Check for updates

OPEN ACCESS

EDITED BY Abhay K. Pandey, North Bengal Regional R & D Center, India

REVIEWED BY Mora-Romero Guadalupe Arlene, Autonomous University of the West, Mexico Amauri Bogo, Santa Catarina State University, Brazil

*CORRESPONDENCE Nakarin Suwannarach Suwan_461@hotmail.com

RECEIVED 04 July 2024 ACCEPTED 24 September 2024 PUBLISHED 10 October 2024

CITATION

Suwannarach N, Khuna S, Thitla T, Senwanna C, Nuangmek W, Kumla J and Lumyong S (2024) Morpho-phylogenetic identification and characterization of new causal agents of *Fusarium* species for postharvest fruit rot disease of muskmelon in northern Thailand and their sensitivity to fungicides. *Front. Plant Sci.* 15:1459759. doi: 10.3389/fpls.2024.1459759

COPYRIGHT

© 2024 Suwannarach, Khuna, Thitla, Senwanna, Nuangmek, Kumla and Lumyong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Morpho-phylogenetic identification and characterization of new causal agents of *Fusarium* species for postharvest fruit rot disease of muskmelon in northern Thailand and their sensitivity to fungicides

Nakarin Suwannarach^{1,2,3*}, Surapong Khuna^{1,2}, Tanapol Thitla², Chanokned Senwanna^{1,2}, Wipornpan Nuangmek⁴, Jaturong Kumla^{1,2,3} and Saisamorn Lumyong^{2,3,5}

¹Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand, ²Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand, ³Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, ⁴Faculty of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand, ⁵Academy of Science, The Royal Society of Thailand, Bangkok, Thailand

A significant global problem affecting muskmelon (Cucumis melo L.) is fruit rot caused by phytopathogenic fungi, which results in unsaleable products and substantial financial losses. In 2022 and 2023, fruit rot on muskmelon was found during the postharvest storage period in Phayao Province of northern Thailand. The aim of the current study was to isolate the species of fungi causing the fruit rot lesions. Out of the rot lesions on muskmelons, nine fungal isolates were received. All isolates of fungi were identified through a combination of morphological characteristics and molecular analyses. Based on their morphological traits, all isolated fungal isolate was assigned to the genus Fusarium. All the fungal isolates were determined to belong to the Fusarium incarnatum-equiseti species complex through multi-gene phylogenetic analysis employing the calmodulin (cam), RNA polymerase second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1- α) genes. These isolates were identified as F. compactum (SDBR-CMU483), F. jinanense (SDBR-CMU484, SDBR-CMU485, and SDBR-CMU486), F. mianyangense (SDBR-CMU487 and SDBR-CMU488), and F. sulawesiense (SDBR-CMU489, SDBR-CMU490, and SDBR-CMU491). Moreover, pathogenicity tests were subsequently carried out, and the results indicated that all fungal isolates caused symptoms of fruit rot on inoculated muskmelon fruits. Notably, this result was consistent with the symptoms observed throughout the postharvest storage period. In the fungicide screening test, all fungal isolates showed sensitivity to copper oxychloride. However, all isolates showed insensitivity to benalaxyl-M + mancozeb, carbendazim, mancozeb, and metalaxy. To the best of our knowledge, the present study is the first to identify F. compactum, F. jinanense, and F. mianyangense as new causative agents of muskmelon fruit rot in Thailand and other regions globally. This is also the first report of postharvest fruit rot on

muskmelons caused by *F. sulawesiense* in Thailand. Furthermore, the fungicide screening results indicate that fungicide resistance can be beneficial in developing potential management strategies against postharvest fruit rot disease of muskmelon caused by these four pathogenic *Fusarium* species.

KEYWORDS

fruit rot, fungal disease, muskmelon, pathogen identification, postharvest diseases

1 Introduction

Muskmelon (Cucumis melo L.) is a commercially significant horticultural plant within the family Cucurbitaceae (Farcuh et al., 2020). This crop is grown globally across temperate, tropical, and subtropical areas (Wang et al., 2022a). Numerous scientific investigations have documented that muskmelon fruits serve as a nutritious source for humans. They comprise a range of essential nutritional elements such as ascorbic acid, β -carotene, folic acid, microelements, phenolic compounds, protein, sugars, vitamins, and several bioactive compounds (Lester and Hodges, 2008; Vella et al., 2019; Manchali et al., 2021). Additionally, they exhibit beneficial medicinal characteristics, including analgesic, anticancer, antidiabetic, antioxidant, anti-inflammatory, antimicrobial, antiulcer, diuretic, and hepatoprotective properties (Parle and Singh, 2011; Vella et al., 2019). In 2022, global melons (including cantaloupe, honeydew, and muskmelon) production reached 28.5 million tons, valued at 142.1 billion USD. China was the largest producer, contributing 14.2 million tons, followed by Turkey with 1.5 million tons, India with 1.4 million tons, and Kazakhstan with 1.2 million tons (FAOSTAT, 2022). Indonesia, being the top muskmelon producer in Southeast Asia, is followed by the Philippines and the Lao People's Democratic Republic (FAOSTAT, 2022). Throughout the growth season, harvesting process, and post-harvest storage period, melons are susceptible to various diseases caused by bacteria, fungi, and viruses (Kwon et al., 2009; Pornsuriya and Chitphithak, 2018; Mirtalebi et al., 2019; Lima et al., 2021; de Almeida Nogueira et al., 2023; Namisy et al., 2023). Diseases can reduce both the production and quality of melon fruits, leading to customer dissatisfaction and resulting in economic losses. For example, In North-Central Mexico, diseases caused 13% of the cantaloupe melon losses in 2022 (Espinoza-Arellano et al., 2023). The average crop loss percentage for melons in 2021-2022 was 20.19% per farm in Australia. This includes 5.42% of losses occurring during and after harvest, with insufficient disease control being one contributing factor (Akbar et al., 2024). In 2022, melon losses in Iran, which range from 5% to 9% of total production, could result in economic losses of approximately 100,000 to 200,000 USD (Parsafar et al., 2023). Therefore, accurate disease identification and efficient disease control strategies could help reduce melon crop loss.

In Thailand, the area used for muskmelon production is growing since it has become one of the most significant crops for the economy (Nuangmek et al., 2019). The primary areas for cultivating muskmelons in the northern area of Thailand include Chiang Rai, Chiang Mai, Phayao, Nakhon Sawan, Phitsanulok, Phichit, and Sukhothai Provinces. Muskmelons are grown and harvested throughout the year in Thailand (Nuangmek et al., 2021; Khuna et al., 2022). Fruit rot presents a harmful disease affecting muskmelon fruits both pre-harvest and post-harvest, leading to considerable decreases in productivity and quality (Li et al., 2019; Wonglom and Sunpapao, 2020; Lima et al., 2021). Previous investigation indicates that fungi corresponding to the genera Alternaria (Kobayashi et al., 2004), Diaporthe (Broge et al., 2020), Fusarium (Lima et al., 2021; Khuna et al., 2022), Lasiodiplodia (Suwannarach et al., 2019), Neoscytalidium (Mirtalebi et al., 2019), Paramyrothecium (Huo et al., 2023), Penicillium (Pornsuriya and Chitphithak, 2018), Sclerotium (Kwon et al., 2009), and Stagonosporopsis (Das et al., 2023) have been associated with fruit rot in muskmelons. Additionally, the genus Pythium, a fungus-like microorganism, has been found to cause fruit rot in muskmelons (Singh et al., 2010). The fruit rot symptoms are defined by the existence of light brown to black spots, lesions appearing water-soaked, and irregularly circular in shape, ranging in size from small spots to the decay of the entire fruit (Suwannarach et al., 2019; Zhang et al., 2022a). The infected fruit was covered with masses of mycelium on both the inside and outside (Zhang et al., 2022a). The interior decayed area seemed rotten and was encompassed by tissues that appeared water-soaked (Khuna et al., 2022). Due to the formation of these symptoms, rot disease decreases the fruit's quality and reduces its visual attractiveness to consumers, resulting in a substantial reduction in its market value (Nuangmek et al., 2023).

The fast rate of global population growth and the increasing trend toward healthier lifestyles have contributed to a significant rise in the demand for muskmelon fruits. As a result, the area of plantations used for growing muskmelon plants has greatly expanded (Khuna et al., 2022). On the contrary, the occurrence and seriousness of certain fungal-based diseases have also risen in instances where plants have been cultivated in sub-optimal areas (Wilkinson et al., 2011; Nuangmek et al., 2019). Fruit rot disease on cantaloupes and muskmelons has been observed in Thailand.

10.3389/fpls.2024.1459759

However, research on postharvest fruit rot of watermelon and muskmelon in Thailand has been limited. To date, only three Fusarium species F. equiseti (Nuangmek et al., 2019), F. incarnatum (Wonglom and Sunpapao, 2020), and F. melonis (Khuna et al., 2022) have been identified as causal agents. Therefore, there is still a need to identify additional causative agents of these diseases in Thailand. In this study, fungal-caused fruit rot disease on muskmelons was observed throughout both postharvest storage periods in 2022 and 2023 (from March to April and from mid-December to January) in Phayao Province, northern Thailand. The disease incidence ranged from 10% to 15% depending on the quantity of fruits (100 fruits per pallet box) contained within each pallet box. Consequently, a substantial portion of the fruit crop was unable to be sold. Therefore, this study aimed to isolate, identify, and assess the pathogenicity of the fungi causing the disease. The obtained fungi were identified by examining their morphological traits along with conducting a multigene phylogenetic analysis. The pathogenicity of the isolated fungi was confirmed through the application of Koch's postulates. Subsequently, the sensitivity of isolated fungi to some commercial fungicides in solid culture was investigated.

2 Materials and methods

2.1 Sample collection

Fruit rot disease was observed on muskmelon (*Cucumis melo* L.) fruits throughout the postharvest storage at 26 to 32°C and 65 to 75% relative humidity over a period of 7 to 14 days in Mae Chai District, Phayao Province, northern Thailand in 2022 and 2023 (two periods: March to April and mid-December to January). Ten fruits presenting typical symptoms were shipped to the laboratory within 24 h of being randomly selected and kept in sterile plastic bags. Upon arrival at the laboratory, the fruits exhibiting symptoms were evaluated through a stereo microscope (Nikon H55OS, Tokyo, Japan) and subsequently kept in a plastic container with moist filter paper to encourage sporulation.

2.2 Fungal isolation

Samples of fruits were processed in order to isolate fungal causal agents. The method of single conidial isolation described by Choi et al. (1999) was employed to isolate causal fungi from lesions. This process was conducted on 1.0% water agar with an addition of 0.5 mg/L streptomycin under a stereo microscope. The isolated plates were kept in the dark at 25°C for 24–48 h, after which individual germ conidia were moved to potato dextrose agar (PDA; Conda, Madrid, Spain) supplemented with 0.5 mg/L streptomycin. The pure fungal isolates were stored short-term in PDA slants at 4°C and long-term in 20% glycerol at -80° C. The fungal isolates in their pure form were deposited and permanently maintained in a metabolically inactive state at the Sustainable Development of Biological Resources culture collection, Faculty of Science, Chiang Mai University (SDBR-CMU), situated in Chiang Mai Province, Thailand.

2.3 Fungal identification

2.3.1 Morphological study

Fungal isolates were examined morphologically employing methodologies outlined by Crous et al. (2021a) and Wang et al. (2019a, b). The characteristics of the colonies, including their colony morphology, pigmentation, and odor, were examined on PDA, oatmeal agar (OA; HiMedia, Maharashtra, India), and synthetic nutrient-poor agar (SNA) after being incubated for seven days in darkness at 25°C. A light microscope (Nikon Eclipse Ni-U, Tokyo, Japan) was employed to conduct micromorphological characteristics. The Tarosoft (R) Image Frame Work software was performed to conduct measurements on at least 50 measurements for each anatomical structure (such as chlamydospores, conidiophores, phialides, and conidia).

2.3.2 DNA extraction, PCR amplification and sequencing

Fungal mycelia cultured for one week on a PDA was utilized for genomic DNA extraction employing the Fungal DNA Extraction Kit (FAVORGEN, Ping-Tung, Taiwan), following the guidelines provided by the manufacturer. Amplification of the calmodulin (cam), RNA polymerase second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1- α) genes was performed through the use of polymerase chain reaction (PCR), with the CAL-228F/CAL-2Rd primers (Carbone and Kohn, 1999), RPB2-5F2/ RPB2-7cR primers (O'Donnell et al., 2010), and EF1/EF2 primers (O'Donnell et al., 1998), respectively. The amplification process for the three genes was carried out in individual PCR reactions. A peqSTAR thermal cycler (PEQLAB Ltd., Fareham, UK) was used for the amplification process, which involved an initial denaturation step for 3 min at 95°C, next to 35 cycles of denaturation for 30 s at 95° C, annealing steps for 30 s at 59°C (cam), 1 min at 52°C (rpb2), and 50 s at 60°C (*tef1-\alpha*), and a final extension step at 72°C for 1 min. A PCR clean-up Gel Extraction NucleoSpin® Gel and a PCR Clean-up Kit (Macherey-Nagel, Düren, Germany) were employed to purify the PCR products in accordance with the manufacturer's instructions, following which they were examined on a 1% agarose gel electrophoresis. After final purification, direct sequencing was performed on the PCR products. The sequences were automatically determined in the Genetic Analyzer at the 1st Base Company (Kembangan, Malaysia) through sequencing reactions using the PCR primers mentioned earlier.

2.3.3 Sequence alignment and phylogenetic analyses

The BLAST tool, accessible at NCBI (http://blast.ncbi.nlm.nih.gov, accessed on 10 April 2024), was used to conduct similarity searches for the analysis of the *cam*, *rpb2*, and *tef1-* α sequences. The sequences from this study, along with those obtained from previous studies and the GenBank database (with \geq 60% query coverage and \geq 85–100% sequence similarity), were selected and are listed in Table 1. MUSCLE (Edgar, 2004) was utilized for multiple sequence alignment, and BioEdit v. 6.0.7 (Hall, 2004) was performed for any necessary improvements. The combined

cam, rpb2, and tef1- α dataset were employed for phylogenetic analysis. The F. camptoceras species complex (FCAMSC) was selected to consist of F. camptoceras CBS 193.65 and F. neosemitectum CBS 115476 as the outgroup. The process for generating a phylogenetic tree involved the utilization of both Bayesian inference (BI) and maximum likelihood (ML) techniques. The ML analysis was performed using RAxML-HPC2 on XSEDE version 8.2.12 (Felsenstein, 1985; Stamatakis, 2006). This analysis utilized 25 categories and 1000 bootstrap replicates with the GTRCAT model of nucleotide substitution, accessed via the CIPRES web portal (Miller et al., 2009). jModeltest version 2.3 (Darriba et al., 2012) was employed to determine the optimal model for nucleotide substitution following the Akaike Information Criterion (AIC) methodology. The BI analysis was determined by Markov Chain Monte Carlo sampling (MCMC) using MrBayes version 3.2 (Ronquist et al., 2012). Six simultaneous Markov chains were performed for four million generations using random beginning trees and trees were sampled every 1000 generations. The run was stopped when the standard deviation of split frequencies reached below 0.01. The first 20% of the generated trees representing the burn-in phase of the analysis were discarded, and the remaining trees were used for calculating Bayesian posterior probabilities (PP) in the majority rule consensus tree. FigTree version 1.4.0 was used to visualize the phylogenetic trees from both ML and BI analyses (Rambaut, 2019).

