,2* and Ni Ren1,2*

1Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 2Key
Laboratory of Intelligent Agricultural Technology (Changjiang Delta), Ministry of Agriculture and Rural
Affairs, Nanjing, China
With the advancement of computer vision technology, vision-based target

perception has emerged as a predominant approach for harvesting robots to

identify and locate fruits. However, little attention has been paid to the fact that

fruits may be obscured by stems or other objects. In order to improve the vision

detection ability of fruit harvesting robot, a fruit target selection and location

approach considering obstacle perception was proposed. To enrich the dataset

for tomato harvesting, synthetic data were generated by rendering a 3D simulated

model of the tomato greenhouse environment, and automatically producing

corresponding pixel-level semantic segmentation labels. An attention-based

spatial-relationship feature extraction module (SFM) with lower computational

complexity was designed to enhance the ability of semantic segmentation

network DeepLab v3+ in accurately segmenting linear-structured obstructions

such as stems and wires. An adaptive K-means clustering method was developed

to distinguish individual instances of fruits. Furthermore, a barrier-free fruit selection

algorithm that integrates information of obstacles and fruit instances was proposed

to identify the closest and largest non-occluded fruit as the optimal picking target.

The improved semantic segmentation network exhibited enhanced performance,

achieving an accuracy of 96.75%. Notably, the Intersection-over-Union (IoU) of wire

and stem classes was improved by 5.0% and 2.3%, respectively. Our target selection

method demonstrated accurate identification of obstacle types (96.15%) and

effectively excluding fruits obstructed by strongly resistant objects (86.67%).

Compared to the fruit detection method without visual obstacle avoidance (Yolo

v5), our approach exhibited an 18.9% increase in selection precision and a 1.3%

reduction in location error. The improved semantic segmentation algorithm

significantly increased the segmentation accuracy of linear-structured obstacles,

and the obstacle perception algorithm effectively avoided occluded fruits. The

proposed method demonstrated an appreciable ability in precisely selecting and

locating barrier-free fruits within non-structural environments, especially avoiding
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fruits obscured by stems or wires. This approach provides a more reliable and

practical solution for fruit selection and localization for harvesting robots, while also

being applicable to other fruits and vegetables such as sweet peppers and kiwis.
KEYWORDS

harvesting robot, image semantic segmentation, obstacle perception, deep learning,
fruit selection, positioning, tomato
1 Introduction

Fruit picking is a time-consuming and laborious work,

accounting for 33%-50% of the total production workload. With

the advancement of agricultural modernization, the research on

harvesting robots has attracted much attention. Harvesting robots

will be the key technology to address the issue of labor shortage in

the future. This advancement encompasses multidisciplinary

techniques spanning kinematics, control science, machine vision,

and behavioral science. Following several years of development,

substantial progress has been made in addressing key technical

challenges such as path planning (Ye et al., 2023; Ghosh et al., 2019;

Tang et al., 2024), systematic control (Chen et al., 2024), target

recognition and positioning (Guo et al., 2023; Yang et al., 2023), and

picking sequence planning (Kurtser and Edan, 2020). Nowadays,

various prototypes of single-fruit harvesting robots have been

developed, such as tomato harvesting robots (Jun et al., 2021),

apple harvesting robots (Zhang et al., 2021; Silwal et al., 2017),

kiwifruit harvesting robots (Williams et al., 2019) and so on. The

visual servo harvesting robot (Williams et al., 2019; Miao et al.,

2023; Jiao et al., 2022) stand out as one of the research hotspots due

to their significant advantages in autonomy, precision, and

adaptability. The first and most crucial step for these camera-

based robots is to detect and locate the target to be harvested in

the visual image, and obtain the position of the target in three-

dimensional (3D) through coordinate transformation with the help

of depth maps or other auxiliary information. Despite significant

breakthroughs (Montoya-Cavero et al., 2022; Rong et al., 2022) have

been made in fruit recognition and positioning based on visual

images, the uncertainty in fruit growth and the complexity of

unstructured orchard environments still lead to many problems

for the visual system of harvesting robots.

Before deep learning was widely used, traditional machine

learning algorithms combined with image processing were the

most common methods for fruit recognition. Through a series of

pre-processing, such as color space transformation, image

denoising, edge detection and region growth (Ouyang et al., 2013;

Wachs et al., 2010; Zhao et al., 2016), different levels of features were

extracted and served as the input of the machine learning methods

for image classification. However, the traditional machine learning

algorithms are difficult to deal with images collected in complex

natural environments, and their accuracy are affected by light
02
intensity and ray shadow, so their robustness are not enough to

meet practical needs.

Compared to traditional machine learning, deep learning

characterized by its superior representation, learning, and

generalization abilities, has garnered significant attention and

widespread application. The deep learning-based computer vison

technology has significantly advanced the development of harvesting

robots and accelerated their practical application. The most commonly

used methods (Divyanth et al., 2022; Kuznetsova et al., 2020; Yan et al.,

2021) for harvesting robots are to customize position calculation

algorithms for specific species by improving the object detection

models, including Faster Regional-Convolutional Neural Network

(Faster R-CNN) (Ren et al., 2016) and YOU LOOK ONLY ONCE

(YOLO) (Redmon et al., 2016). In order to achieve the real-time

detection of apples or oranges, Kuznetsova et al (Kuznetsova et al.,

2020). designed the pre- and post-processing techniques based on

YOLO v3 algorithm, which shortened the average detection time to 19

ms. Although the algorithms based on object detection have achieved

promising results in terms of speed, they can only estimate the location

and size of the target. For some soft-rind fruits harvested by cutting the

stems to prevent damage to the epidermis, more appearance

information, such as the contour of targets, is required to determine

the positions of the cutting points. The image semantic segmentation

and instance segmentation provide good methods to meet this kind of

harvesting demand. The work presented by Yu et al (Yu et al., 2019).

was a typical case of applying the instance model Mask Region

Convolutional Neural Network (Mask R-CNN) (He et al., 2020) to

strawberry harvesting, which calculated picking points on mask images

generated by Mask R-CNN. In order to recognize and segment

overlapped apples, Jia et al (Jia et al., 2020). optimized Mask R-CNN

by combining Residual Network (ResNet) (He et al., 2016) with

Densely Connected Convolutional Networks (DenseNet) as an

alternative to its original backbone network for reducing input

parameters, which was ideally effective in terms of both speed and

accuracy of target positioning tested on a random test set. It is a trend

to use semantic segmentation (Li et al., 2021; Kang and Chen, 2020)

and instance segmentation (Luo et al., 2022; Zheng et al., 2021) to solve

target recognition and location in the vision system of harvesting

robots, as it can provide more appearance information and realize the

separation of fruits and background, and individual targets.