2.4 Pathogenicity tests

This experiment utilized conidia obtained from fungal isolates cultured for two weeks on PDA. Healthy commercial muskmelons were washed thoroughly, and then their surfaces were sterilized by soaking them for 5 min in a sterile sodium hypochlorite solution with a concentration of 1.5% (ν/ν). Following that, sterile distilled water was utilized to wash them three times. The fruits were allowed to air dry at room temperature ($25 \pm 2^{\circ}$ C) for a period of 10 min after surface-disinfection (Khuna et al., 2022). Following the airdrying process, aseptic needles were used to create a uniform wound (consisting of 5 pores, each 1 cm deep and 1 mm wide) along the equator of each fruit (Nuangmek et al., 2019). A quantity of 500 µL of a conidial suspension $(1 \times 10^6 \text{ conidia/mL})$ from each fungal isolate was applied to the wounded fruits. Accordingly, the control group of wounded fruits received an inoculation of sterile distilled water. Then, the inoculated fruit was kept in an individual sterile plastic container ($26 \times 35.5 \times 20$ cm) under 80% relative humidity conditions. The plastic containers were maintained in a growth chamber at a temperature of 25°C under a 12-hour light cycle for a duration of one week. A total of ten replicas were used for each treatment, which was repeated twice under the same condition. The level of disease infections was evaluated using a score of 1-25% (mild), 26-50% (moderate), 51-75% (severe), and 76-100% (very severe) based on the degree of disease infection on the damaged fruit portions (Nuangmek et al., 2023). Confirmation of Koch's postulates was achieved by re-isolating the fungi through the singlespore isolation method from any lesions that occurred on the inoculated fruits.

2.5 Screening of commercial fungicides against *Fusarium* species

Eight commercially available fungicides, inculding benalaxyl-M (4%) + mancozeb (65%) (Fantic M WG[®], Thailand), captan (Captan 50[®], Thailand), carbendazim (Dazine[®], Thailand), copper oxychloride (Copina 85 WP[®], Thailand), difenoconazole (12.5%) + azoxystrobin (20%) (Ortiva[®], Thailand), difenoconazole (Score[®], Thailand), mancozeb (Newthane M-80[®], Thailand), and metalaxyl (Metalaxyl[®], Thailand) were examined in this study according the approach indicated through Suwannarach et al. (2015) and Khuna et al. (2023). The fungicides used in this study were available commercially in Thailand and were approved for usage. The in vitro applications of benalaxyl-M + mancozeb, captan, carbendazim, copper oxychloride, difenoconazole + azoxystrobin, difenoconazole, mancozeb, and metalaxyl were recommended at dosages of 1380, 750, 750, 1700, 243.75, 187.5, 1200, and 625 ppm, respectively, according to the labels for each fungicide. The final concentration was obtained by preparing each fungicide and adding it to an autoclaved PDA. The test media was added using mycelial plugs (5 mm in diameter) that had been cultivated on PDA for one week in the dark at 25°C. Control did not receive any treatments with fungicide. The plates were maintained in darkness at a temperature of 25°C. Following one week of incubation, the mycelial growth of each isolate was evaluated on in-dividual plates, and a comparison was made between the growth in PDA medium supplemented with fungicides and the growth observed in the control. The calculation of the percentage growth inhibition for each isolate was performed using the formula provided by Achilonu et al. (2023) and Pandey et al. (2024). Each fungal isolate was ranked as sensitive ($\geq 50\%$) or insensitive (< 50%) based on growth inhibition (Yamada et al., 2016; Pandey et al., 2024). Five replications were conducted for each fungicide and fungal isolate. The experiments were independently repeated twice in the same biological conditions.

2.6 Statistical analysis

For the normality test, data from the two repeated fungicide sensitivity experiments were analyzed using the Shapiro-Wilk test in SPSS program version 26 at a significance level of p < 0.05. The results indicated non-significant findings, so the data from these repeated experiments were assessed for the assumptions of one-way analysis of variance (ANOVA). Duncan's Multiple Range Test (DMRT) was then employed to identify significant differences at $p \le 0.05$.

3 Results

3.1 Sample collection and disease symptoms

A total of 10 samples of fruit rot on muskmelon were taken from postharvest storage pallet boxes situated in Phayao Province, northern Thailand. The initial appearance of the symptoms was in

TABLE 1 Details regarding the sequences utilized in the molecular phylogenetic analysis.