Although these methods have achieved notable breakthroughs,

they still face difficulties in addressing the challenges presented by
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complex growth environments. We have noticed that the tomato fruits

grown under natural conditions are often obscured by various objects

such as leaves, stems, wires and other fruits. The presence obstacles,

particularly wires and stems, poses a significant challenge to

mechanical harvesting by impeding the movement of robotic arms.

The entanglement between these slender objects with strong resistance

and the robotic arm may lead to fatal errors, so the issue of obstacle

occlusion has gradually attracted the attention of researchers. Divyanth

et al (Divyanth et al., 2022). has improved the Faster R-CNNmodel by

adding an attention mechanism to detect non-occluded coconuts and

leaf-occluded coconuts. However, this method cannot meet the

perceptual need for more intricate scenarios. The information of the

obstacles, including stems, wires, branches and petioles, need to be

captured in semantic level because they directly affect the selection of

picking targets and the path planning of picking execution agencies. In

recent years, semantic segmentation algorithms have been employed to

segment objects with linear structure (such as stems, branches, etc.) in

unstructured environments. Song et al. (Song et al., 2021) proposed a

branches and wires segmentation and reconstruction method for

kiwifruit. Wang et al. (Wang et al., 2023) proposed a parallel

network structure (DualSeg) to segment branches and fruits for

grapes. Although these studies have successfully implemented pixel-

level perception of obstacles through image semantic segmentation,

their approach lacks the integration of both obstacle perception and

fruit instance discrimination, as well as an analysis of fruit occlusion in

the orchard environment.

Thus, we proposed our method to locate fruit instances while

recognizing obstacles based on the following two considerations.

Firstly, in order to distinguish fruits from different obstacles,

especially linear-structured obstacles, an improved image semantic

segmentation algorithm was proposed. Due to the slender structure

of major obstacles such as stems and wires, we added spatial-

relationship features to the semantic network, which was inspired

by the research (Pan et al., 2018; Gioi et al., 2012) used to identify

slender objects such as lane lines and transmission lines. Different
Frontiers in Plant Science 03
from the slice-by-slice convolution used in Spatial Convolutional

Neural Network (SCNN) (Pan et al., 2018), we redesigned an

attention-based spatial-relationship feature extraction module with

lower computational complexity to enhance the ability of semantic

segmentation network to recognize obstacles with strong shape

priors. The module skillfully applied spatial attention masks to

transmit information in the rows and columns of features, thereby

changing the attention allocation of network and achieving more

attention to slender structural objects to improve their segmentation

accuracy. Secondly, an adaptive K-means (MacQueen, 1967) pixel

clustering algorithm was designed to segment fruit instances based on

the characteristic of different fruit depths and positions, effectively

addressing the challenges associated with unsatisfactory clustering

performance due to a fixed K value and the uncertain number of

fruits in each image. Subsequently, a straightforward yet efficient

barrier-free fruit selection algorithm combining the information of

obstacles and fruit instances was proposed to select the closest and

largest non-occluded fruit as the ultimately picking target. The

feasibility of our method was validated on our Tomato dataset,

which performed well in both semantic segmentation, and selection

and location of barrier-free fruits.
2 Materials and methods

2.1 Tomato dataset

2.1.1 Image acquisition
The images were acquired at the Tomato Intelligent Production

Greenhouse of Jiangsu Academy of Agricultural Sciences, Nanjing,

China (32.03° N, 118.87° E) in 2022-2023. All tomatoes were grown

using soilless culture, and two tomato cultivars “Sufen No.6” and

“Fatalong” were selected for data acquisition.

A tomato harvesting robot platform composed of a picking

robotic arm, a visual system, a control system and a walking
FIGURE 1

The developed tomato harvesting robot.
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equipment was developed (Figure 1), and the intelligent picking

operations, such as picking path planning, picking target

identification and positioning, and non-destructive picking, were

realized. A depth camera Realsense (D435i, Intel, America)

mounted on the tomato harvesting robot was used to

automatically capture RGB images and depth images with a

resolution of 600×800 pixels. The tomato harvesting robot

stopped every 1 meter for tomato data collection. The images

were taken irregularly between 9 a.m. and 5 p.m. under different

weather conditions (sunny and cloudy) from February to April.

Images that were too bright, too dark or in other colors that do not

meet the standards were removed, and finally 170 RGB images and

corresponding depth maps were selected.

2.1.2 Image annotation and dataset production
Due to the limited number of empirical images, we used the

synthetic data generated by the method provided by Barth et al.

(Barth et al., 2018) to pre-train the weights of the semantic

segmentation model. 3250 synthetic tomato images and

corresponding pixel-level synthetic semantic segmentation label

images were generated by rendering on the 3D simulated model

of tomato greenhouse environment produced by Blender. The

resolution of all synthetic images was 1600×1200 pixels, and each

pixel in the synthetic images corresponds to one of nine classes

(background, mature fruits, immature fruits, peduncles, stems,

branches and petioles, wires, cuts, leaves) represented by a color

in the label images.

170 empirical RGB images were labelled with pixel-level

semantic segmentation using the open source software Labelme

(Russell et al., 2008), with 120 images as training data, 20 images as

validation data, and the remaining 30 images as testing data. The
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annotators annotated the images from back to front, ensuring that

the boundary of each object was not marked repeatedly.

Considering the labelling speed and quality, only the first row of

plants in the images were labelled, and other distant plants can be

regarded as background because they have little effect on the

perspective of robots. We omitted the annotation of leaves for

empirical images, mainly based on the following two

considerations: (i) the leaves were regularly removed during the

harvesting seasons, and the presence of a limited number of leaves

does not significantly impact the operation of the robots; (ii) the

morphology of tomato leaves was complex and irregular, resulting

in a significant increase in the workload associated with data

annotation. Therefore, there were a total of 8 label classes

(background, mature fruits, immature fruits, peduncles, stems,

branches and petioles, wires, cuts) in empirical label images and

the annotation time for each image took about 1 hour.

Figure 2 shows some examples of empirical data and synthetic

data. It can be seen that the synthetic images and empirical images

have high similarity, and fruits in both are easily obscured by objects

such as wires and stems.
2.2 Proposed method for barrier-free fruit
selection and location

In order to solve the problem of barrier-free fruit selection and

positioning based on monocular images, a segmentation and

location approach for vision system of harvesting robots based on

RGB images and depth maps was proposed. The whole flowchart

was divided into three phases (Figure 3). In phase 1, an improved

semantic segmentation network was used to distinguish fruits,
FIGURE 2

Visual comparison between synthetic data and empirical data. (A) Three empirical images, (B) corresponding semantic segmentation labels of three
empirical images, (C) three synthetic images, (D) corresponding synthetic labels of three synthetic images. For better comparison, the leaves in the
synthetic labels are displayed as background.
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obstacles and background. The shape and location of the major

obstacles, such as stems, branches and petioles, wires, need to be

delicately identified. Therefore, we improved the recognition

accuracy of obstacles with slender structures by adding spatial-

relationship feature module (SFM) into the encoder of DeepLab v3+

(Chen et al., 2017), and achieved high-precision pixel-level

segmentation of plant organs and key objects. In phase 2, based

on the position information of fruits in the semantic segmentation

maps and the depth information provided by depth maps, an

adaptive K-means clustering method was applied to cluster pixels

of fruits into individual instances. In phase 3, barrier-free harvesting

targets were selected by using a proposed obstacle detection

method, and the optimal picking target was recommended.

2.2.1 Improved image semantic
segmentation network

The widely used DeepLab v3+ (Chen et al., 2017) was adopted

as the baseline of the image semantic segmentation network, and its

encoder was optimized to enhance the segmentation ability of
Frontiers in Plant Science 05
slender obstacles. Inspired by SCNN for lane detection (Pan et al.,

2018), we proposed a spatial-relationship feature module (SFM)

and strengthened the spatial relationships of pixels across rows and

columns for objects with strong shape priors but weak appearance

coherences during feature extraction.

Given the demand for real-time inference in agricultural

machinery automation, it is imperative to develop accurate,

lightweight, and fast models. Considering the computational

complexity of SCNN, we proposed a lighter spatial information

perception module drawing on the idea of the spatial attention

mechanism (Jaderberg et al., 2015). Generally speaking, the spatial

attention mechanism assigns different weights to pixels through a

mask, thereby directing more attention towards regions of interest.

In our study, it is essential to increase space-attention towards stems

and wires to enhance their segmentation accuracy. These objects

exhibit obvious directionality in both horizontal and vertical

directions in the images. In light of these considerations, we

proposed our spatial-relationship feature module (SFM). This

module was designed to augment the spatial attention mechanism
FIGURE 3

The flowchart of the non-occluded fruit selection and location approach for single-fruit harvesting robots.
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by incorporating the inherent directional attributes of the target

objects, thereby enhancing the segmentation accuracy.

SFM presented a novel methodology for feature transformation

that differs from the traditional slice-by-slice convolution utilized

by SCNN. SCNN operated in four computational directions: top to

bottom, bottom to top, right to left, and left to right. In each

direction, the features were sliced, with individual convolutions

applied to each slice and addition operations conducted between

slices. In contrast, SFM utilized two masks derived from stripe

pooling of the original features along their spatial directions to

facilitate information transmission across the rows and columns of

features. This innovative approach significantly reduced the

parameter count, thereby enhancing model efficiency. As the

masks were derived from the features, the spatial information of

the original features was retained. Subsequently, the two masks were

dot-multiplied with the original features in their respective

responsible directions, thereby reallocating attention to the

original features. This process effectively reallocated the focus

within the original features, facilitating a more nuanced and

context-aware representation of features. As shown in Figure 4,

letting Fo
(C,H,W) denote the 3-D features generated from the feature

extraction network ResNet101 of DeepLab v3+ for an image. The

extraction of spatial features was conducted through a dual-axis

approach, focusing on both the horizontal and vertical orientations

within the image. Horizontal stripe pooling with the kernel size of

1×N compressed Fo
(C,H,W) to the size of C×H×1, followed by an

average pooling of the channels to obtain smaller features with a size

of 1×H×1. Through the nonlinear activation function ReLU, the

attention mask Maskh
(1,H,1) on the horizontal dimension was

calculated, as described in Equation 1. Then, the mask was dot

multiplied by the original feature Fo
(C,H,W) to capture the horizontal

dependencies and obtain the horizontal spatial relationship feature

Fh
(C,H,W), as seen in Equation 2. Similarly, the vertical spatial

relationship feature Fv
(C,H,W) was calculated. Fo

(C,H,W), Fv
(C,H,W)

and Fh
(C,H,W) was merged by cascading, and then the output was

fed into the convolution layer to generate the final features Ft
(C,H,W)

with spatial relationships, as seen in Equation 3.

Mask(1,H,1)
h = ReLU(AvgPool(StripPool(F(C,H,W)

o ))) 1

F(C,H,W)
h = F(C,H,W)

h �Mask(1,H,1)
h 2
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F(C,H,W)
t = Conv(Concat(F(C,H,W)

o , F(C,H,W)
h , F(C,H,W)

v )) 3

where C, H, W stand for the number of channels, rows, and

columns respectively, ReLU denotes nonlinear activation function,

AvgPool denotes average pooling, StripPool denotes strip pooling, ×

denotes dot multiplication operation, Conv denotes standard

convolution and Concat denotes cascade operation.

This specially designed module facilitated the transmission of

pixel feature information within the layer space and enabled the

network pay more attention to the objects with slender structures in

both rows and columns. The attention masks were obtained from

spatial feature statistics with specific directionality, which help

original features perceive information in the row and column

space of the layer. Specially, the SFM module has low

computational complexity. Taking a feature of size 1×64×64×128

as an example, the computational cost of performing one SCNN

operation on it exceeds 75.5 MFLOPs, whereas the computational

cost for SFM is approximately 2.6 MFLOPs. Meanwhile, the design

of SFM ensures compatibility with existing feature extraction

frameworks, allowing for seamless integration following the

feature extraction backbone of the segmentation network.