PurpletShrain/Yooka carnrpb2toff-coPerformeFinansin alorenaCBS 31385NNT70311NNT7058NNT70454Sac cd. 2019Fanarian alorenaCBS 31387NNT70312NNT7057NNT70454Sac cd. 2019Fanarian alorenaCBS 31387NNT7051Sac NNT7051Sac dd. 2019Fanarian alorenaIC1699NK28964NR28954Warg ed. 2019Fanarian alorenaNBL 44589GQ50556GQ50546GQ50546GQ50546Fanarian alorenaNBL 44589GQ50557GQ50546GQ50546GTomall ed. 2009Fanarian alorenaNBL 44589GQ50557GQ50546GQ50546GTomall ed. 2009Fanarian alorenaNBR 4402GQ50557GQ50546GQ50546Sache ed. 2019Fanarian alorenaCBN 677-IS9949IS98465Sache ed. 2019Fanarian alorenaCBN 677-IS99494IS98465Sache ed. 2019Fanarian alorenaCBN 674MX20666MX20972OR09210Sanare ed. 2012Fanarian alorenaCBN 674MX1005MX10757MX10756Sanare ed. 2019Fanarian alorenaCBN 574MX1005MX10757MX10756Cobandl ed. 2019Fanarian alorenaCBN 574MX1005MX10757MX10756Cobandl ed. 2019Fanarian alorenaCBN 574MX1005MX10757MX10756Cobandl ed. 2019Fanarian alorenaCBN 574MX10756MX10757MX10756Cobandl ed. 2019Fanarian alorena<		Strain/Isolate	GenBank Access				
Packar of any	Fungal Taxa		cam	m rpb2 tef1-α			
Packnam kernerCR S1337NNT9312NNT937NNT944Nat all splitFacadman acataligenam1C114 ⁷¹ MC2097MC209	Fusarium aberrans	CBS 131385 ^T	MN170311	MN170378	MN170445	Xia et al., 2019	
Packaria arcautigoramLC12H2 ^T MX28979MX289730 <td>Fusarium aberrans</td> <td>CBS 131387</td> <td>MN170312</td> <td>MN170379</td> <td>MN170446</td> <td colspan="2">Xia et al., 2019</td>	Fusarium aberrans	CBS 131387	MN170312	MN170379	MN170446	Xia et al., 2019	
Pandma metanigonamIAC1995MK20976MK20976WK209776WK209776WK209776WK209776WK209776WK209776WK209776WK209776WK209776WK209776WK2097776WK2097776WK2097776WK2097776WK20977776WK20977776WK20977777WK20977777WK20977777WK209777777777WK209777777777777777777777777777777777777	Fusarium arcuatisporum	LC12147 ^T	MK289697	MK289739	MK289584	Wang et al., 2019a	
Paraim brevioudatanoNRBL 45847G030579.G030584.G030568.O'Donnell et al. 2009Faorinar cattingeneURM 677°-L539450.G030584.G030584.G030584.G030584.Faorinar cattingeneURM 677°-L539450.S159460.State et al. 2019Faorinar cattingeneURM 677°Al7007.K15940.S159460.State et al. 2019Faorinar cattingeneG058057.M17037.M17037.M17037.State et al. 2019Faorinar cattingeneS158.M17037.M17037.M17037.M17045.Mace et al. 2012Faorinar cattingeneS158.O12022.O12022.O12022.O12022.State et al. 2012Faorinar cattingeneS188.O12022.M17037.M17037.M17045.M17047.M17047.Faorinar cattingeneS18.O12022.M1707.M1704.M1704.M17047.M1704.Faorinar cattingeneC84.04.01M12067.M1207.M1704.M1207.M1704.M1204.Faorinar cattingeneC84.04.01M12067.M1207.M1204.M1204.M1204.Faorinar cattingeneC84.04.01M12067.M1207.M1204.M1204.M1204.Faorinar cattingeneC84.04.01M1207.M1204.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G03054.G030	Fusarium arcuatisporum	LC11639	MK289658	MK289736	MK289586	Wang et al., 2019a	
Pactrian breislandarianNRN 4594GQ205579GQ205464GQ205684O'Donnell et al, 2009Pasarian castinguraneURM 6778-1.5398451.539846Sartos et al, 2019Pasarian castinguraneURM 6778-NI/1017MIN1034MIN70451Kar et al, 2019Pasarian castinguraneCRS 160.57MI12017MIX0394MIX2017Kar et al, 2019Pasarian circlindiSBR CMU22OP20024OP20024OP20024OP20024OP20024OP20024Pasarian circlindiSBR CMU22OP20024OP2004OP20024OP202	Fusarium brevicaudatum	NRRL 43638 ^T	GQ505576	GQ505843	GQ505665	O'Donnell et al., 2009	
Patriam caringionseURM 679 ⁴ -LS398491LS398461Santos et al. 2019Baariam caterigionesURM 6778~LS398404LS398463Santos et al. 2019Baariam caterigionesCBS 192.5 ¹⁴ MN17017MN170841MN170451Xia et al. 2019Baariam caterigionesCBS 192.5 ¹⁴ MN20071MN20801MN20801Vang et al. 2019Baariam chrafticolaSDBR-CMU23OP02092OP020920OP020920Kbaar et al. 2022Faurian chrafticolaCBS 182.01 ²¹ MN1702MN170890MN170450Khan et al. 2022Faurian chrafticolaCBS 182.01 ²¹ MN1702CQ908130CQ908324OP020910Sbaar et al. 2022Faurian chrafticolaCBS 186.70 ⁴¹ MN12020MN120750MN120750Indmal et al. 2021Faurian confeatumCBS 186.11 ⁸¹ GQ0851CQ908130GQ90540ODomal et al. 2019Faurian confeatumCBS 186.11 ⁸¹ GQ08530GQ90824GQ90540ODomal et al. 2019Faurian compactumCBS 186.11 ⁸¹ GQ08540GQ90540GQ90814GQ90814GQ90814Faurian chooplactinpormCBS 186.11 ⁸¹ GQ08540GQ90540GQ90840ODomal et al. 2009Faurian chooplactinpormCBS 186.11 ⁸¹ GQ08540GQ90540GQ90640ODomal et al. 2009Faurian chooplactinpormCBS 186.11 ⁸¹ GQ08540GQ08540GQ90640ODomal et al. 2009Faurian chooplactinpormCBS 386.91 ⁴¹ GQ08540GQ08540GQ08540ODomal et al. 2009 <tr< td=""><td>Fusarium brevicaudatum</td><td>NRRL 43694</td><td>GQ505579</td><td>GQ505846</td><td>GQ505668</td><td>O'Donnell et al., 2009</td></tr<>	Fusarium brevicaudatum	NRRL 43694	GQ505579	GQ505846	GQ505668	O'Donnell et al., 2009	
Fuariam catingianiaURM 678-LS39804LS39463Station et al. 2019Pasariam cateniformiaCBS 150.25"MNI70317MNI7034MNI70451Xia et al. 2019Fuseriam citralCG896"MK28968MK28971MK29617Wang et al. 2019Fuseriam citralificalSDBS-CMU42"OP02094OP02092OP02092Khuna et al. 2022Fuseriam citralificalSDBS-CMU42"OP02091GN03792OP02091Khuna et al. 2022Fuseriam citralificalSDBS-CMU42"OP02092GN03792OP02091Khuna et al. 2022Fuseriam citralificalCBS 126202"MN17032GN03794MN17056Xia et al. 2019Fuseriam citralificationCBS 158.76"MN12095MN120750MN120750Londard et al. 2019Fuseriam citralificationCBS 458.11"GQ05540GQ05540GQ05540OD0nell et al. 2009Fuseriam compactamCBS 158.31"GQ05540GQ05540GQ05540ODonell et al. 2009Fuseriam compactamCBS 158.77"MN12032MN17036MN120450Xin et al. 2019Fuseriam compactamGBS 158.11GQ05540GQ05540GQ05540ODonell et al. 2009Fuseriam compactamSB 185.31GN0549GN05540GQ05540GQ05540ODonell et al. 2009Fuseriam conglecting moreSIB 30.94"GQ05540GQ05540GQ05540ODonell et al. 2009Fuseriam conglecting moreSIB 30.94"GQ05540GQ05540GQ05540GQ05540GQ06541Fuseriam conglecting more <td>Fusarium caatingaense</td> <td>URM 6779^T</td> <td>-</td> <td>LS398495</td> <td>LS398466</td> <td>Santos et al., 2019</td>	Fusarium caatingaense	URM 6779 ^T	-	LS398495	LS398466	Santos et al., 2019	
Patarian cateniformeCRS 1502 ⁴⁷ NK170317MK17034MK17034NK1a d. 2019Pasarian citraiCG896 ¹⁷ MK289663MK28971MK289617Wang et al. 2019Fasarian citraificalSDBR-CMU22OP02024OP02028OP02029Num et al. 2022Fasarian citraificalSDBR-CMU23ON2027MN170380OP02010Kuan et al. 2021Fasarian citraificalSDBR-CMU23MN17026MN17045Num et al. 2019Fasarian citraificalSGB 6357 ⁴⁷ AN12066MN12076GN0535Commet et al. 2019Fasarian cifratianCBS 6357 ⁴⁷ MN12097MN1707MN17075Infrad et al. 2019Fasarian cifratianCBS 6357 ⁴⁷ AN12069GN0552G05540OP02041 et al. 2019Fasarian cifratianCBS 6357 ⁴⁷ MN12097GN0552G05540OP02041 et al. 2019Fasarian compactamCBS 6357 ⁴⁷ SN12097GN0552G05540OP02041 et al. 2019Fasarian compactamCBS 18131GN0552G05540GN05540GN05614JD02041 et al. 2019Fasarian compactamSB 18131GN0574GN05740GN05540GD02041 et al. 2019Fasarian conglacityporumCBS 15077SN17052SN17054GN05540GD03614 et al. 2019Fasarian conglacityporumCBS 24501GO05514G050570GN05510GD03614 et al. 2019Fasarian conglacityporumCBS 24501GS05570G050570G050570G050570GD03614 et al. 2019Fasarian conglacityporumCBS 2451	Fusarium caatingaense	URM 6778	-	LS398494	LS398465	Santos et al., 2019	
Instairun cirriLC6890 ^T MK28966MK28971MK289617Wang et al. 2019Fuariun cirrullicolaSDBR-CMU421OP02992OP02992OP02992Khuna et al. 2022Fuariun cirrullicolaSDBR-CMU423OP02992OP02992OP029921Khuna et al. 2022Fuariun cirrullicolaSDBR-CMU423OP02992OP02992OP029921Khuna et al. 2019Fuariun cirrullicolaSDBR-CMU43OP02992GQ05814GQ05854OP02092Domal et al. 2019Fuariun cirrullicolaSB 63576MN12076MN12076MN12075Imbad et al. 2019Fuariun confactumGBS 63576MN12097GQ05814GQ05864OP02092OP02092Fuariun confactumGBS 63517GQ0555GQ05824GQ05864OP02092OP02092Fuariun compactumGBS 183717MN12032MN12097BY7897Tis studyFuariun coccanCBS 18491GQ05564GQ05814GQ05564OP02092OP02092Fuariun coccanCBS 454.09GQ05564GQ05564GQ05564OP02092OP02092Fuariun coccanCBS 454.19GQ05564GQ05574GQ05594OP02092OP02092Fuariun coccanCBS 734 ¹⁷ GQ0551GQ05574GQ05594OP02092OP02092Fuariun coccatCBS 734GQ05574GQ05594GD02092GD02092GD02092Fuariun coccatCBS 734GQ05574GQ0559GD02092GD02092GD02092Fuariun fuacidationCBS 1383GQ05574GQ0559 </td <td>Fusarium cateniforme</td> <td>CBS 150.25^T</td> <td>MN170317</td> <td>MN170384</td> <td>MN170451</td> <td>Xia et al., 2019</td>	Fusarium cateniforme	CBS 150.25 ^T	MN170317	MN170384	MN170451	Xia et al., 2019	
Fusirium cirrulitoidaSDRR-CMU42TOP020924OP020928OP020920SP020920SNume et al. 2022Fusirium cirrulitoidaSDRR-CMU43OP020925OP020920OP020921Skuna et al. 2022Fusirium cirrulitoidaSDRR-CMU437SNU170322MN170880MN170450Skuna et al. 2019Fusirium cirrulitoidaSNRL 34032GQ05517GQ05613GQ05653OP020081 et al. 2009Fusirium confectumCBS 635.76*MN120970MN120750MN120750Iombard et al. 2009Fusirium confectumCBS 635.76*MN120970GQ05826GQ05646OP020081 et al. 2009Fusirium compactumCBS 18.31**GQ05954GQ05826GQ05840OP020081 et al. 2009Fusirium compactumCBS 18.177*MN17032MN170390MN170450Ska 4.2.019Fusirium coccumCBS 18.1977*MN17032MN170390MN170450Ska 4.2.019Fusirium coccumCBS 49.4*GQ05514GQ05740GQ05514ODonaell et al.2009Fusirium cocumCBS 49.4*GQ05514GQ05740GQ05514ODonaell et al.2009Fusirium cocumCBS 49.4*GQ05514GQ0552GQ05514ODonaell et al.2009Fusirium cocumCBS 49.4*GQ05554GQ05574GQ05554ODonaell et al.2009Fusirium fusiciatiumCBS 49.4*GQ05554GQ05574GQ05554ODonaell et al.2009Fusirium fusiciatiumCBS 49.4*GQ05574GQ05574GQ05574GQ05574GQ05574GQ05574GQ05574GQ05574GQ05574	Fusarium citri	LC6896 ^T	MK289668	MK289771	MK289617	Wang et al., 2019a	
Huarian citralizadaSDB-C.MU423OP00925OP02092OP02091Khuar et al, 2029Huarian citralizadaCBS 12620TMN17032MN170389MN170450Xa et al, 2019Huarian citralizadaNRBL M032GQ05547GQ505813GQ50553OPonnell et al, 2009Fusarian conjectumCBS 635.76TMN120660MN120750MN120750Lonbard et al, 2019Fusarian conjectumCBS 186.31FFGQ50581GQ50582GQ50548OPonnell et al, 2009Fusarian conjectumCBS 185.31GQ50581GQ50582GQ50548OPonnell et al, 2009Fusarian competumCBS 185.31GQ50581GQ50582GQ50548OPonnell et al, 2009Fusarian concetumCBS 187.77MN17032MN170360MN170450Xa et al, 2019Fusarian concetumSB8.404GQ50514GQ50581GQ50552OPonnell et al, 2009Fusarian concetumCBS 245.61GQ50574GQ50590OPonnell et al, 2009Fusarian concetumCBS 183.79GQ50551GQ50577GQ50597OPonnell et al, 2009Fusarian fusicialtarioCBS 183.74MN17032MN17040MN17047Xa et al, 2019Fusarian fusicialtarioCBS 183.75GQ50571GQ50581GQ50572GQ50592OPonnell et al, 2009Fusarian fusicialtarioCBS 183.75MN17032MN170470MN170470Xa et al, 2019Fusarian fusicialtarioCBS 183.75GQ50571GQ50581GQ50582GQ50581GQ50582GQ50582OPonnell et al, 2009Fusari	Fusarium citrullicola	SDBR-CMU422 ^T	OP020924	OP020928	OP020920	Khuna et al., 2022	
Headrian davamCBS 12402 ^T MN17032MN170389MN170450Ka et al, 2019Headrian davamNRR J4032GQ50537GQ50531GQ50533GQ50533ODonnell et al, 2009Headrian confectumCBS 63576 ^T MN12069MN120750MN120750Iombard et al, 2019Headrian confectumCBS 40.81MN120697GQ50582GQ50548ODonnell et al, 2009Headrian confectumCBS 185.31GQ50580GQ50582GQ50548ODonnell et al, 2009Headrian confectumCBS 185.31GQ50518GQ50548GQ50548ODonnell et al, 2009Headrian conceumCBS 131777MN17032MN17039MN170450MS17043Ka et al, 2019Headrian conceumCBS 304.41GQ50548GQ50582GQ50582ODonnell et al, 2009Headrian conceumCBS 304.91GQ50514GQ50582GQ50554GQ50554GQ50554Headrian conceumCBS 304.91GQ50554GQ50572GQ50544ODonnell et al, 2009Headrian fueldifCBS 113.92 ^T MN17032GN17047MN17047Xi et al, 2019Headrian fueldifCBS 113.92 ^T GQ50554GQ50524GQ50540ODonnell et al, 2009Headrian fueldifCBS 113.92 ^T MN17032Si et al, 2019Si et al, 2019Headrian fueldifCBS 113.92 ^T GQ50554GQ50524GQ50540ODonnell et al, 2009Headrian fueldifCBS 113.92 ^T MN17032Si et al, 2019Si et al, 2019Headrian fueldifCBS 113.92 ^T GQ50554GQ50	Fusarium citrullicola	SDBR-CMU423	OP020925	OP020929	OP020921	Khuna et al., 2022	
Husariam darumNRRL 34032GQS05547GQS05813GQS0565O'Donnell et al, 2009Huariam coffatumGBS 635.76 ^T NN12066NN120736NN120756Lombard et al, 2019Huariam coffatumGBS 43.081NN12057GQS0524GQS0544O'Donnell et al, 2009Huariam compactumGBS 185.31GQS0558GQS0524GQS05646O'Donnell et al, 2009Huariam compactumGBS 185.31GQS0558GQS0524GQS0564O'Donnell et al, 2009Huariam compactumGBS 13177TMN17039MN170396MN170463Xia et al, 2019Huariam conceumGBS 13177TMN17039MN170396MN170463Xia et al, 2019Huariam conceumGBS 34.94 ^T GQS0554GQS05764GQS0558O'Donnell et al, 2009Huariam conceumSB 84.94 ^T GQS05561GQS05829GQS0551O'Donnell et al, 2009Huariam conceumGBS 24.51GQS0551GQS0572GQS0551O'Donnell et al, 2009Huariam cquisteiGS 24.54GQS0556GQS0572GQS0554O'Donnell et al, 2009Huariam fasciculatumGS 113.82MN17039MN17046MN17047Xia et al, 2019Huariam fasciculatumGS 113.82GQS0552GQS0582GQS0561O'Donnell et al, 2009Huariam fasciculatumGS 113.82MN17039MN17047MN17047Xia et al, 2019Huariam fasciculatumGS 113.82GQS0552GQS0582GQS0561O'Donnell et al, 2009Huariam fasciculatumGS 113.83MN17030MN17	Fusarium clavum	CBS 126202 ^T	MN170322	MN170389	MN170456	Xia et al., 2019	
Fisorian offetaturaCBS 635.76 ^T MN12096MN120750MN120750MN120750Inchard et al. 2019Fisorian ordifetaturaCBS 63.01GQ50500GQ50520GQ50640ODonal et al. 2009Fisorian compacturaCBS 18.51GQ50530GQ50540GQ50540GQ50640ODonal et al. 2009Fisorian compacturaSB 18.51GQ50530GQ50540GQ50540GQ50540GD500111GA5012Fisorian concentSB 18.77.7MN12030MN12030MN17040MN17040Aict 3.010Fisorian concentGS 18.17.77GQ50540GQ50540GQ50550GQ50540GD500111GA5012Fisorian concentSR 18.200GQ50540GQ50540GQ50550GQ50551GQ50551GQ50551GQ50551GQ50540GD500111GQ50141Sa 1.2019Fisorian diplicitationGS 25.41GQ50510GQ50520GQ50540GQ50610GD500111GQ50141Sa 1.2019Fisorian fiscicaturaGS 18.132.7GQ50510GQ50520GQ50540GQ5061	Fusarium clavum	NRRL 34032	GQ505547	GQ505813	GQ505635	O'Donnell et al., 2009	
Fusariam confjectumCRS 430.81MN120670MN120737MN120750Lonbard et al. 2019Fusariam compactumCRS 185.31GQ50580GQ50582GQ50548O'Donnell et al. 2009Fusariam compactumCRS 185.31GQ50580GQ50582GQ50564O'Donnell et al. 2009Fusariam compactumSDBR-CMU483P758801P758870P758870This studyFusariam conceamCRS 131777NN170320MN170360MN170463Kat et al. 2019Fusariam conceamCRS 131777GQ50540GQ50574GQ50558O'Donnell et al. 2009Fusariam dufoidatiopronumCRS 349.47GQ50531GQ50570GQ50551O'Donnell et al. 2009Fusariam dufoidatiopronumCRS 54.50GQ50571GQ50570GQ50081O'Donnell et al. 2009Fusariam fusiciellutumCRS 13182 ^T MN170320MN170470MN170470Xia et al. 2019Fusariam fusiciellutumCRS 13182 ^T GQ50551GQ50582GQ50552O'Donnell et al. 2009Fusariam fusiciellutumCRS 13182 ^T MN170340MN170470MN17047Xia et al. 2019Fusariam fusiciellutumCRS 13182 ^T GQ50552GQ50582GQ50582O'Donnell et al. 2009Fusariam fusiciellutumCRS 13182 ^T MN170340MN170470MN17047Xia et al. 2019Fusariam fusiciellutumCRS 132.57 ^T GQ50552GQ50582GQ50582O'Donnell et al. 2009Fusariam fusiciellutumKR18405 ^T MK28957MK28957Mag et al. 2019Fusariam fusiciellutum <t< td=""><td>Fusarium coffeatum</td><td>CBS 635.76^T</td><td>MN120696</td><td>MN120736</td><td>MN120755</td><td>Lombard et al., 2019</td></t<>	Fusarium coffeatum	CBS 635.76 ^T	MN120696	MN120736	MN120755	Lombard et al., 2019	
Fusariam compactumCBS 186.31GQ50550GQ50526GQ50548O'Donnell et al. 2009Fusariam compactumCBS 185.31GQ505538GQ50524GQ50546O'Donnell et al. 2009Fusariam compactumSDBR-CMU483PP758861PP758870PP758879This studyFusariam conceaumCBS 13177 ^T MN170329MN170396MN170463Xia et al. 2019Fusariam conceaumCBS 13177 ^T GQ50540GQ505764GQ505580O'Donnell et al. 2009Fusariam duafalcatisporumCBS 349.4 ^T GQ505561GQ505829GQ50552O'Donnell et al. 2009Fusariam duafalcatisporumCBS 307.94 ^{NT} GQ50551GQ50572GQ50559O'Donnell et al. 2009Fusariam equisetiCBS 307.94 ^{NT} GQ50550GQ50572GQ50594O'Donnell et al. 2009Fusariam fusciculatumCBS 131382MN17039MN170460MN17047Xia et al. 2019Fusariam fusciculatumCBS 131382MN17030MN17047Xia et al. 2019Fusariam fusciculatumCBS 152.5 ^T GQ50557GQ505828GQ50562O'Donnell et al. 2009Fusariam fugelliformeCBS 259.54GQ50557GQ505828GQ50562O'Donnell et al. 2019Fusariam fugelliformeLC12160 ^T MK28957MK28974MK28959Wang et al. 2019Fusariam hainamenseLC1161MK28961MK28974MK28950Wang et al. 2019Fusariam hainanenseLC12165 ^T MK28971MK28972MK28950Wang et al. 2019Fusariam humaliQU039 ^T <td< td=""><td>Fusarium coffeatum</td><td>CBS 430.81</td><td>MN120697</td><td>MN120737</td><td>MN120756</td><td>Lombard et al., 2019</td></td<>	Fusarium coffeatum	CBS 430.81	MN120697	MN120737	MN120756	Lombard et al., 2019	