2.2.2 Segmentation for fruit instance
In general, pixels belonging to the same instance have close

positions in semantic segmentation maps and similar depth values

in depth maps, even if they were partitioned by obstacles. A

clustering method based on K-means (MacQueen, 1967) was

chosen to divide the pixels of mature fruits into different

instances with the help of depth information.

The clustering algorithms could represent a more efficient

method in contexts with constrained computational resources. K-

means clustering is a straightforward and efficient unsupervised

learning method that offers the advantage of applicability to various

types of data, thereby making it widely utilized in image

segmentation tasks (Zhang and Peng, 2022). The basic idea of the

algorithm is to find the optimal partition scheme of K-means

clustering by minimizing the loss function. The loss function is

the sum of the distances from all the elements to the center of the

cluster, we defined our loss function L in Equation 4,

L =o
k

j=1
o
Nj

i=1
‖ p(Xi) − p(Zi) ‖2 + a ‖ d(Xi) − d(Zj) ‖2,Xi ∈ Sj 4
FIGURE 4

Sketch of spatial-relationship feature module (SFM) of our approach.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1460060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2024.1460060
where, k is the number of clusters, Sj is the cluster set, and Nj

and Zj are the number of pixels and the cluster center belonging to

Sj respectively, p(x) denotes the position of x and d(x) denotes the

depth value of x, ||·||2 is the L2-norm, a is used to balance the

proportion of two parts.

The clustering centers were continuously optimized through

many iterations until they no longer changes. The resolution of the

original images needs to be reduced before pixel clustering in order

to reduce the noise and improve the operational efficiency. The

initial clustering centers were randomly selected from the

established mature fruit categories to improve clustering

efficiency. Considering the different number of fruits in different

images, we adopted an adaptive K-means clustering algorithm for

each image. Specifically, we initially selected a larger value as the

original K-value based on the count of mature tomatoes in the

foreground of the images from previous trials. After clustering on

this K-value, the results were checked and the closest clustering

centers were merged. Then, the K-value was updated, and the next

round of clustering continued until no new K-value was generated.

2.2.3 Target selection and location
A target selection method was proposed to screen the fruit

instances obtained in the second phase based on the obstruction

information obtained in the first phase. The barrier-free instances

were retained and prioritized based on their area and depth values.

Ideally, a picking instance would be a connected region (Figure 5A),

while the instances occluded by objects (such as stems) would be

divided into multiple regions (Figure 5B). Therefore, we first used a

basic connected region analysis algorithm (Di Stefano and

Bulgarelli, 1999) to label connected regions of the binary image

mask generated from each instance. Then, we randomly selected

any two points from two non-connected regions, and connected the

four points into a quadrilateral, which was defined as a blind spot, as

shown in the green area in Figure 5C. If an object divided an

instance into two regions, the object was likely to exist in the

corresponding blind spot region on the semantic segmentation

map. Therefore, all blind spots were sent to semantic

segmentation maps to check for the presence of obstacles.

By correlating the blind spots with the semantic segmentation

map, the corresponding categories of obstacles, including stems,
Frontiers in Plant Science 07
wires, branches and petioles, were identified. In the absence of a

corresponding category within the blind spots, which signified an

empty background, the obstacles were initially classified as leaves.

This assumption was primarily based on the observation that only

leaves or other obstacles could partition a single fruit instance into

multiple regions, thereby creating blind spots; conversely, the

background itself could not divide fruit instances and generate

these blind spots. To enhance the rigor of obstacle detection, we

employed the Otsu threshold segmentation algorithm (Yousefi,

2011) based on color features to determine whether the obstacles

in the blind spots belong to leaves or unknown categories.

Specifically, the Otsu algorithm performed rapid binary

segmentation on the remaining portion of the original image

identified as background, effectively distinguishing leaves from

other elements within that background based on their distinct

color features. Subsequently, the obstacles obstructing the fruit

were further clarified by referencing the binary segmentation

result of the non-fruit area in the blind spots.

When an instance presented obstacles (stems, branches and

petioles, wires) in its blind spots, it would be discarded. If an

instance was obstructed by leaves, it would still be retained as the

obstruction caused by leaves does not affect the mechanical picking.

The center coordinates and radii of the remaining instances were

obtained by delineating the minimum circumscribed circles of the

connected regions. Then, the closest and largest non-occluded fruit

was selected as the ultimate harvesting target according to the

comprehensive evaluation scores calculated from their areas and

depth values. The algorithm flow was shown in Supplementary

Material 1.
2.3 Experiments and
performance evaluation

2.3.1 The optimized algorithm enhances the
performance of image semantic segmentation

The method presented above was tested on the on our Tomato

dataset. The whole approach was implemented in the Python

programming language. For image semantic segmentation, deep

CNNs was implemented on TensorFlow (Cordts et al., 2016),
FIGURE 5

Tomato fruits with different regional connectivity and fruit blind spot identification. (A) A fruit without any obstruction, (B) a fruit occluded by a stem,
(C) a blind spot generated by two connected regions represented by a green region.
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a public deep learning architecture. Adam optimizer (Kingma and

Ba, 2014), which is computationally efficient and widely used in

many models, was used to improve the performance of the

networks. Meanwhile, the “exponential decay” policy was used to

control the updating speed of parameters and accelerate the

convergence speed of the networks. During the whole training

process, original input was randomly cropped. The crop size was

640×640 pixels and batch size was 4. Some layers were added a

“dropout” strategy to prevent over-fitting during the training

process. The networks were trained with the pre-trained

parameters from ImageNet (Russakovsky et al., 2015), and each

model converged after approximately 60k iterations. For fruit

instances segmentation and the post-processing including the

selection of picking targets, their implementation relied on

OpenCV, an open-source library for computer vision.

2.3.2 The evaluation of image
semantic segmentation

The image semantic segmentation performance of DeepLab v3+

and DeepLab v3+ with SFM were compared. According to the

conventional evaluation criteria, Pixel Accuracy (acc) and

Intersection-over-Union (IoU) (Everingham et al., 2015) were

adopted as evaluation criteria for image semantic segmentation.