Fluarium compactumCBS 185.1GQ50558GQ50524GQ50564O'Donnell et al, 2009Fusarium compactumSDBR-CMU483PP758861PP758870PF758879Thi studyFusarium conceumGDS 131777MN170329MN170396MN170463Xia et al, 2019Fusarium conceumNRR 3020GQ305498GQ305764GQ305586O'Donnell et al, 2009Fusarium duofalcatisporumCBS 348.94*GQ305561GQ305820GQ305561O'Donnell et al, 2009Fusarium duofalcatisporumCBS 349.94*GQ30551GQ305720GQ305920O'Donnell et al, 2009Fusarium duofalcatisporumCBS 307.94**GQ30551GQ30577GQ305930O'Donnell et al, 2009Fusarium quistetiCBS 345.1GQ30570GQ30572GQ30594O'Donnell et al, 2009Fusarium fusicellatumCBS 131382MN17030MN170470MN17047Xia et al, 2019Fusarium fusicellatumCBS 131382MN17030GQ305823GQ305645O'Donnell et al, 2009Fusarium fusicelliformeCBS 259.54GQ30573GQ305824GQ30562O'Donnell et al, 2009Fusarium guilinenseLC1160*MK28957MK28974MK28959Wang et al, 2019Fusarium hainanenseLC1216*MK28951MK28974MK28950Wang et al, 2019Fusarium humidiQU039*MK28971MK28972MK28950Wang et al, 2019Fusarium humidiCQ1030*MK28970MK28972MK28950Wang et al, 2019Fusarium humidiQU039*MK28970 <td>Fusarium compactum</td> <td>CBS 186.31^{ET}</td> <td>GQ505560</td> <td>GQ505826</td> <td>GQ505648</td> <td>O'Donnell et al., 2009</td>	Fusarium compactum	CBS 186.31 ^{ET}	GQ505560	GQ505826	GQ505648	O'Donnell et al., 2009	
Fusarium compactumSDBR-CMU483PP758870PP758870PP758879This studyFusarium croccumCBS 131777 ^T MN170329MN170396MN170463Xia et al., 2019Fusarium croccumNRRL 3020GQ505498GQ505764GQ505586O'Donnell et al., 2009Fusarium duofalcatiporumCBS 384.94 ^T GQ505564GQ505830GQ50561O'Donnell et al., 2009Fusarium duofalcatiporumCBS 264.50GQ505564GQ50572GQ50551O'Donnell et al., 2009Fusarium equisetiCBS 307.94 ^{NT} GQ505511GQ50577GQ505594O'Donnell et al., 2009Fusarium equisetiCBS 131837MN170339MN170460MN170473Xia et al., 2019Fusarium fasciculatumCBS 131381MN170340MN170470MN170474Xia et al., 2019Fusarium fagelliformeCBS 162.57 ^T GQ50557GQ505823GQ50562O'Donnell et al., 2009Fusarium fagelliformeCBS 162.57 ^T GQ50573GQ50584GQ50562O'Donnell et al., 2009Fusarium fagelliformeCBS 162.57 ^T GQ50557GQ50584GQ50562O'Donnell et al., 2009Fusarium fagelliformeCBS 162.57 ^T GQ50573GQ50584GQ50562O'Donnell et al., 2009Fusarium fagelliformeCBS 162.57 ^T GQ50557GQ50584GQ50562O'Donnell et al., 2009Fusarium fagelliformeCBS 162.57 ^T GQ50557GQ50584GQ50562O'Donnell et al., 2009Fusarium fagelliformeCBS 162.57 ^T MK28957MK28975MK28956Wang et	Fusarium compactum	CBS 185.31	GQ505558	GQ505824	GQ505646	O'Donnell et al., 2009	
Fusarium croceumCBS 131777TMN170329MN170396MN170463Xia et al., 2019Fusarium croceumNRRL 3020GQ50548GQ505764GQ505586O'Donnell et al., 2009Fusarium duofalcatisporumCBS 384.94TGQ505561GQ505829GQ50552O'Donnell et al., 2009Fusarium duofalcatisporumCBS 264.50GQ505531GQ505777GQ505594O'Donnell et al., 2009Fusarium equisetiCBS 307.94NTGQ50551GQ505772GQ505594O'Donnell et al., 2009Fusarium equisetiCBS 131382GQ50556GQ50572GQ505594O'Donnell et al., 2009Fusarium fasciculatumCBS 131383MN17039MN170406MN170473Xia et al., 2019Fusarium fasciculatumCBS 131383MN170340MN170407MN170474Xia et al., 2019Fusarium fagelliformeCBS 152,574GQ50552GQ505828GQ50562O'Donnell et al., 2009Fusarium fagelliformeCBS 259,54GQ50552GQ505828GQ50562O'Donnell et al., 2009Fusarium gracilipesNRR 43635TGQ50552GQ505828GQ50562O'Donnell et al., 2009Fusarium gracilipesLC12160TMK28952MK289735MK289594Wang et al., 2019aFusarium hainanenseLC12161MK289512MK289748MK289595Wang et al., 2019aFusarium humuliCQ1032MK289710MK289724MK28950Wang et al., 2019aFusarium humuliCBS 132,73 ^{NT} MN17042MN170409MN170476Xia et al., 2019aFusarium	Fusarium compactum	SDBR-CMU483	PP758861	PP758870	PP758879	This study	
Fusarium croceumNRRL 3020GQ505498GQ505764GQ505586O'Donnell et al., 2009Fusarium duofakatisporumCBS 384.94 ^T GQ505563GQ505830GQ505563O'Donnell et al., 2009Fusarium duofakatisporumCBS 264.50GQ505563GQ505829GQ505561O'Donnell et al., 2009Fusarium equisetiCBS 307.94 ^{NT} GQ50551GQ505772GQ505599O'Donnell et al., 2009Fusarium equisetiCBS 307.94 ^{NT} GQ505566GQ505722GQ50559O'Donnell et al., 2009Fusarium equisetiCBS 131382 ^T MN170339MN170460MN170473Xia et al., 2019Fusarium fusciculatumCBS 131383MN170340MN170407MN170474Xia et al., 2019Fusarium flagelliformeCBS 259.54GQ505573GQ505823GQ505650O'Donnell et al., 2009Fusarium gracilipesNRRL 43635 ^T GQ505573GQ505840GQ50562O'Donnell et al., 2019Fusarium gracilipesLC12160 ^T MK28957MK289754MK28959Wang et al., 2019aFusarium humuliCQ1032MK289712MK28974MK289570Wang et al., 2019aFusarium incarnatumCBS 13.73 ^{NT} MN17042MN170409MN170476Xia et al., 2019aFusarium incarnatumCBS 13.73 ^{NT} MK289704MK289752MK28959Wang et al., 2019aFusarium incarnatumCBS 13.73 ^{NT} MN17042MN17049MN170476Xia et al., 2019aFusarium incarnatumCG1032MK289704MK289752MK28959Wang et al., 2019a <td>Fusarium croceum</td> <td>CBS 131777^T</td> <td>MN170329</td> <td>MN170396</td> <td>MN170463</td> <td>Xia et al., 2019</td>	Fusarium croceum	CBS 131777 ^T	MN170329	MN170396	MN170463	Xia et al., 2019	
Fusarium duofalcatisporumCBS 384.94TGQ505564GQ505583GQ50562O'Donnell et al., 2009Fusarium duofalcatisporumCBS 264.50GQ505563GQ505829GQ505511O'Donnell et al., 2009Fusarium equisetiCBS 307.94 ^{NT} GQ505511GQ505772GQ505594O'Donnell et al., 2009Fusarium equisetiCBS 245.61GQ505506GQ505772GQ505594O'Donnell et al., 2009Fusarium fasciculatumCBS 131382TMN170339MN170406MN170473Xia et al., 2019Fusarium fasciculatumCBS 131383MN170340MN170407MN170474Xia et al., 2019Fusarium fasciculatumCBS 162.57TGQ505557GQ505823GQ505650O'Donnell et al., 2009Fusarium fagelliformeCBS 29.54GQ505573GQ505840GQ505662O'Donnell et al., 2009Fusarium gracilipesNRRL 43635TGQ505573GQ505840GQ505662O'Donnell et al., 2009Fusarium hainanenseLC12160TMK289657MK289748MK289595Wang et al., 2019aFusarium hainanenseLC12161MK289648MK289748MK289595Wang et al., 2019aFusarium humuliCQ1039TMK289710MK289722MK28950Wang et al., 2019aFusarium humuliCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289706MK289752MK289599Wang et al., 2019a	Fusarium croceum	NRRL 3020	GQ505498	GQ505764	GQ505586	O'Donnell et al., 2009	
Fusarium duofalcatisporumCBS 264.50GQ505563GQ505829GQ50551O'Donnell et al. 2009Fusarium equisetiCBS 307.94 ^{NT} GQ505506GQ505772GQ505594O'Donnell et al. 2009Fusarium equisetiCBS 245.61GQ505506GQ505772GQ505594O'Donnell et al. 2009Fusarium fasciculatumCBS 131382 ^T MN170339MN170406MN170473Xia et al. 2019Fusarium fasciculatumCBS 131383MN170340MN170407MN170474Xia et al. 2019Fusarium flagelliformeCBS 162.57 ^T GQ505573GQ505823GQ505645O'Donnell et al. 2009Fusarium flagelliformeCBS 259.54GQ505573GQ505828GQ505620O'Donnell et al. 2009Fusarium gracilipesNRRL 43635 ^T GQ50573GQ505840GQ50562O'Donnell et al. 2009Fusarium hainanenseLC12160 ^T MK289657MK289747MK289594Wang et al. 2019aFusarium hainanenseLC12161MK289648MK289748MK289595Wang et al. 2019aFusarium humuliCQ1039 ^T MK289710MK289722MK289586Wang et al. 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al. 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289706MK289752MK289500Wang et al. 2019a	Fusarium duofalcatisporum	CBS 384.94 ^T	GQ505564	GQ505830	GQ505652	O'Donnell et al., 2009	
Fusarium equisetiCBS 307.94 NTGQ505511GQ505777GQ505599O'Donnell et al., 2009Fusarium equisetiCBS 245.61GQ505506GQ505772GQ505594O'Donnell et al., 2009Fusarium fasciculatumCBS 131382MN170339MN170406MN170473Xia et al., 2019Fusarium fasciculatumCBS 131383MN170340MN170407MN170474Xia et al., 2019Fusarium fasciculatumCBS 162.57 ^T GQ505557GQ505823GQ505645O'Donnell et al., 2009Fusarium flagelliformeCBS 259.54GQ505562GQ505828GQ505662O'Donnell et al., 2009Fusarium gracilipesNRRL 43635 ^T GQ505573GQ505840GQ505662O'Donnell et al., 2009Fusarium guilinenseLC11607 ^T MK289652MK289747MK289594Wang et al., 2019aFusarium hainanenseLC11638 ^T MK289657MK289735MK289595Wang et al., 2019aFusarium humuliCQ1032MK289712MK289724MK289570Wang et al., 2019aFusarium humuliCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289704MK289752MK289599Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289706MK289753MK28959Wang et al., 2019a	Fusarium duofalcatisporum	CBS 264.50	GQ505563	GQ505829	GQ505651	O'Donnell et al., 2009	
Fusarium equisetiCBS 245.61GQ505506GQ505772GQ505594O'Donnell et al, 2009Fusarium fasciculatumCBS 131382TMN170339MN170466MN170473Xia et al, 2019Fusarium fasciculatumCBS 131383MN170340MN170407MN170474Xia et al, 2019Fusarium flagelliformeCBS 162.57TGQ505557GQ505823GQ505645O'Donnell et al, 2009Fusarium flagelliformeCBS 259.54GQ505562GQ505828GQ505662O'Donnell et al, 2009Fusarium gracilipesNRRL 43635TGQ505573GQ505840GQ50562O'Donnell et al, 2009Fusarium guilinenseLC12160TMK289652MK289747MK289594Wang et al, 2019aFusarium hainanenseLC12161MK289657MK28973MK289595Wang et al, 2019aFusarium humuliCQ1039TMK289710MK289724MK28950Wang et al, 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al, 2019aFusarium incarnatumCBS 13.273 ST MK289706MK289753MK289599Wang et al, 2019a	Fusarium equiseti	CBS 307.94 ^{NT}	GQ505511	GQ505777	GQ505599	O'Donnell et al., 2009	
Fusarium fasciculatumCBS 131382TMN170339MN170406MN170473Xia et al., 2019Fusarium fasciculatumCBS 131383MN170340MN170407MN170474Xia et al., 2019Fusarium flagelliformeCBS 162.57TGQ505557GQ505823GQ505645O'Donnell et al., 2009Fusarium flagelliformeCBS 259.54GQ505562GQ505828GQ505650O'Donnell et al., 2009Fusarium gracilipesNRRL 43635TGQ505573GQ505840GQ50562O'Donnell et al., 2009Fusarium guilinenseLC12160TMK289652MK289747MK289594Wang et al., 2019aFusarium hainanenseLC11638TMK289648MK289735MK289595Wang et al., 2019aFusarium humuliCQ1039TMK289710MK289724MK289508Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289704MK289752MK289599Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289704MK289752MK289599Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289704MK289752MK28959Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289704MK289752MK289599Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289704MK289752MK289599Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MK289704MK289752MK289599Wang et al., 2019a <td>Fusarium equiseti</td> <td>CBS 245.61</td> <td>GQ505506</td> <td>GQ505772</td> <td>GQ505594</td> <td>O'Donnell et al., 2009</td>	Fusarium equiseti	CBS 245.61	GQ505506	GQ505772	GQ505594	O'Donnell et al., 2009	
Fusarium fasciculatumCBS 131383MN170340MN170407MN170474Xia et al., 2019Fusarium flagelliformeCBS 162.57 ^T GQ505557GQ505823GQ505645O'Donnell et al., 2009Fusarium flagelliformeCBS 259.54GQ505562GQ505828GQ505650O'Donnell et al., 2009Fusarium gracilipesNRRL 43635 ^T GQ505573GQ505840GQ505662O'Donnell et al., 2009Fusarium guilinenseLC12160 ^T MK289652MK289747MK289594Wang et al., 2019aFusarium hainanenseLC11618 ^T MK289657MK289735MK289581Wang et al., 2019aFusarium hainanenseLC12161MK289648MK289724MK289570Wang et al., 2019aFusarium humuliCQ1039 ^T MK289710MK289722MK289568Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019aFusarium ipomoeaeLC12165MK289706MK289753MK289500Wang et al., 2019a	Fusarium fasciculatum	CBS 131382 ^T	MN170339	MN170406	MN170473	Xia et al., 2019	
Fusarium flagelliformeCBS 162.57 ^T GQ505557GQ5055823GQ505645O'Donnell et al., 2009Fusarium flagelliformeCBS 259.54GQ505562GQ505828GQ505650O'Donnell et al., 2009Fusarium gracilipesNRRL 43635 ^T GQ505573GQ505840GQ505662O'Donnell et al., 2009Fusarium guilinenseLC12160 ^T MK28952MK289747MK289594Wang et al., 2019aFusarium hainanenseLC11638 ^T MK289657MK289735MK289581Wang et al., 2019aFusarium hainanenseLC12161MK289712MK289724MK289570Wang et al., 2019aFusarium humuliCQ1032MK289710MK289722MK289568Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019aFusarium incorneeLC12165 ^T MK289706MK289753MK289599Wang et al., 2019a	Fusarium fasciculatum	CBS 131383	MN170340	MN170407	MN170474	Xia et al., 2019	
Fusarium flagelliformeCBS 259.54GQ505562GQ505528GQ505828GQ505550O'Donnell et al., 2009Fusarium gracilipesNRRL 43635 ^T GQ505573GQ505840GQ505662O'Donnell et al., 2009Fusarium guilinenseLC12160 ^T MK289652MK289747MK289594Wang et al., 2019aFusarium hainanenseLC11638 ^T MK289657MK289735MK289581Wang et al., 2019aFusarium hainanenseLC12161MK289648MK289748MK289595Wang et al., 2019aFusarium humuliCQ1039 ^T MK289712MK289724MK289570Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019aFusarium ipomoeaeLC12166MK289706MK289753MK289500Wang et al., 2019a	Fusarium flagelliforme	CBS 162.57 ^T	GQ505557	GQ505823	GQ505645	O'Donnell et al., 2009	
Fusarium gracilipesNRRL 43635TGQ505573GQ5055840GQ505662O'Donnell et al., 2009Fusarium guilinenseLC12160TMK289652MK289747MK289594Wang et al., 2019aFusarium hainanenseLC11638TMK289657MK289735MK289581Wang et al., 2019aFusarium hainanenseLC12161MK289648MK289748MK289595Wang et al., 2019aFusarium humuliCQ1039TMK289712MK289724MK289570Wang et al., 2019aFusarium humuliCQ1032MK289710MK289722MK289568Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019aFusarium ipomocaeLC12165TMK289706MK289753MK289500Wang et al., 2019a	Fusarium flagelliforme	CBS 259.54	GQ505562	GQ505828	GQ505650	O'Donnell et al., 2009	
Fusarium guilinenseLC12160 ^T MK289652MK289747MK289594Wang et al., 2019aFusarium hainanenseLC11638 ^T MK289657MK289735MK289581Wang et al., 2019aFusarium hainanenseLC12161MK289648MK289748MK289595Wang et al., 2019aFusarium humuliCQ1039 ^T MK289712MK289724MK289570Wang et al., 2019aFusarium humuliCQ1032MK289710MK289722MK289568Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019Fusarium ipomoeaeLC12165 ^T MK289706MK289753MK289500Wang et al., 2019a	Fusarium gracilipes	NRRL 43635 ^T	GQ505573	GQ505840	GQ505662	O'Donnell et al., 2009	
Fusarium hainanenseLC11638TMK289657MK289735MK289581Wang et al., 2019aFusarium hainanenseLC12161MK289648MK289748MK289595Wang et al., 2019aFusarium humuliCQ1039TMK289712MK289724MK289570Wang et al., 2019aFusarium humuliCQ1032MK289710MK289722MK289568Wang et al., 2019aFusarium incarnatumCBS 132.73 ^{NT} MN170342MN170409MN170476Xia et al., 2019Fusarium ipomoeaeLC12165TMK289706MK289753MK289500Wang et al., 2019a	Fusarium guilinense	LC12160 ^T	MK289652	MK289747	MK289594	Wang et al., 2019a	
Fusarium hainanenseLC12161MK289648MK289748MK289595Wang et al., 2019aFusarium humuliCQ1039TMK289712MK289724MK289570Wang et al., 2019aFusarium humuliCQ1032MK289710MK289722MK289568Wang et al., 2019aFusarium incarnatumCBS 132.73NTMN170342MN170409MN170476Xia et al., 2019Fusarium ipomoeaeLC12165TMK289706MK289753MK289599Wang et al., 2019a	Fusarium hainanense	LC11638 ^T	MK289657	MK289735	MK289581	Wang et al., 2019a	
Fusarium humuli $CQ1039^{T}$ MK289712MK289724MK289570Wang et al., 2019aFusarium humuli $CQ1032$ MK289710MK289722MK289568Wang et al., 2019aFusarium incarnatum $CBS 132.73^{NT}$ MN170342MN170409MN170476Xia et al., 2019Fusarium ipomoeaeLC12165^{T}MK289704MK289752MK289599Wang et al., 2019aFusarium ipomoeaeLC12166MK289706MK289753MK289600Wang et al., 2019a	Fusarium hainanense	LC12161	MK289648	MK289748	MK289595	Wang et al., 2019a	
Fusarium humuli CQ1032 MK289710 MK289722 MK289568 Wang et al., 2019a Fusarium incarnatum CBS 132.73 ^{NT} MN170342 MN170409 MN170476 Xia et al., 2019 Fusarium ipomoeae LC12165 ^T MK289704 MK289752 MK289599 Wang et al., 2019a Fusarium ipomoeae LC12166 MK289706 MK289753 MK289600 Wang et al., 2019a	Fusarium humuli	CQ1039 ^T	MK289712	MK289724	MK289570	Wang et al., 2019a	
Fusarium incarnatumCBS 132.73^{NT}MN170342MN170409MN170476Xia et al., 2019Fusarium ipomoeaeLC12165^TMK289704MK289752MK289599Wang et al., 2019aFusarium ipomoeaeLC12166MK289706MK289753MK289600Wang et al., 2019a	Fusarium humuli	CQ1032	MK289710	MK289722	MK289568	Wang et al., 2019a	
Fusarium ipomoeae LC12165 ^T MK289704 MK289752 MK289599 Wang et al., 2019a Fusarium ipomoeae LC12166 MK289706 MK289753 MK289600 Wang et al. 2019a	Fusarium incarnatum	CBS 132.73 ^{NT}	MN170342	MN170409	MN170476	Xia et al., 2019	
Fusarium ibomoeae LC12166 MK289706 MK289753 MK289600 Wang et al. 2019a	Fusarium ipomoeae	LC12165 ^T	MK289704	MK289752	MK289599	Wang et al., 2019a	
	Fusarium ipomoeae	LC12166	MK289706	MK289753	MK289600	Wang et al., 2019a	

(Continued)

TABLE 1 Continued

	Strain/Isolate	GenBank Access				
Fungal Taxa		cam	rpb2			
Fusarium irregulare	LC7188 ^T	MK289680	MK289783	MK289629	Wang et al., 2019a	
Fusarium irregulare	LC12146	MK289682	MK289738	MK289583	Wang et al., 2019a	
Fusarium jinanense	LC15878 ^T	OQ125271	OQ125521	OQ125131	Han et al., 2023	
Fusarium jinanense	LPPC076	-	MG788000	MG733180	Lima et al., 2021	
Fusarium jinanense	LPPC077	_	MG787999	MG733179	Lima et al., 2021	
Fusarium jinanense	LPPC079	_	MG787996	MN652629	Lima et al., 2021	
Fusarium jinanense	SDBR-CMU484	PP758862	PP758871	PP758880	This study	
Fusarium jinanense	SDBR-CMU485	PP758863	PP758872	PP758881	This study	
Fusarium jinanense	SDBR-CMU486	PP758864	PP758873	PP758882	This study	
Fusarium lacertarum	NRRL 20423 ^T	GQ505505	GQ505771	GQ505593	O'Donnell et al., 2009	
Fusarium lacertarum	NRRL 36123	GQ505555	GQ505821	GQ505643	O'Donnell et al., 2009	
Fusarium longicaudatum	CBS 123.73 ^T	MN170347	MN170414	MN170481	Xia et al., 2019	
Fusarium longifundum	CBS 235.79 ^T	GQ505561	GQ505827	GQ505649	O'Donnell et al., 2009	
Fusarium luffae	LC12167 ^T	MK289698	MK289754	MK289601	Wang et al., 2019a	
Fusarium luffae	NRRL 32522	GQ505524	GQ505790	GQ505612	O'Donnell et al., 2009	
Fusarium monophialidicum	NRRL 54973 ^T	MN170349	MN170416	MN170483	Xia et al., 2019	
Fusarium mianyangense	LC15879 ^T	OQ125335	OQ125510	OQ125232	Han et al., 2023	
Fusarium mianyangense	NRRL 32181	GQ505522	GQ505788	GQ505610	O'Donnell et al., 2009	
Fusarium mianyangense	NRRL 32182	GQ505523	GQ505789	GQ505611	O'Donnell et al., 2009	
Fusarium mianyangense	SDBR-CMU487	PP758865	PP758874	PP758883	This study	
Fusarium mianyangense	SDBR-CMU488	PP758866	PP758875	PP758884	This study	
Fusarium mucidum	CBS 102395 ^T	MN170351	MN170418	MN170485	Xia et al., 2019	
Fusarium mucidum	CBS 102394	MN170350	MN170417	MN170484	Xia et al., 2019	
Fusarium multiceps	CBS 130386 ^T	GQ505577	GQ505844	GQ505666	O'Donnell et al., 2009	
Fusarium nanum	LC12168 ^T	MK289651	MK289755	MK289602	Wang et al., 2019a	
Fusarium nanum	LC1384	MK289661	MK289764	MK289611	Wang et al., 2019a	
Fusarium neoscirpi	CBS 610.95 ^T	GQ505513	GQ505779	GQ505601	O'Donnell et al., 2009	
Fusarium nothincarnatum	LC18436 ^T	OQ125290	OQ125509	OQ125147	Han et al., 2023	
Fusarium nothincarnatum	LC18382	OQ125289	OQ125508	OQ125146	Han et al., 2023	
Fusarium pernambucanum	URM 7559 ^T	_	LS398519	LS398489	Santos et al., 2019	
Fusarium pernambucanum	URM 6801	_	LS398513	LS398483	Santos et al., 2019	
Fusarium persicinum	CBS 479.83 ^T	MN170361	MN170428	MN170495	Xia et al., 2019	
Fusarium persicinum	CBS 131780	MN170362	MN170429	MN170496	Xia et al., 2019	
Fusarium scirpi	CBS 447.84 ^{NT}	GQ505566	GQ505832	GQ505654	O'Donnell et al., 2009	
Fusarium scirpi	CBS 448.84	GQ505504	GQ505770	GQ505592	O'Donnell et al., 2009	
Fusarium serpentinum	CBS 119880 ^T	MN170365	MN170432	MN170499	Xia et al., 2019	
Fusarium sulawesiense	InaCC F940 ^T	LS479422	LS479855	LS479443	Maryani et al., 2019	
Fusarium sulawesiense	Indo186	LS479426	LS479864	LS479449	Maryani et al., 2019	

(Continued)

Fungal Taxa	Strain/Isolate	GenBank Access				
		cam	rpb2	tef1-α		
Fusarium sulawesiense	LC18400	OQ125346	OQ125478	OQ125236	Han et al., 2023	
Fusarium sulawesiense	LC18608	OQ125348	OQ125487	OQ125212	Han et al., 2023	
Fusarium sulawesiense	SDBR-CMU489	PP758867	PP758876	PP758885	This study	
Fusarium sulawesiense	SDBR-CMU490	PP758868	PP758877	PP758886	This study	
Fusarium sulawesiense	SDBR-CMU491	PP758869	PP758878	PP758887	This study	
Fusarium tanahbumbuense	InaCC F965 ^T	LS479432	LS479863	LS479448	Maryani et al., 2019	
Fusarium tanahbumbuense	NRRL 34005	GQ505541	GQ505807	GQ505629	O'Donnell et al., 2009	
Fusarium toxicum	CBS 406.86 ^T	MN170374	MN170441	MN170508	Xia et al., 2019	
Fusarium toxicum	CBS 219.63	MN170373	MN170440	MN170507	Xia et al., 2019	
Fusarium weifangense	LC18333 ^T	OQ125276	OQ125515	OQ125107	Han et al., 2023	
Fusarium weifangense	LC18243	OQ125273	OQ125513	OQ125106	Han et al., 2023	
Fusarium wereldwijsianum	CBS 148244 ^T	MZ921538	MZ921718	MZ921850	Crous et al., 2021b	
Fusarium wereldwijsianum	CBS 148386	MZ921540	MZ921720	MZ921852	Crous et al., 2021b	
Fusarium camptoceras	CBS 193.65 ^{ET}	MN170316	MN170383	MN170450	Xia et al., 2019	
Fusarium neosemitectum	CBS 189.60 ^T	MN170355	MN170422	MN170489	Xia et al., 2019	

TABLE 1 Continued

Species designated as neotype, epi-type, and ex-type are represented by the superscript letters "NT", "ET", and "T", respectively. GenBank is missing any sequencing information, represented by the symbol "-". The fungal isolates and sequences obtained in this study are in bold.

the middle and base of the muskmelon, displaying as brown spots encircled by a bruised edge. Ultimately, advanced lesions became covered with white mycelial masses (Figures 1A–C). The lesions on the muskmelon fruit eventually expanded and merged, covering the entire fruit, resulting in a bruised, ruptured, and decayed appearance for infected fruits. The inner portion appeared distinctly rotten and was encompassed by tissue soaked in water (Figures 1D, E).

3.2 Fungal isolation

A total of nine fungal isolates (CMU483 to CMU491) were derived from the collected muskmelons displaying characteristic rot symptoms. All the fungal isolates were stored for short periods of time in potato dextrose agar (PDA) slants at 4°C and for longer periods of time in 20% glycerol at -80°C. The fungal isolates were all submitted and maintained in a permanently inactive condition at the Sustainable Development of Biological Resources culture collection, Faculty of Science, Chiang Mai University (SDBR-CMU), located in Chiang Mai Province, Thailand. They were assigned accession codes ranging from SDBR-CMU483 to SDBR-CMU491, respectively.

3.3 Morphological study

Three different types of agar media, namely PDA, oatmeal agar (OA), and synthetic nutrient-poor agar (SNA), were employed to examine fungal colonies of each isolate. Following one week of incubation at 25°C, OA was demonstrated to be the optimal medium as it exhibited the largest colony diameter among all fungal isolates. In all agar media, each of the nine fungal isolates exhibited the formation of conidiophores, chlamydospores, phialides, and conidia. Upon examination of their morphological traits, all the fungal isolates were initially classified as members of the genus *Fusarium* (Wang et al., 2019a, 2022b; Xia et al., 2019; Crous et al., 2021a). The findings derived from morphological examination of the fungal colony and micromorphological characteristics indicated that the isolate SDBR-CMU484 exhibited similarities with isolates SDBR-CMU485 and SDBR-CMU486, while the isolate SDBR-CMU487 was related to the isolate SDBR-CMU490, and SDBR-CMU491 showed similarities.

3.4 Phylogenetic analysis

According to the BLAST results, all fungal isolates were identified as members of the *F. incarnatum-equiseti* species complex. The combined *cam*, *rpb2*, and *tef1-* α sequences dataset consists of 91 taxa, and the aligned dataset includes 2132 characters comprising gaps (*cam*: 1–604, *rpb2*: 605–1484, and *tef1-* α : 1485–2132). The best scoring RAxML tree was established with a final ML optimization likelihood value of –9911.6997. Accordingly, the matrix contained 625 distinct alignment patterns with 7.67% undetermined characters or gaps. The estimated base frequencies were found to be: A = 0.2309, C = 0.2899, G = 0.2149, and T = 0.2643; substitution rates AC = 0.7528, AG = 3.1066, AT = 1.3768,

CG = 0.8323, CT = 5.5758, and GT = 1.0000. The values of the gamma distribution shape parameter alpha and the Tree-Length were 0.2528 and 0.6387, respectively. Additionally, BI analysis yielded a final average standard deviation of 0.005188 for the split frequencies at the end of all MCMC generations. Regarding topology, the phylograms generated from the ML and BI analyses exhibited similarity (data not displayed). Consequently, the phylogenetic tree obtained from the ML analysis was selected and is displayed in Figure 2.

Our phylogenetic tree was generated in a concordant approach and is corroborated by earlier investigations (Wang et al., 2019a, 2022b; Xia et al., 2019; Crous et al., 2021a; Khuna et al., 2022; Han et al., 2023). A phylogram assigned the two fungal isolates (SDBR-CMU487 and SDBR-CMU488) and three fungal isolates (SDBR-CMU489, SDBR-CMU490, and SDBR-CMU491) in this study within the same clade of *F. mianyangense* and *F. sulawesiense*, which consisted of the type species LC15879 and InaCC F940, respectively, within the Incarnatum clade. *Fusarium mianyangense* appeared as a closely related taxon to *F. citrullicola*, while *F. sulawesiense* formed a sister taxon to *F. pernambucanum* with high statistical support (84% BS and 0.96 PP). Therefore, both fungal isolates (SDBR-CMU487 and SDBR-CMU488) and three fungal isolates (SDBR-CMU489, SDBR-CMU480, and SDBR-CMU491) were identified as *F. mianyangense* and *F. sulawesiense*, respectively. Additionally, one fungal isolate (SDBR-CMU483) and three fungal isolates (SDBR-CMU484, SDBR-CMU485, and SDBR-CMU486) obtained in this study were also positioned within the *F. compactum* and *F. jinanense*, which included the type species CBS 186.31 and LC15878, respectively, in the *Equiseti* clade. *Fusarium compactum* constituted a species that showed phylogenetic relation to both *F. duofalcatisporum* and *F. ipomoeae*. While *F. jinanense* constituted a species that exhibited strong statistical support (96% BS and 1.0 PP) for its phylogenetic relation to *F. lacertarum*. Thus, this one fungal isolate (SDBR-CMU485, and SDBR-CMU486) were recognized as *F. compactum* and *F. jinanense*, respectively.

3.5 Morphological description

3.5.1 *Fusarium compactum* (Wollenw.) Raillo, fungi of the genus *Fusarium*, 180 (1950)

Colonies diameter after incubation at 25°C for one week on PDA, OA, and SNA grew to 35.0–43.0, >85.0, and 30.0–38.0 mm in diameter, respectively (Figure 3). Colonies on PDA were yellowish white in the center, white at the margins, flat with entire edges; reverse pale yellow. Colonies on OA were greyish yellow in the center, white at the margin, dense aerial mycelia, slightly raised with entire edges;

FIGURE 1

Symptoms of fruit rot in muskmelon during the postharvest storage period (A-C). A cross-sectional view of the infected muskmelon fruits reveals the areas of internal decay (D, E). Scale bars: (A-C) = 20 mm; (D, E) = 15 mm.

reverse greyish orange. Colonies on SNA were white, flat with entire edges; reverse white. No pigment or odor was present. Sporodochia were absent on all agar media. Conidiophores developed on aerial mycelium, $15-90 \times 2.6-4.1 \mu m$, sympodial or irregularly branched, bearing terminal or lateral phialides. Phialides were monophialidic, subulate to sub-cylindrical, hyaline, smooth and thin-walled, $7.6-30 \times 2.6-4.5 \mu m$. Chlamydospores were abundant, globose, ellipsoid, intercalarily or terminal, smooth-walled, solitary, in chains or clusters, hyaline to pale yellow with age, $5.9-19.1 \times 6-15.3 \mu m$. Conidia were hyaline, thick-walled, strongly curved, elongated apical cell, well-developed to slightly elongated foot-shaped basal cell, 3-8-septate, $13.3-66.2 \times 2.6-4.9 \mu m$ (av. \pm SD: $39.3 \pm 13.3 \times 3.8 \pm 0.5 \mu m$).