The acc was defined as the ratio of all correctly classified pixels to all

valid pixels in the image (Equation 5). The IoU evaluated the

similarity between the portion parsed by the network and ground

truth related to a specific class (Equation 6).

acc =
1
No

N

i=1

Ri

Vi
� 100% 5

IoU =
1
No

N

i=1

Pi ∩ Gi

Pi ∪ Gi
� 100% 6

where N is the number of images in the testing set; Ri and Vi are

the total number of correctly classified pixels and the total number

of valid pixels in image i, respectively; Pi denotes the area predicted

as the target class, Gi represents the area of the target class in the

ground truth. Therefore, the value of IoU was calculated by dividing

the intersection area of the two regions by the union area of two

regions. IoU was a supplement to acc, it took into account the class

imbalance that existed in most datasets. In addition, the mean

intersection-over-union (mIoU) of all classes was added as

another indicator.

2.3.3 The evaluation of fruit
instance segmentation

The effectiveness of the proposed adaptive K-means clustering

algorithm was validated by evaluating the fruit instance

segmentation performance using different K values. Generally, the

number of mature fruits in each image’s foreground should not

exceed 8, hence we varied the K value within a range from 2 to 8.

Precision, Recall and F1 were employed as evaluation metrics for

fruit instance segmentation performance assessment. Usually,

Precision and Recall are contradictory, with high Precision

resulting in low Recall, and vice versa. Therefore, F1 Score was
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often used to comprehensively measure the performance of a model

while balancing Precision and Recall. The three indicators were

defined in Equations 7–9,

Precision =
NTP

NTP + NFP
� 100% 7

Recall =
NTP

NTP + NFN
� 100% 8

F1 =
2� Precision� Recall
Precision + Recall

� 100% 9

where NTP is the number of positive samples correctly identified

as positive, NFP is the number of negative samples incorrectly

identified as positive, and NFN is the number of positive samples

incorrectly identified as negative. If the ratio of the correctly

detected area to the ground truth exceeds a threshold, the target

was considered to be correctly detected.

For the evaluation of fruit instance segmentation performance,

the threshold of IoU was set to 0.5, indicating that if the overlapping

area between the segmented fruit instance and manually labelled

instance exceeded 50% of the latter, it would be marked as a true

positive. Normally, IoU values exceeding 0.5 could support the

harvesting robot for picking operations.

2.3.4 The evaluation of target selection and
location approach

The performance of the approach in picking-targets selection

was evaluated from two aspects of the target selection and the

location precision. Precision, Recall and F1 were commonly used

metrics for target detection. The central position and radius of the

fruit were the key parameters for the harvesting robots to perceive

the target position. The positioning error (PE) for a target was

defined in Equation 10,

PE =
‖Cp − Cg ‖2

R
� 100% =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xp − xg)

2 + (yp − yg)
q

R
� 100% 10

where Cp and Cg and are the center coordinates predicted by

the algorithm and the manually labeled center, respectively, and R

is the target radius. PE was essentially a relative error

between positions.
3 Results

3.1 The diversity and robustness of the
empirical data

The empirical images were collected at various temporal

intervals and under diverse lighting conditions to cope with

different harvesting situations. Different weather conditions have

a significant impact on the quality of image acquisition and

subsequent image processing tasks. Under overcast conditions,

inadequate illumination may produce excessively dark images,

resulting in a loss of detail, whereas bright light can lead to
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overexposure. Collecting images under different weather conditions

can effectively enhance the richness and robustness of the image

dataset, thereby providing substantial value in improving the

model’s applicability across different weather conditions.

To assess the effectiveness, diversity and robustness of our

empirical data, we created two training datasets by dividing the

original dataset into two categories based on the weather conditions.

Then, we evaluated the semantic segmentation performance of

DeepLab v3+ trained on different datasets, including images

captured under diverse weather conditions, as well as those taken

in sunny and cloudy weather conditions (Table 1). All three models

were pre-trained on the synthetic data and the training images were

augmented through geometric transformation and color

transformation. The results indicated that the model trained on

the dataset comprising images captured under diverse weather

conditions significantly outperformed the other two models in

terms of accuracy (acc) and mean Intersection over Union

(mIoU), as both of their training datasets exhibited notable biases.

This finding demonstrated the diversity and robustness of our

empirical training data.
3.2 The optimized algorithm enhances the
performance of image
semantic segmentation

The performance of image semantic segmentation has a

significant impact on the subsequent single-fruit segmentation,

obstacles perception and target selection. The performance of the

widely used semantic segmentation network DeepLab v3+ and the

proposed DeepLab v3+ with SFM were compared on the Tomato

dataset. The visual comparison results showed that the

segmentation of wires and stems were significantly enhanced by

using DeepLab v3+ with SFM (Figure 6), demonstrating that SFM

can effectively assist semantic segmentation networks to parse

objects with slender structures more accurately.

In the quantitative comparison, we included U-net network

(Ronneberger et al., 2015) as an additional baseline network and

compared it with the model with SFM. The quantitative analysis

results showed that both models with SFM achieved better

performance, while DeepLab v3+ with SFM exhibited the best

semantic segmentation performance (Table 2). The acc of DeepLab

v3+ with SFM reached 96.75% and the mIoU exceeded that of

DeepLab v3+ by a gap of 2.19%. The IoU values of most classes have

been improved to varying degrees due to the introduction of spatial

relationship through SFM (Table 3), especially for obstructions with
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slender structures. Notably, significant enhancements were observed

in the classes of stems and wires (Table 3), where U-net with SFM

showed a respective increase of 2.48% and 5.07% and DeepLab v3+

with SFM exhibited an increase of 2.30% and 5.00%. Overall, the

optimized approach resulted in more accurate and smooth

segmentation due to the spatial-relationship perception ability of

SFM, which was beneficial to the recognition of obstructed fruits.

Moreover, the improvement of semantic segmentation

performance by introducing SFM was also validated on a Pepper

dataset (Barth et al., 2018) (Supplementary Material 2). The acc of

DeepLab v3+ with SFM reached 90.56% and the mIoU exceeded

that of DeepLab v3+ by a gap of 4.93% (Supplementary Table S1).

Notably, significant enhancements were observed in the classes of

stems, branches and leaf stems, and wires (Supplementary Table

S2), where DeepLab v3+ with SFM exhibited an increase of 9.74%,

4.49% and 11.47% in IoU values. The result indicated that our

algorithm exhibited strong generalization ability.
3.3 Positive effect of depth maps and
adaptive K-means clustering on fruit
instance segmentation

The depth maps were used to assist in the segmentation of fruit

instances in our method. The positive effect of depth maps on pixel

clustering of fruit instances was shown in Figure 7, where the

combination of depth maps and 2D images enabled the

differentiation of adjacent fruits in 2D images based on different

depth values (the first and second rows in Figure 7), while similar

depth values also prevented oversized fruits from being cut apart

(the third row in Figure 7). The reason for the preferable

performance of instance segmentation was that depth maps

provided more discriminating information.

The quantitative comparison results further proved the positive

role of depth maps in segmentation of mature fruit instances

(Table 4). When the depth maps were used as input of pixel

clustering, the statistical results of fruit instance segmentation

were significantly higher where the Precision, Recall and F1 were

improved by 4.8%, 12.8% and 9.44%, respectively.

Different K values were used to demonstrate the effectiveness of

the proposed adaptive K-means clustering algorithm (Table 5). The

statistical results showed that the adaptive K-means clustering had

obvious advantages over different K-values in fruit instance

segmentation. Although the Precision reached 94.11% when K was

set to 2, both Recall and F1 score were unsatisfactory (Table 5).

When k was set to 4, Precision, Recall and F1 reached 87.80%, 72.00%

and 79.11% respectively, however, they still fell short of the adaptive

K-means clustering method by 4.2%, 11.63% and 8.5%.
3.4 The obstacles perception effectively
assists target selection and location

The target fruits were selected or discarded according to the

judgment of the categories of the obstacles (Figure 8). The fruit was

discarded if the obstacle was a stem or wire that would hinder the
TABLE 1 The accuracy (acc) and mean Intersection over Union (mIoU) of
DeepLab v3+ trained on different datasets.

Training data type acc (%) mIoU (%)

Images taken under diverse
weather conditions

96.53 62.12

Images taken under sunny weather conditions 92.00 45.40

Images taken under cloudy weather conditions 92.41 45.27
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operation of the robotic arm (the first to third columns of Figure 8),

whereas the fruit was retained if the obstacle to the fruit was a leaf

(the last column of Figure 8).

To further validate the performance of our method in obstacle

perception, we conducted an analysis on all occluded fruits in the

validation and testing set (Table 6, Supplementary Material 3). The

results showed that 86.67% of the occluded fruits were successfully

perceived, with 96.15% of the obstacle categories were correctly

recognized. Specifically, for different types of obstacles including

stems, wires, branches and petioles, and leaves, the obstacle detection

accuracies were 85.71%, 66.67%, 100%, and 100%, respectively

(Table 6, Supplementary Material 3). The corresponding false

detection rates for these obstacle types were 8.33%, 0%, 0%, and

0%, respectively. For different densities of obstacles, such as single

obstacle and multiple obstacles, the obstacle detection accuracies

were 84.62% and 100%, while the false detection rates were 4.55%

and 75%. This indicated that in low-density obstacles environments,

there was an increased likelihood of missing fine obstacles such as

wires; however, the accuracy of detecting the obstacles categories was

high at 95.45%. Conversely, in high-density obstacles scenarios, the

obstacles detection accuracy was high at 100%, while accurately
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identifying all categories of obstacles proved to be more challenging.

Additionally, our method achieved an accuracy rate of 86.67% in

distinguishing between pickable (obscured by leaves) and non-

pickable (obscured by stems, wires or branches) fruits. Specifically,

for different types of obstacles, including stems, wires, branches and

petioles, and leaves, the judgment accuracies of fruit pickability were

85.71%, 66.67%, 100%, and 100%, respectively (Table 6,

Supplementary Material 3). For different densities of obstacles,

such as single obstacle and multiple obstacles, the judgment

accuracies of fruit pickability were 84.64% and 100%. This

indicated that the accuracy of determining whether the fruit can

be picked or not was higher for high-density obstacles compared to

low-density obstacles. The above results demonstrated the

effectiveness of our approach in recognizing obstructed fruits and

preventing potential issues such as mechanical arm entanglement.

The proposed method was compared with the fruit selection

and localization methods based on Yolo v5 model (Redmon et al.,

2016; Tong et al., 2017) to verify its ability of visual obstacle

avoidance. Yolo v5 was employed to detect mature and

harvestable fruits. By incorporating depth information, the closest

and largest fruit was selected as the target for picking, with its center

designated as the picking point. Yolo v5 demonstrated high

detection performance for mature fruits in our dataset, achieving

a Precision of 96.4% and a Recall of 92.2%. Although the fruit

detection efficiency of Yolo v5 was commendable, numerous

occluded fruits were observed in its detection results (Figure 9),

which would also be selected as picking targets. Figure 10 showed

some selection results of Yolov5-based method and our method,

where the targets detected by Yolov5-based method (the fruit

selection and localization methods based on Yolo v5) were

obstructed by stems or wires (Figure 10B), whereas our method

can successfully avoid these occluded fruits (Figure 10C).
TABLE 2 The accuracy (acc) and mean Intersection over Union (mIoU)
of different semantic segmentation methods.

Method acc (%) mIoU (%)

U-net 91.74 50.28

U-net with SFM 92.94 52.81

DeepLab v3+ 96.53 62.12

DeepLab v3+ with SFM 96.75 64.31
FIGURE 6

Visual comparison of the parsing results of different semantic segmentation methods. (A) Original images, (B) the segmentation results of DeepLab
v3+, (C) the segmentation results of DeepLab v3+ with SFM, (D) the ground truth labels. Class labels: black indicates background, red indicates
mature fruits, green indicates immature fruits, yellow indicates peduncles, dark blue indicates stems, purple indicates branches and petioles, light
blue indicates wires and gray indicates cuts.
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The Precision, Recall and F1 of our method in picking targets

selection and location were 88.9%, 84.2% and 86.5% (Table 7), which

were 18.9%, 10.5% and 14.7% higher than that of Yolov5-based

method. The better performance of our method was largely attributed

to the fact that our method can remove the occluded fruits. The mean

PE between the detected results and the annotations of picking targets

were calculated, and the mean PE of our method and that of Yolov5-

based method were compared (Table 7). The mean PE of our method

was 9.5% with an average radius of 48.85 pixels, which was obviously

superior than that of Yolov5-based method, with a proportion

exceeding 10%, partly because our method used the minimum

circumcircle of the visible and blind plots of the fruit as the picking

target, which reduced the center point offset when part of the fruit

was missing due to the occlusion of obstacles.