Notes: The morphological characteristics of the *F. compactum* fungal isolates obtained in this study were consistent with previous descriptions of *F. compactum* (Raillo, 1950; Leslie and Summerell, 2006). Phylogenetically, *F. compactum* formed a species that was phylogenetically related to *F. duofalcatisporum* and *F. ipomoeae*. However, the growth of *F. compactum* exhibited slower growth compared to *F. duofalcatisporum* on PDA (75–82 mm) and *F. ipomoeae* on PDA (53–57 mm) and SNA (51–56 mm) after one week of incubation at 25°C (Wang et al., 2019a; Xia et al., 2019). Additionally, *F. compactum* grew on OA faster than *F. ipomoeae* (52–63 mm) (Wang et al., 2019a). Based on micromorphology, *F. duofalcatisporum* could be distinguished from *F. compactum* by its shorter conidiophores (9–16 μ m) (Xia et al., 2019). In addition, the absence of chlamydospores is another way to distinguish *F. ipomoeae* from *F. compactum* (Wang et al., 2019a).

3.5.2 Fusarium jinanense S.L. Han, M.M. Wang & L. Cai, Stud. Mycol. 104: 131 (2023)

Colonies diameter after incubation at 25°C for one week on PDA, OA, and SNA grew to 69.0-77.0, >85.0, and 61.0-67.0 mm in diameter, respectively (Figure 4). Colonies on PDA were white, flat with entire edges; reverse yellowish white. Colonies on OA were white, flat with entire edges; reverse orange white. Colonies on SNA were white, flat with entire edges; reverse white. No pigment or odor was present. Sporodochia were absent on all agar media. Conidiophores developed on arerial mycelium, 9.6-154.1 × 2.5-5.6 µm, irregularly branched. Phialides were mono- and polyphialidic, subulate to sub-cylindrical, smooth, thin-walled, 5.8–12.1 \times 2.3–4 μ m. Chlamydospores were abundant, globose, hyaline to light yellow with age, smooth or rough-walled, intercalary or terminal, solitary, in pairs or forming long chains, 4.9–13.4 \times 4.9-12.7 µm. Conidia falcate, curved dorsoventrally, tapering towards both ends, elongated or whip-like curved apical cell, welldeveloped foot-shaped basal cell, hyaline, smooth, thin-walled, 3-7septate, $14-49.7 \times 2.7-5.9 \ \mu m$ (av. \pm SD: $32.7 \pm 6.2 \times 4.1 \pm 0.6 \ \mu m$).

Notes: Morphologically, the fungal isolates of *F. jinanense* obtained in this study closely resembled the descriptions of *F. jinanense* provided in previous studies (Han et al., 2023). Phylogenetically, *F. jinanense* is closely related to *F. lacertarum*. Nonetheless, the shorter conidiophores (up to 7.0 µm long) and smaller phialides $(2.5-4.0 \times 1.0-1.5 \mu m)$ of *F. lacertarum* help to distinguish it from *F. jinanense* (Subrahmanyam, 1983).

3.5.3 Fusarium mianyangense S.L. Han, M.M. Wang & L. Cai, Stud. Mycol. 104: 131 (2023)

Colonies diameter after incubation at 25°C for one week on PDA, OA, and SNA grew to 57.0-62.0, >85.0, and 47.0-53.0 mm in diameter, respectively (Figure 5). Colonies on PDA were yellowish orange in the center, reddish white at the margins, raised with entire edges; reverse reddish white. Colonies on OA were white, dense aerial mycelia, umbilicate with entire edges; reverse greyish orange. Colonies on SNA were white, raised with undulate entire edges; reverse white. No pigment or odor was present. Sporodochia were absent on all agar media. Conidiophores developed on arerial mycelium, 6.4–118.5 \times 2.2–4.1 µm, irregularly or verticillately branched. Phialides were mono- and polyphialidic, subulate to sub-cylindrical, smooth, thin-walled, $8.6-29.2 \times 1.9-7.7 \ \mu m$. Chlamydospores were abundant, globose to ellipsoidal, hyaline to pale yellow with age, smooth, intercalary or terminal, solitary or forming long chains, $5.6-25.5 \times 5.4-21.8$ µm. Conidia were falcate, hyaline, smooth, thin-walled, unequally curved, pointed to blunt apical cell, poorly-developed foot-shaped basal cell, 1–8-septate, 13.6–57.7 \times 2.1–4.5 μm (av. \pm SD: 27.8 \pm $12.1 \times 3.1 \pm 0.5 \ \mu m$).

Notes: The fungal isolates of *F. mianyangense* obtained in this study exhibited morphological characteristics consistent with the earlier descriptions of *F. mianyangense* (Han et al., 2023). However, the number of septa conidia in *F. mianyangense* observed in this study (1–8-septate) was more than those reported in the result of Han et al. (2023) (3–5-septate). Phylogenetically, *F. mianyangense* is closely related to *F. citrullicola*. Nevertheless, the growth of *F. mianyangense* exhibited slower growth compared to *F. citrullicola* on PDA (68.0–74.5 mm), but faster than *F. citrullicola* on OA (75.0–85.0 mm) over a one-week period at 25°C (Khuna et al., 2022). Micromorphology, *F. citrullicola* could be distinguished from *F. mianyangense* by its shorter conidia (8.0–39.0 μ m) (Khuna et al., 2022). In addition, the number of septa conidia of *F. citrullicola* (1–5-septate) was less than that of *F. mianyangense* (1–8-septate).

3.5.4 Fusarium sulawesiense Maryani, Sand.-Den., L. Lombard, Kema & Crous [as 'sulawense'], Persoonia 43: 65 (2019)

Colonies diameter after incubation at 25°C for one week on PDA, OA, and SNA grew to 83.0–85.0, >85.0, and 77.0–81.0 mm in diameter, respectively (Figure 6). Colonies on PDA were greyish yellow in the center, orange white at the margins, raised with entire edges; reverse light yellow. Colonies on OA were white, raised with entire edges; reverse greyish orange. Colonies on SNA were pastel yellow in the center, white at the margins, flat with entire edges; reverse pale yellow. No pigment or odor was present. Sporodochia were absent on all agar media. Conidiophores developed on arerial mycelium, 8.9–100 × 2.5–5 μ m, septate, irregularly or verticillately branched. Phialides were mono- and polyphialidic, subulate to sub-cylindrical, smooth, thin-walled, formed singly, laterally or terminally, sometimes proliferating percurrently, 9.5–25.7 × 2–4.6 μ m. Chlamydospores were hyaline, globose to ellipsoidal, solitary,

Phylogram generated through maximum likelihood analysis of a combination of *cam, rpb2*, and *tef1-* α genes of 91 sequences. *Fusarium camptoceras* CBS 193.65 and *F. neosemitectum* CBS 115476 were employed as outgroups. Bootstrap values \geq 75% ML (left) and Bayesian posterior probabilities \geq 0.90 (right) are displayed above nodes. The expected number of nucleotide substitutions per site are indicated by the scale bar. Red represents the fungus species' sequences found in the current study. Type species are in bold.

intercalary or terminal, 11.8–28 × 7.5–23 µm. Conidia were formed on both mono- and polyphialides, falcate, curved dorsiventrally, hyaline, pointed apical cell, indistinct or papillate basal cells, 3–8-septate, 18.1–59.5 × 3–6 µm (av. \pm SD: 34.0 \pm 8.2 × 4.5 \pm 0.8 µm).

Notes: Morphologically, the fungal isolates of *F. sulawesiense* obtained in this study were consistent to those obtained from previous studies of the species (Maryani et al., 2019; Yi et al., 2022). Phylogenetically, *F. sulawesiense* is closely related to *F. pernambucanum*. However, *F. pernambucanum* could be distinguished from *F. sulawesiense* by its longer phialides (up to 62.5 μ m) and smaller chlamydospores (5–8 μ m) (Santos et al., 2019).

3.6 Pathogenicity test

This experiment employed the conidia from all fungal isolates. The initial symptoms appeared on the muskmelon fruits two days after being inoculated. In the beginning, the fruits exhibited small spots that ranged in color from yellowish-brown to light brown. Subsequently, the lesions on the fruits rapidly expanded, and some fruits exhibited greenish bruised areas, which were surrounded by white mycelia encompassing each lesion. Following a week of incubation, the sizes of the lesions on the inoculated fruits ranged from 2.0 to 3.0 cm in diameter (Figure 7), and the muskmelons displayed mild infection (disease scores of 5–15%), as indicated by the presence of rot symptoms. A cross-sectional examination

Fusarium compactum (SDBR-CMU483). Colony on potato dextrose agar (A), oatmeal agar (B) and synthetic nutrient-poor agar (C) (left, surface view and right, reverse view) after incubation for one week at 25°C. Phialides on mycelium (D, E). Chlamydospores (F-H). Conidia (I). Scale bars: (A-C) = 10 mm; (D-I) = 10 μ m.

indicated that the internal lesion area seemed to be decomposing and was surrounded by tissue soaked with water (Figures 7F-J, P-T). The internal lesions on the fruits had diameters ranging from 3.5 to 4.5 cm. The lesions subsequently expanded and developed necrosis within 14 to 16 days on muskmelon samples, which were categorized as moderate to severe infections (disease scores of 30-70%). A very severe infection (disease scores of 80-85%) was observed after three weeks of incubation. In the end, the fruits were entirely soft and rotten. These disease symptoms resembled those found throughout the postharvest storage period. Nevertheless, the wounded fruits treated with sterile distilled water did not exhibit any disease symptoms (Figures 7A, F). The fungi from each inoculated tissue were consistently re-isolated before being cultivated on PDA to satisfy Koch's postulates. The re-isolated fungi were identified as F. compactum, F. jinanense, F. mianyangense, and F. sulawesiense.

3.7 Reactions of commercial fungicides against *Fusarium* pathogens

The effects of fungicides at recommended dosages on the mycelial growth of *Fusarium* species obtained in this study were reported in terms of the percentage of mycelial inhibition, as shown in Table 2. The results revealed that the inhibition values varied among different fungicides, fungal species, and fungal isolates. Data on the percentage of mycelial inhibition for each fungal isolate, related to the fungicides, passed the normality test (Shapiro-Wilk test, *p*-value < 0.001), thereby assuming normal distributions. Therefore, ANOVA followed by DMRT ($p \le 0.05$) was used to identify significant differences. According to the findings, COOX (copper oxychloride) significantly outperformed other fungicides in terms of the percentage of mycelial inhibition of all isolates of *F. compactum, F. mianyangense*, and *F. sulawesiense*. For *F. jinanense*

Fusarium jinanense (SDBR-CMU484). Colony on potato dextrose agar (A), oatmeal agar (B) and synthetic nutrient-poor agar (C) (left, surface view and right, reverse view) after incubation for one week at 25°C. Conidiophores and phialides (D–F). Chlamydospores (G–I). Conidia (J). Scale bars: $(A-C) = 10 \text{ mm}; (D-I) = 10 \mu \text{m}.$

SDBR-CMU484 and SDBR-CMU485, DI (difenoconazole) showed the highest percentage of mycelial inhibition, whereas DI+A (difenoconazole + azoxystrobin) showed the highest percentage of mycelial inhibition for F. jinanense SDBR-CMU486. Additionally, the inhibition values $\ge 50\%$ and < 50% were classified as sensitive and insensitive reactions, respectively. All isolates of F. compactum, F. jinanense, F. mianyangense, and F. sulawesiense were sensitive to COOX. Additionally, all isolates of F. jinanense and F. mianyangense were sensitive to DI+A and DI. The sensitivity to CA (captan) was found only in F. jinanense. On the other hand, all fungal isolates showed insensitivity to B+M (benalaxyl-M + mancozeb), CAR (carbendazim), MA (mancozeb), and ME (metalaxyl). The insensitivity to CA was found in F. compactum, F. mianyangense, and F. sulawesiense. Furthermore, the results indicated that F. compactum and F. sulawesiense were insensitive to DI+A and DI.

4 Discussion

Fusarium species are widely recognized as one of the most significant genera since they are known to cause major diseases in numerous economically valuable crops cultivated worldwide, including muskmelons (Ajmal et al., 2023; Ekwomadu and Mwanza, 2023). Conventionally, the primary approaches used to identify *Fusarium* species have been their macromorphological and micromorphological features (Leslie and Summerell, 2006; Rahjoo et al., 2008; Crous et al., 2021a). However, morphological features are insufficient for distinguishing closely related *Fusarium* species because of the extensive range of morphological variations (Leslie and Summerell, 2006; Crous et al., 2021a). Therefore, molecular techniques are crucial for accurately identifying *Fusarium* at the species level. Researchers have utilized ribosomal DNA [the internal transcribed spacer (ITS) and the large subunit (LSU) regions] and

Fusarium mianyangense (SDBR-CMU487). Colony on potato dextrose agar (A), oatmeal agar (B) and synthetic nutrient-poor agar (C) (left, surface view and right, reverse view) after incubation for one week at 25°C. Conidiophores and phialides (D–F). Chlamydospores (G, H). Conidia (I). Scale bars: (A–C) = 10 mm; (D–I) = 10 μ m.

protein-coding genes [β -tubulin (*tub2*), *cam*, *tef1-\alpha*, and RNA polymerase largest subunit (rpb1 and rpb2)] as powerful tools to identify Fusarium species (Geiser et al., 2004; Nitschke et al., 2009; O'Donnell et al., 2010; Maryani et al., 2019; Wang et al., 2019a; Crous et al., 2021a; Jedidi et al., 2021). However, the accurate identification of Fusarium species at the species level remained unresolved when depending solely on the ribosomal DNA gene (Balajee et al., 2009; O'Donnell et al., 2015). Consequently, accurate identification of Fusarium species, particularly within the F. incarnatum-equiseti species complex, which exhibits a high level of cryptic speciation, is achieved through the combination of morphological features with multi-gene molecular phylogeny (O'Donnell et al., 2010; Maryani et al., 2019; Santos et al., 2019; Wang et al., 2019a, 2022b; Xia et al., 2019; Crous et al., 2021a). In this study, one isolate of F. compactum (SDBR-CMU483), three isolates of F. jinanense (SDBR-CMU484, SDBR-CMU485,

and SDBR-CMU486), two isolates of *F. mianyangense* (SDBR-CMU487 and SDBR-CMU488), and three isolates of *F. sulawesiense* (SDBR-CMU489, SDBR-CMU490, and SDBR-CMU491), were obtained from the rot lesions of muskmelon fruits from northern Thailand. The identification of these fungal species followed methods similar to those employed in the identification of *Fusarium*, which involve combining phylogenetic analysis of multiple genes with their morphological traits (Santos et al., 2019; Wang et al., 2019a, 2022b; Crous et al., 2021a).