Additionally, we categorized the images into two groups (one

group comprised 26 images featuring dense obstacles, whereas the

other included 24 images characterized by sparse obstacles) to

evaluate the performance of our method under varying obstacle

complexities and densities. Figure 11 illustrated the selection results

of both Yolov5-based method and our proposed method across

varying complexities and densities of obstacles. The visualization

results indicated that both methods effectively selected the correct

target in scenarios with low obstacle complexity and density,

however, as occlusion intensified, Yolov5-based method faced

increased challenges in avoiding occluded fruits. The quantitative

comparison results indicated that our proposed method

(precision=87.5%) significantly outperformed Yolov5-based

method (precision=58.3%) in scenarios with dense obstacles

(Table 8), largely due to its effective obstacle detection capabilities.

In scenarios with fewer obstacles (Table 9), both our method and

Yolov5-based method exhibited commendable fruit selection

performance, achieving precision of 90.9% and 90.4%, respectively.

Our method demonstrated effective fruit selection and localization

performance across scenes with varying obstacle complexity and

density, thereby validating its robustness and applicability.
3.5 Computational efficiency analysis

On the images with a resolution of 600×800 pixels, the average

time consuming for each phase of our method was 0.018s, 0.8s, and

0.013s, respectively, and the total time consuming was less than 1s.

We also investigated the time consumption of the same input on

Yolov5-based method. Both methods were implemented based on

Python programming language and tested on single NVIDIA

GeForce GTX1660. Although our method took about 0.6 seconds

longer than Yolov5-based method, the total time was still very short

and acceptable for current harvesting robots. This can be

understood as sacrificing a reasonable time to perceive obstacles

within the fruits.
4 Discussion

Robotic harvesting is a complex task that integrates

multidisciplinary expertise, including kinematics, control systems,
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machine vision, and behavioral science. A pivotal initial step for

harvesting robots is to accurately perceive the target fruit and its

surrounding environment through advanced machine vision

techniques. To enhance the efficiency of the picking process, it is

imperative that the vision system of harvesting robots delivers

comprehensive information, encompassing fruit recognition,

ripeness assessment, 3D coordinate localization, obstacle

detection, and estimation of the fruit’s 3D posture, and so on.

Objective detection algorithms can effectively distinguish ripe and

unripe fruits, and by integrating depth image information, the 3D

coordinates of the fruits can be accurately located. While, obstacle

recognition has always been a challenge and is often overlooked in

the vision systems of harvesting robots. Accurate obstacle

recognition is crucial for determining harvestable targets and

planning efficient harvesting paths.

To address the issue of fruit occlusion during picking, a

prioritized selection method for unobstructed fruits was proposed
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in this study. The proposed method achieved target recognition and

localization while also perceiving obstacles, demonstrating its

effectiveness in picking target selection and location in intricate

scenarios. However, revisions were still necessary to further

enhance the capacity of the method. The accuracy of target

selection and location largely depends on the performance of the

image semantic segmentation and the pixel clustering for instance

differentiation. The segmentation of obstacles such as stems

basically meet the requirement of the target selection algorithm,

but the segmentation accuracy of extremely slender obstacles such
TABLE 5 Comparison of instance segmentation performance of mature
tomato fruits under different K values.

K Precision (%) Recall (%) F1 (%)

2 94.11 24.62 30.03

3 87.88 41.43 56.31

4 87.80 72.00 79.11

5 70.45 51.67 59.61

6 72.41 56.21 63.28

7 69.73 79.10 74.12

8 58.06 70.58 63.71

Adaptive 92.00 83.63 87.61
TABLE 4 The performance of instance segmentation of mature fruits
with and without the depth maps as input.

Method Precision (%) Recall (%) F1 (%)

without
depth maps

87.20 70.83 78.17

with depth maps 92.00 83.63 87.61
FIGURE 7

Pixel clustering with or without the information of depth maps. (A) Original RGB images, (B) image semantic segmentation for fruit differentiation,
(C) visualization of pixel clustering of mature fruits without the information of depth maps, (D) visualization of pixel clustering of mature fruits with
the information of depth maps.
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as wires still need to be further improved. Also, two typical issues

may arise during the processes of instance differentiation and

obstacle perception. The first issue pertains to the unsuccessful

separation of tightly overlapping fruits, resulting in their

classification as a single harvesting target. To alleviate this

problem, it is imperative to enhance pixel clustering by

incorporating more comprehensive judgments of the instances for

improved segmentation performance, or consider employing deep

learning for fruit instance segmentation. The second issue pertains

to the neglect of obstacles located on the edge of the fruits by the

perception algorithm. Therefore, further optimization of the

obstacle perception algorithm was essential, such as augmenting

its ability to detect obstacles surrounding fruit edges, or avoiding

this potential risk by providing more fruit pose information to

coordinate with fruit grasping actions.
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Our proposed method demonstrated an appreciable ability in

selecting and locating barrier-free mature fruits within non-

structural environments, especially avoiding fruits obscured by

stems or wires. This advancement offers a more reliable and

practical solution for fruit recognition and localization of

harvesting robots. However, there are still certain limitations,

such as the absence of detailed information regarding the posture

of fruit. Accurate fruit pose estimation is crucial for identifying

optimal grasping points and planning the most efficient harvesting

path and actions. Achieving 3D pose estimation of tomatoes within

complex growth environments, while synchronizing it with the

posture of the end-effector, is essential for minimizing damage to

surrounding fruits and foliage, significantly improving the success

rate of harvesting. In the future, we intend to estimate the posture of

fruits through the integration of 2D and 3D visual features in
TABLE 6 The accuracy of obstacle perception for occluded fruits.