Koch's postulates were fulfilled by conducting pathogenicity tests on all isolates of *F. compactum*, *F. jinanense*, *F. mianyangense*, and *F. sulawesiense*. The findings demonstrate that fruit rot disease in muskmelons, caused by these four *Fusarium* species identified in this study, resembles that caused by previously identified fungal pathogens affecting muskmelons worldwide (Kobayashi et al., 2004; Kwon et al., 2009; Pornsuriya and Chitphithak, 2018; Mirtalebi

Fusarium sulawesiense (SDBR-CMU489). Colony on potato dextrose agar (A), oatmeal agar (B) and synthetic nutrient-poor agar (C) (left, surface view and right, reverse view) after incubation for one week at 25°C. Conidiophores and phialides (D–G). Chlamydospores (H, I). Conidia (J). Scale bars: (A-C) = 10 mm; $(D-J) = 10 \mu \text{m}$.

et al., 2019; Suwannarach et al., 2019; Broge et al., 2020; Lima et al., 2021; Das et al., 2023; Huo et al., 2023; de Almeida Nogueira et al., 2023; Namisy et al., 2023). Our findings are in accordance with the findings of several previous studies, which have demonstrated the economic significance of *Fusarium* as a plant pathogen (Ekwomadu and Mwanza, 2023; Zakaria, 2023). Accordingly, several species within the *F. incarnatum-equiseti* species complex have been documented as the cause of fruit rot disease in cantaloupe, melons and muskmelons around the world. For instance, *F. equiseti* caused fruit rot disease on oriental melon and cantaloupe specimens collected in Korea (Kim and Kim, 2004), Thailand (Nuangmek et al., 2019), and China (Li et al., 2019). Postharvest fruit rot on muskmelons and oriental melons caused by *F. incarnatum* has been reported in Thailand (Wonglom and

Sunpapao, 2020) and in Korea (Kim and Kim, 2004), respectively. In 2022, *F. melonis* has been reported as a causal agent of muskmelon fruit rot in Thailand (Khuna et al., 2022). In Brazil, *F. jinanense*, *F. pernambucanum* and *F. sulawesiense* caused posthinvest fruit rot on melons (Araújo et al., 2021; Lima et al., 2021; de Freitas et al., 2024). In China, *F. incarnatum*, *F. luffae*, *F. nanum*, *F. pernambucanum*, and *F. sulawesiense* have been identified as causing fruit rot on muskmelons (Wang et al., 2019b; Zhang et al., 2022a, b, Zhang et al., 2023; Liu et al., 2023). Furthermore, fruit rot on muskmelons has been attributed to various *Fusarium* species from different complexes, including the *F. fujikuroi* species complex (such as *F. annulatum*, *F. moniliforme*, and *F. proliferatum*), the *F. oxysporum* species complex (including *F. kalimantanense* and *F. oxysporum*), the *F. sambucinum* species

Pathogenicity test using *F. compactum* (SDBR-CMU483), *F. jinanense* (SDBR-CMU484, SDBR-CMU485, and SDBR-CMU486), *F. mianyangense* (SDBR-CMU487 and SDBR-CMU488), and *F. sulawesiense* (SDBR-CMU489, SDBR-CMU490, and SDBR-CMU491) on muskmelon fruits after one week of inoculation. Control fruit inoculated with sterile water (A, F). Disease symptoms after inoculation with isolate SDBR-CMU483 (B, G), SDBR-CMU484 (C, H), SDBR-CMU485 (D, I), SDBR-CMU486 (E, J), SDBR-CMU487 (K, P), SDBR-CMU488 (L, Q), SDBR-CMU489 (M, R), SDBR-CMU490 (N, S), and SDBR-CMU491 (O, T). Scale bars = 20 mm.

complex (comprising *F. asiaticum*, *F. graminearum*, and *F. sambucinum*), and the *F. solani* species complex (including *F. falciforme* and *F. solani*) (Champaco and Martyn, 1993; Kim and Kim, 2004; Araújo et al., 2021; Hao et al., 2021; Parra et al., 2022; de Almeida Nogueira et al., 2023).

Various fungicides have been employed to control fungal-caused plant diseases. The insensitivity of plant pathogenic fungi to fungicides indicates their capability to resist them. The efficacy of fungicides in both sensitive and insensitive effects on the *in vitro* mycelial growth of plant pathogenic fungi, especially *Fusarium* species, has been documented in several studies (Mande, 2003; Orina et al., 2020; Zhao and Huang, 2023; Pandey et al., 2024). In this study, the insensitivity of *Fusarium* species to fungicides varied among different fungicides, species, and isolates. These results were consistent with previous studies, which reported that the insensitivity of *Fusarium* species to fungicides varies based on the type and dosage of each fungicide, fungal species, and fungal isolates (Orina et al., 2020; Maniçoba et al., 2023; Zhao and Huang, 2023; Pandey et al., 2024). For example, Baria and Rakholiya (2020) who found that carbendazim, copper oxychloride, and mancozeb were highly sensitive to *F. musae* causing banana fruit rot disease. All isolates of F. compactum, F. jinanense, F. mianyangense, and F. sulawesiense obtained in this study were sensitive only to copper oxychloride. While Pandey et al. (2024) found that most isolates of F. concentricum, F. solani, F. fujikuroi, and F. oxysporum causing tea dieback in India were insensitive to copper oxychloride. Bachkar et al. (2021) found that F. incarnatum causing fruit rot of papaya in India showed sensitivity to carbendazim but insensitivity to mancozeb. In this study, insensitivity to carbendazim and mancozeb was found in F. compactum, F. mianyangense, and F. sulawesiense. In addition, Maniçoba et al. (2023) found that Fusarium species (F. falciforme, F. kalimantanense, F. pernambucanum, and F. sulawesiense) causing fruit rot of melon in Brazil showed in vitro sensitivity to azoxystrobin + fludioxonil and imazalil. Fungicides with a specific mode of action to inhibit fungal growth have been widely used by farmers, as they are known to be more effective in controlling fungal pathogens (FRAC, 2020). Therefore, information on the in vitro sensitivity and resistance of fungicides against Fusarium species causing fruit rot on muskmelons in this study would be beneficial for in vivo applications and for managing this disease in both Thailand and worldwide. Therefore, accurately

<i>Fusarium</i> species/Isolate	Percentage of mycelial inhibition (%)*								Desetiens
	B+M	CA	CAR	соох	DI+A	DI	MA	ME	Reactions
F. compactum/ SDBR-CMU483	37.45 ± 1.95 b	31.63 ± 2.63 c	15.82 ± 1.95 f	62.76 ± 1.95 a	11.22 ± 2.63 g	22.96 ± 2.57 d	38.78 ± 1.67 b	19.90 ± 1.95 e	Sensitive to COOX
F. jinanense/ SDBR-CMU484	14.51 ± 1.28 f	58.82 ± 1.97 c	36.08 ± 1.50 d	73.33 ± 1.81 b	73.33 ± 1.28 b	76.47 ± 1.28 a	20.78 ± 1.25 e	10.20 ± 1.50 g	Sensitive to CA, COOX, DI+A, and DI
F. jinanense/ SDBR-CMU485	24.79 ± 2.57 f	59.20 ± 1.99 c	37.81 ± 3.40 d	60.48 ± 1.64 bc	62.19 ± 1.62 b	67.66 ± 1.91 a	14.23 ± 2.57 g	30.85 ± 1.91 e	Sensitive to CA, COOX, DI+A, and DI
F. jinanense/ SDBR-CMU486	30.78 ± 1.98 f	58.55 ± 1.69 d	37.82 ± 1.69 e	64.25 ± 3.11 bc	70.98 ± 1.28 a	63.21 ± 1.98 c	25.89 ± 1.98 g	9.33 ± 1.98 h	Sensitive to CA, COOX, DI+A, and DI
F. mianyangense/ SDBR-CMU487	43.26 ± 2.40 d	33.02 ± 1.52 ef	32.09 ± 2.63 f	75.81 ± 1.52 a	64.19 ± 0.93 c	65.12 ± 1.78 bc	14.42 ± 1.52 g	33.95 ± 1.52 ef	Sensitive to COOX, DI+A, and DI
F. mianyangense/ SDBR-CMU488	26.25 ± 1.60 f	38.33 ± 1.92 e	26.25 ± 1.60 f	78.75 ± 2.10 a	57.50 ± 2.15 bc	58.75 ± 2.10 b	13.25 ± 1.62 g	40.42 ± 1.60 d	Sensitive to COOX, DI+A, and DI
F. sulawesiense/ SDBR-CMU489	5.60 ± 1.65 fg	46.63 ± 1.62 b	6.03 ± 2.23 f	74.57 ± 1.65 a	29.74 ± 2.17 e	33.62 ± 2.23 cd	34.91 ± 0.86 c	4.74 ± 1.65 g	Sensitive to COOX
F. sulawesiense/ SDBR-CMU490	9.64 ± 2.09 g	25.00 ± 2.45 d	18.59 ± 2.45 f	66.67 ± 2.09 a	21.41 ± 1.48 e	31.28 ± 1.48 c	43.23 ± 2.96 b	5.77 ± 2.45 h	Sensitive to COOX
F. sulawesiense/ SDBR-CMU491	4.95 ± 2.29 f	47.50 ± 1.14 b	11.37 ± 1.90 e	57.76 ± 1.00 a	17.82 ± 1.14 d	23.27 ± 0.99 c	11.39 ± 1.90 e	4.46 ± 1.90 f	Sensitive to COOX

TABLE 2 Reactions of 9 isolates of Fusarium species against synthetic fungicides.

*Results are means \pm SD of five replicates with repeated twice. Data with different letters within the same role indicate a significant difference at $p \leq 0.05$ according to Duncan's multiple range test. B+M, benalaxyl-M + mancozeb; CA, captan; CAR, carbendazim; COOX, copper oxychloride; DI+A, difenoconazole + azoxystrobin; DI, difenoconazole; MA, mancozeb; ME, metalaxyl.

identifying the fungal agent causing the disease and knowing the fungicide's sensitivity and resistance will help farmers to prevent damage to melon production. Knowledge of fungicide resistance in fungal pathogens across different countries assists farmers in developing and applying effective control strategies. However, the results from in vitro fungicide tests may differ from in vivo responses due to environmental conditions and the plant's metabolism of the fungicide. Therefore, further studies are needed to conduct in vivo fungicide sensitivity assays based on the in vitro findings. Several previous studies have reported that both the overuse and prolonged application of fungicides contribute to the development of fungicideresistant strains (Deising et al., 2008; FRAC, 2020; Yin et al., 2023). Reducing fungicide resistance in fungi requires a multifaceted approach that includes using biological control agents, practicing crop rotation, adhering to fungicide application recommendations, and maintaining clean equipment, fields, and storage areas (Lucas, 2017; Corkley et al., 2022; Davies et al., 2021).

Prior to this study, only three *Fusarium* species, *F. equiseti* (Nuangmek et al., 2019), *F. incarnatum* (Wonglom and Sunpapao, 2020), and *F. melonis* (Khuna et al., 2022) have been identified as causing fruit rot in cantaloupes and muskmelons in Thailand. Therefore, this study represents the first report of *F. compactum*, *F. jinanense*, and *F. mianyangense* as novel pathogens causing fruit rot in muskmelons, both in Thailand and worldwide. Additionally,

this is the first documented case of *F. sulawesiense* causing postharvest fruit rot on muskmelons in Thailand. Further investigations are required to elucidate the timing of infections caused by fungal pathogens in these fruits. This can be accomplished by tracking the occurrence of disease-causing agents in these fruits throughout various stages of growth in cultivation regions, encompassing both pre- and post-harvest processes, along with the period of preservation after harvest. Additional studies will also be needed to pinpoint the origin of the disease's inoculum and the meteorological factors influencing infection and disease advancement.

5 Conclusions

Fruit rot on muskmelons caused by *Fusarium* is a worldwide disease that frequently occurs throughout fields or during storage. In the current investigation, four pathogenic *Fusarium* species, namely, *F. compactum*, *F. jinanense*, *F. mianyangense*, and *F. sulawesiense*, were isolated from infected muskmelon fruits in northern Thailand. The identification of these fungi involved the analysis of their morphological traits and performing multi-gene phylogenetic analyses. The assessment of pathogenicity for these four fungal species exhibited similar symptoms throughout the

artificial inoculation process, as they did during the postharvest storage period. Therefore, the present study is the first in Thailand and worldwide to identify *F. compactum*, *F. jinanense*, and *F. mianyangense* as new causal agents of fruit rot diseases in muskmelons. This is also the first report of postharvest fruit rot on muskmelons caused by *F. sulawesiense* in Thailand. In the fungicide screening test, all fungal isolates showed copper oxychloride sensitivity. However, all isolated shown a insensitivity to metalaxy, carbendazim, mancozeb, and benalaxyl-M + mancozeb. Thus, the findings of this study will improve our understanding of postharvest fruit rot disease of muskmelon and provide insight into developing effective management strategies and prevention to minimize substantial economic losses. Our future study will focus on the epidemiology of postharvest fruit rot disease of muskmelon in different locations of Thailand.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/, *cam*: PP758861, PP758862, PP758863, PP758864, PP758865, PP758866, PP758867, PP758868, PP758869; *rpb2*: PP758870, PP758871, PP758872, PP758873, PP758874, PP758875, PP758876, PP758877, PP758878); *tef1-\alpha*: PP758879, PP758880, PP758881, PP758882, PP758883, PP758884, PP758885, PP758886, PP758887.

Author contributions

NS: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. SK: Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing. TT: Methodology, Software,

References

Achilonu, C. C., Gryzenhout, M., Ghosh, S., and Marais, G. J. (2023). In vitro evaluation of azoxystrobin, boscalid, fentin-hydroxide, propiconazole, pyraclostrobin fungicides against Alternaria alternata pathogen isolated from Carya illinoinensis in South Africa. Microorganisms 11, e1691. doi: 10.3390/microorganisms11071691

Ajmal, M., Hussain, A., Ali, A., Chen, H., and Lin, H. (2023). Strategies for controlling the sporulation in *Fusarium* spp. J. Fungi. 9, e10. doi: 10.3390/jof9010010

Akbar, D., Marty, M., Babacan, H., Rahman, A., Ali, H., Xu, S., et al. (2024). *Melon Industry Sector Action Plan for Food Waste Reduction: Technical report* (Urrbrae, Australia: End Food Waste Australia), 84.

Araújo, M. B., Moreira, G. M., Nascimento, L. V., Nogueira, G. A., Nascimento, S. R. C., Pfenning, L. H., et al. (2021). Fusarium rot of melon is caused by several *Fusarium* species. *Plant Pathol.* 70, 712–721. doi: 10.1111/ppa.13328

Bachkar, D., Kolase, S., Bhujbal, M., Thakaru, C., Doltade, S., Khatal, M., et al. (2021). *In vitro* efficacy of different fungicides against *Fusarium incarnatum* causing fruit rot of papaya (*Carica papaya L.*). *Int. J. Chem. Stud.* 9, 1485–1488. doi: 10.22271/ chemi.2021.v9.i1u.11437 Visualization, Writing – review & editing. CS: Software, Visualization, Writing – review & editing. WN: Resources, Visualization, Writing – review & editing. JK: Formal analysis, Investigation, Methodology, Resources, Software, Visualization, Writing – original draft, Writing – review & editing. SL: Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The authors sincerely appreciate the financial support provided by CMU Mid-Career Research Fellowship program (Grant number: MRCMU2566R_030), Chiang Mai University, Chiang Mai, Thailand.

Acknowledgments

The authors would like to thank Russell Kirk Hollis for his helpful assistance with the English correction.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Balajee, S. A., Borman, A. M., Brandt, M. E., Cano, J., Cuenca-Estrella, M., Dannaoui, E., et al. (2009). Sequence-based identification of *Aspergillus, Fusarium*, and *Mucorales* species in the clinical mycology laboratory: Where are we and where should we go from here? *J. Clin. Microbiol.* 47, 877–884. doi: 10.1128/JCM.01685-08

Baria, T. T., and Rakholiya, K. B. (2020). Evaluation of the efficacy of different fungicides against *Fusarium musae*, a fruit rot disease of banana. *Annu. Res. Rev. Biol.* 35, 212–219. doi: 10.9734/ARRB/2020/v35i1230326

Broge, M., Howard, A., Biles, C. L., Udayanga, D., Taff, H., Dudley, L., et al. (2020). First report of *Diaporthe* fruit rot of melons caused by *D. pterocarpi* in Costa Rica. *Plant Dis.* 104, e1550. doi: 10.1094/PDIS-08-19-1655-PDN

Carbone, I., and Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 91, 553–556. doi: 10.1080/00275514.1999.12061051

Champaco, E. R., and Martyn, R. D. (1993). Comparison of *Fusarium solani* and *F. oxysporum* as causal agents of fruit rot and root rot of muskmelon. *HortScience* 28, 1174–1177. doi: 10.21273/HORTSCI.28.12.1174

Choi, Y. W., Hyde, K. D., and Ho, W. H. (1999). Single spore isolation of fungi. *Fungal Divers.* 3, 29–38.