Categories of obstructions

Stems Wires
Branches

and petioles
Leaves

Single
obstacle

Multiple
obstacles

All
fruits

The perception accuracy of the presence of
obstacles (%)

85.71 66.67 100.00 100.00 84.62 100.00 86.67

The recognition accuracy of obstruction
categories (%)

91.67 100.0 100.00 100.00 95.45 25.00 96.15

The judgment accuracy of fruit
pickability (%)

85.71 66.67 100.00 100.00 84.64 100.00 86.67
fron
FIGURE 8

The judgment of the categories of obstructions on occluded tomatoes. (A) original RGB images, (B) the instances of tomato fruits, (C) the semantic
segmentation maps and blind spots enclosed by gray quadrilaterals.
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FIGURE 9

Visualization of the detection results of Yolo v5. (A) Original RGB images, (B) the detection results, where red window represented mature fruit,
green window represented immature fruit and the number represented confidence score.
FIGURE 10

Visualization of the selection results of Yolov5-based method and our method. (A) Original RGB images, (B, C) the outcomes of Yolov5-based method and
our method, respectively, (D) manual annotations of the targets in the ground truth images. All detected fruits and annotations were circled in yellow.
Frontiers in Plant Science frontiersin.org14

https://doi.org/10.3389/fpls.2024.1460060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2024.1460060
conjunction with keypoint detection, serving the motion path

planning of the robotic arm and guiding the grasping posture of

the gripper, thereby enabling high-efficiency and higher-quality

fruit picking. Additionally, the vision system must be capable of
Frontiers in Plant Science 15
addressing various weather conditions and changes in lighting, as

well as adapting in real-time to dynamic changes such as the

movement of fruits or foliage, ensuring sustained accuracy in fruit

recognition and positioning. Consequently, significant efforts are

still required to enhance the robustness and real-time performance

of the algorithms.
5 Conclusions

Encountering obstacles during the mechanical picking process

of tomatoes is inevitable, despite the growing environments are

gradually transitioning from unstructured to semi-structured.

These obstacles, such as slender stems obstructing the fruits, often

entangled with robotic arms and result in picking failures. Our

research introduced a novel method for selecting and locating

barrier-free fruits based on semantic segmentation and obstacle

perception algorithm that offers a solution for selecting safe targets

for harvesting robots in practical applications. Each phase of the

proposed method offers distinct advantages. Firstly, the easy-to-use

spatial-relationship feature module designed for the image semantic
FIGURE 11

Visualization of the selection results of Yolov5-based method and our method under different obstacle complexities and densities. The two upper
rows illustrated results under sparse obstacles, while the two lower rows illustrated results under dense obstacles. (A) Original RGB images, (B) and
(C) the outcomes of Yolov5-based method and our method, respectively, (D) manual annotations of the targets in the ground truth images. All
selected fruits and annotations were circled in yellow.
TABLE 7 Quantitative evaluation of the performance of two methods in picking-target selection and location.

Method Precision (%) Recall (%) F1 (%) mean PE (%)

Yolov5-based method 70.0 73.7 71.8 10.8

Our method 88.9 84.2 86.5 9.5
TABLE 8 The quantitative comparison of our method and Yolov5-based
method on images with dense obstacles.

Method Precision (%) Recall (%) F1 (%)

Yolov5-
based method

58.3 63.6 60.8

Our method 87.5 80.8 84.0
TABLE 9 Comparison results of our method and Yolov5-based method
on images with sparse obstacles.

Method Precision (%) Recall (%) F1 (%)

Yolov5-
based method

90.4 86.3 88.3

Our method 90.9 86.9 88.9
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segmentation enabled finer segmentation of slender structural

objects by discovering the spatial relevance with features.

Secondly, incorporating depth maps as input of adaptive K-means

clustering significantly enhanced the performance of fruit instance

segmentation. Lastly, our proposed obstacle perception and target

selection algorithm can effectively select and discard both non-

occluded and occluded fruits. Experiments conducted on our

Tomato Dataset and our Tomato Harvesting Robot Platform

demonstrated that the proposed spatial-relationship features

greatly improve semantic segmentation performance while

showcasing our method’s ability to exclude obstructed fruits in

target selection and location. It is worth noting that our proposed

method possesses the potential for extension to a wide range of

similar target recognition and localization tasks related to

commonly cultivated fruits and vegetables, such as peppers,

apples, and kiwis, demonstrating universality and versatility

applicability. The model’s generalization ability suggests that it

can be calibrated and deployed across various agricultural

scenarios and scales, thereby providing a robust solution for

automated detection systems within the smart farming sector.

The current methodology, while promising, still faces several

challenges in the visual task for robotic fruit harvesting. Firstly, there

exists a deficiency in the provision of comprehensive posture

information regarding fruits and their stems, which is essential for

achieving precise robotic manipulation. Additionally, the segmentation

accuracy for extremely slender obstacles, such as wires, necessitates

further enhancement. The algorithm also faces difficulties in effectively

distinguishing and segregating fruits that are heavily overlapping or

entangled. Furthermore, to effectively perceive the dynamic changes of

fruits, branches, and other obstacles during the harvesting process,

there is a pressing need to enhance both the computational efficiency

and real-time performance of the algorithm.

In our future research, we intend to construct an integrated

end-to-end network informed by the concepts presented in this

paper. Multi-task learning networks present a promising approach

to achieving this objective, as they effectively balance efficiency

while addressing multiple parsing tasks within the visual perception

system of fruit harvesting robots. Furthermore, we will refine the

backbone of the network to enhance its ability for segmenting

extremely slender obstacles, such as wires. Concurrently, we will

utilize the powerful feature extraction capabilities of the neural

network to enhance the performance of fruit instance segmentation.

Additionally, in the new design, we also plan to add the fruit pose

estimation through the integration of 2D and 3D visual features in

conjunction with keypoint detection. This capability is crucial for

guiding robotic grippers to approach and grasp the fruits from the

most advantageous angles, thereby minimizing the risk of damage.

This integrated network will not only facilitate accurate fruit

selection and positioning, but also support motion path planning

for robotic arms and guide gripping postures during fruit

harvesting. These enhancements will yield more comprehensive,

accurate and efficient visual information, while enhancing the

harvesting robot’s ability to adapt to the unique posture of each

fruit and to avoid complex obstacles surrounding it. This is

invaluable for further improve the success rate and efficiency of

fruit harvesting in unstructured complex environments.
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