Corkley, I., Fraaije, B., and Hawkins, N. (2022). Fungicide resistance management: maximizing the effective life of plant protection products. *Plant Pathol.* 71, 150–169. doi: 10.1111/ppa.13467

Crous, P. W., Hernández-Restrepo, M., van Iperen, A. L., Starink-Willemse, M., Sandoval-Denis, M., and Groenewald, J. Z. (2021b). Citizen science project reveals novel fusarioid fungi (*Nectriaceae, Sordariomycetes*) from urban soils. *Fungal Syst. Evol.* 8, 101–127. doi: 10.3114/fuse.2021.08.09

Crous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H.-J., Chaverri, P., et al. (2021a). *Fusarium*: More than a node or a foot-shaped basal cell. *Stud. Mycol.* 98, e100116. doi: 10.1016/j.simyco.2021.100116

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. *Nat. Methods* 9, e772. doi: 10.1038/ nmeth.2109

Das, K., Kim, M. G., Kang, M. G., Kang, I. K., Lee, S. Y., and Jung, H. Y. (2023). First report of *Stagonosporopsis cucumeris* causing internal fruit rot on oriental melon (*Cucumis melo*) in Korea. *Plant Dis.* 107, e2846. doi: 10.1094/PDIS-01-23-0160-PDN

Davies, C. R., Wohlgemuth, F., Young, T., Violet, J., Dickinson, M., Sanders, J.-W., et al. (2021). Evolving challenges and strategies for fungal control in the food supply chain. *Fungal Biol. Rev.* 36, 15–26. doi: 10.1016/j.fbr.2021.01.003

de Almeida Nogueira, G., Costa Conrado, V. S., Luiz de Almeida Freires, A., Ferreira de Souza, J. J., Figueiredo, F. R., Barroso, K. A., et al. (2023). Aggressivity of different *Fusarium* Species causing fruit rot in melons in Brazil. *Plant Dis.* 107, 886–892. doi: 10.1094/PDIS-04-22-0728-SR

de Freitas, M. D., Junior, R. D. L., da Silva, F. F. E., Inokuti, E. M., Oster, A. H., Zampieri, D., et al. (2024). Unraveling the antifungal composition of bitter orange decoction against the melon pathogen *Fusarium jinanense*. *Food Chem.* 455, e139769. doi: 10.1016/j.foodchem.2024.139769

Deising, H. B., Reimann, S., and Pascholati, S. F. (2008). Mechanisms and significance of fungicide resistance. *Braz. J. Microbiol.* 39, 286–295. doi: 10.1590/S1517-838220080002000017

Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. *BMC Bioinform*. 5, e113. doi: 10.1186/1471-2105-5-113

Ekwomadu, T. I., and Mwanza, M. (2023). *Fusarium* fungi pathogens, identification, adverse effects, disease management, and global food security: A review of the latest research. *Agriculture* 13, e1810. doi: 10.3390/agriculture13091810

Espinoza-Arellano, J., Fabela-Hernández, A. M., Gaytán-Mascorro, A., Reyes-González, A., and Sánchez-Toledano, B. I. (2023). Quantification and use of food losses: the case of cantaloupe melon in a region of North-Central Mexico. *Rev. Mex. Cienc. Agric.* 14, 159–170. doi: 10.29312/remexca.v14i2.2962

FAOSTAT (2022). Available online at: http://faostat.fao.org (Accessed 25 March 2024).

Farcuh, M., Copes, B., Le-Navenec, G., Marroquin, J., Jaunet, T., Chi-Ham, C., et al. (2020). Texture diversity in melon (*Cucumis melo* L.): Sensory and physical assessments. *Postharvest. Biol. Technol.* 159, e111024. doi: 10.1016/j.postharvbio. 2019.111024

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. *Evolution* 39, 783–791. doi: 10.2307/2408678

FRAC. (2020). Fungal control agents sorted by cross resistance pattern and mode of action. Available online at: https://www.frac.info (Accessed 8 September 2024).

Geiser, D. M., Jiménez-Gasco, M. M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., et al. (2004). FUSARIUM-ID v. 1.0: A DNA sequence database for identifying *Fusarium. Eur. J. Plant Pathol.* 110, 473–479. doi: 10.1023/B: EJPP.0000032386.75915.a0

Hall, T. (2004). Bioedit Version 6.0.7. Available online at: http://www.mbio.ncsu. edu/bioedit/bioedit.html (Accessed 5 November 2023).

Han, S. L., Wang, M. M., Ma, Z. Y., Raza, M., Zhao, P., Liang, J. M., et al. (2023). *Fusarium* diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. *Stud. Mycol.* 104, 87–148. doi: 10.3114/sim.2022.104.02

Hao, F., Zang, Q., Ding, W., Ma, E., Huang, Y., and Wang, Y. (2021). First report of fruit rot of melon caused by *Fusarium asiaticum* in China. *Plant Dis.* 105, e1225. doi: 10.1094/PDIS-08-20-1857-PDN

Huo, J. F., Ren, Y. X., Yao, Y. R., Ben, H. Y., Wen, X. Y., Ren, W. L., et al. (2023). First report of fruit rot caused by *Paramyrothecium foliicola* on muskmelon in China. *J. Plant Pathol.* 105, 629–630. doi: 10.1007/s42161-023-01346-9

Jedidi, I., Jurado, M., Cruz, A., Trabelsi, M. M., Said, S., and González-Jaén, M. T. (2021). Phylogenetic analysis and growth profiles of *Fusarium incarnatum-equiseti* species complex strains isolated from Tunisian cereals. *Int. J. Food Microbiol.* 353, e109297. doi: 10.1016/j.ijfoodmicro.2021.109297

Khuna, S., Kumla, J., Srinuanpan, S., Lumyong, S., and Suwannarach, N. (2023). Multifarious characterization and efficacy of three phosphate-solubilizing *Aspergillus* species as biostimulants in improving root induction of cassava and sugarcane stem cuttings. *Plants* 12, e3630. doi: 10.3390/plants12203630

Khuna, S., Kumla, J., Thitla, T., Nuangmek, W., Lumyong, S., and Suwannarach, N. (2022). Morphology, molecular identification, and pathogenicity of two novel

Fusarium species associated with postharvest fruit rot of cucurbits in northern Thailand. *J. Fungi.* 8, e1135. doi: 10.3390/jof8111135

Kim, J. W., and Kim, H. J. (2004). *Fusarium* fruit rot of posthavest oriental melon (*Cucumis melo* L. var. *makuwa* Mak.) caused by *Fusarium* spp. *Res. Plant Dis.* 10, 260– 267. doi: 10.5423/RPD.2004.10.4.260

Kobayashi, Y., Tsukamoto, T., Saito, J., and Sugimoto, S. (2004). Alternaria fruit rot of melon caused by *Alternaria alternata. Res. Bull. Pl. Prot. Japan.* 40, 153–155.

Kwon, J. H., Chi, T. T. P., and Park, C. S. (2009). Occurrence of fruit rot of melon caused by *Sclerotium rolfsii* in Korea. *Mycobiology* 37, 158–159. doi: 10.4489/ MYCO.2009.37.2.158

Leslie, J. F., and Summerell, B. A. (2006). *The fusarium Laboratory Manual. 1st ed.* Ed. I. A. Ames (New York, NY, USA: Blackwell Publishing Professional), 8–240. doi: 10.1002/9780470278376

Lester, G. E., and Hodges, D. M. (2008). Antioxidants associated with fruit senescence and human health: Novel orange-fleshed non-netted honey dew melon genotype comparisons following different seasonal productions and cold storage durations. *Postharv. Biol. Technol.* 48, 347–354. doi: 10.1016/j.postharvbio.2007.11.008

Li, Y. G., Zhang, R., Meng, L., Ali, E., Ji, P., Zhang, Q. F., et al. (2019). Occurrence of fruit rot of cantaloupe caused by *Fusarium equiseti* in China. *Plant Dis.* 103, e2683. doi: 10.1094/PDIS-03-19-0671-PDN

Lima, E. N., Oster, A. H., Bordallo, P. N., Araújo, A. A. C., Silva, D. E. M., and Lima, C. S. (2021). A novel lineage in the *Fusarium incarnatum-equiseti* species complex is one of the causal agents of fusarium rot on melon fruits in Northeast Brazil. *Plant Pathol.* 70, 133–143. doi: 10.1111/ppa.13271

Liu, Y. G., Zhang, X. P., Liu, S. M., Zhu, X. P., and Xia, J. W. (2023). First report of muskmelon fruit rot caused by *Fusarium sulawesiense* in China. *Plant Dis.* 107, e3313. doi: 10.1094/PDIS-08-22-1984-PDN

Lombard, L., van Doorn, R., and Crous, P. W. (2019). Neotypification of *Fusarium chlamydosporum*—A reappraisal of a clinically important species complex. *Fungal Syst. Evol.* 4, 183–200. doi: 10.3114/fuse.2019.04.10

Lucas, J. A. (2017). "Chapter one—Fungi, food crops, and biosecurity: advances and challenges," in *Advances in Food Security and Sustainability*. Ed. D. Barling (Elsevier, Amsterdam, The Netherlands), 1–40.

Manchali, S., Chidambara Murthy, K. N., Vishnuvardana, and Patil, B. S. (2021). Nutritional composition and health benefits of various botanical types of melon (*Cucumis melo L.*). *Plants* 10, e1755. doi: 10.3390/plants10091755

Mande, S. S. (2003). Variability studies in the genus *Fusarium* causing wilt of pomegranate (*Punica granatum* L.). Maharashtra, India: Mahatma Phule Krishi Vidyapeeth, Rahuri, 32–46.

Maniçoba, F. E., Negreiros, A. M. P., Cavalcante, A. L. A., Santos Alves, C.P. d. S., Nascimento, M. T.d. A. e., Ambrósio, M.M. d. Q., et al. (2023). Effectof environmental factors, fungicide sensitivity, andpathogenicity of Fusarium spp. associated with fruit rot of melon. *J. Phytopathol.* 171, 504–516. doi: 10.1111/jph.1320

Maryani, N., Sandoval-Denis, M., Lombard, L., Crous, P. W., and Kema, G. H. J. (2019). New endemic *Fusarium* species hitch-hiking with pathogenic *Fusarium* strains causing Panama disease in small-holder banana plots in Indonesia. *Persoonia* 43, 48–69. doi: 10.3767/persoonia.2019.43.02

Miller, M. A., Holder, M. T., Vos, R., Midford, P. E., Liebowitz, T., Chan, L., et al. (2009). The CIPRES Portals. Available online at: http://www.phylo.org/sub_sections/ portal (Accessed 15 May 2024).

Mirtalebi, M., Sabahi, F., and Banihashemi, Z. (2019). Fruit rot caused by *Neoscytalidium hyalinum* on melon in Iran. *Australas. Plant Dis. Notes* 14, e8. doi: 10.1007/s13314-019-0338-5

Namisy, A., Rakha, M., Hsu, W. C., and Chung, W. H. (2023). First report of *Fusarium incarnatum-equiseti* species complex causing fruit rot on muskmelon in Taiwan. *Plant Dis.* 107, e579. doi: 10.1094/PDIS-12-21-2624-PDN

Nitschke, E., Nihlgard, M., and Varrelmann, M. (2009). Differentiation of eleven *Fusarium* spp. isolated from sugar beet, using restriction fragment analysis of a polymerase chain reaction-amplified translation elongation factor 1α gene fragment. *Phytopathology* 99, 921–929. doi: 10.1094/PHYTO-99-8-0921

Nuangmek, W., Aiduang, W., Kumla, J., Lumyong, S., and Suwannarach, N. (2021). Evaluation of a newly identified endophytic fungus, *Trichoderma phayaoense* for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. *Front. Microbiol.* 12. doi: 10.3389/fmicb.2021.634772

Nuangmek, W., Aiduang, W., Suwannarach, N., Kumla, J., Kiatsiriroat, T., and Lumyong, S. (2019). First report of fruit rot on cantaloupe caused by *Fusarium equiseti* in Thailand. *J. Gen. Plant Pathol.* 85, 295–300. doi: 10.1007/s10327-019-00841-1

Nuangmek, W., Kumla, J., Khuna, S., Lumyong, S., and Suwannarach, N. (2023). Identification and characterization of *Fusarium* species causing watermelon fruit rot in northern Thailand. *Plants* 12, e956. doi: 10.3390/plants12040956

O'Donnell, K., Kistler, H. C., Cigelnik, E., and Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. *Proc. Natl. Acad. Sci. U.S.A.* 95, 2044–2049. doi: 10.1073/pnas.95.5.2044

O'Donnell, K., Sutton, D. A., Rinaldi, M. G., Gueidan, C., Crous, P. W., and Geiser, D. M. (2009). Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the *Fusarium incarnatum-F. equiseti* and

F. chlamydosporum species complexes within the United States. J. Clin. Microbiol. 47, 3851–3861. doi: 10.1128/JCM.01616-09

O'Donnell, K., Sutton, D. A., Rinaldi, M. G., Sarver, B. A. J., Balajee, S. A., Schroers, H.-J., et al. (2010). Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. *J. Clin. Microbiol.* 48, 3708–3718. doi: 10.1128/JCM.00989-10

O'Donnell, K., Ward, T. J., Robert, V. A. R. G., Crous, P. W., Geiser, D. M., and Kang, S. (2015). DNA sequence-based identification of *Fusarium*: Current status and future directions. *Phytoparasitica* 43, 583–595. doi: 10.1007/s12600-015-0484-z

Orina, A., Gavrilova, O., and Gagkaeva, T. (2020). The effect of fungicides on growth of *Fusarium* fungi *in vitro*. *Bio Web Conf*. 18, 00022. doi: 10.1051/bioconf/20201800022

Pandey, A. K., Hubballi, M., Sharma, H. K., Ramesh, R., Roy, S., Dinesh, K., et al. (2024). Molecular delineation and genetic diversity of *Fusarium* species complex causing tea dieback in India and their sensitivity to fungicides. *Crop Prot.* 181, e106707. doi: 10.1016/j.cropro.2024.106707

Parle, M., and Singh, K. (2011). Musk melon is eat-must melon. Int. Res. J. Pharm. 2, 52–57.

Parra, M.Á., Gómez, J., Aguilar, F. W., and Martínez, J. A. (2022). *Fusarium annulatum* causes Fusarium rot of cantaloupe melons in Spain. *Phytopathol. Mediterr.* 61, 269–277. doi: 10.36253/phyto-13454

Parsafar, B., Ahmadi, M., Jahed Khaniki, G., Shariatifar, N., and Rahimi Foroushani, A. (2023). The impact of fruit and vegetable waste on economic loss estimation. *Global J. Environ. Sci. Manage.* 9, 871–884. doi: 10.22035/gjesm.2023.04.14

Pornsuriya, C., and Chitphithak, I. (2018). Blue mold caused by *Penicillium oxalicum* on muskmelon (*Cucumis melo*) in Thailand. *Australas. Plant Dis. Notes* 13, e46. doi: 10.1007/s13314-018-0330-5

Rahjoo, V., Zad, J., Javan-Nikkhah, M., Mirzadi Gohari, A., Okhovvat, S. M., Bihamta, M. R., et al. (2008). Morphological and molecular identification of *Fusarium* isolated from maize ears in Iran. *J. Plant Pathol.* 90, 463–468. doi: 10.4454/JPP.V9013.688

Raillo, A. I. (1950). Griby Roda Fusarium; Gosudarstv (Moscow, Russia: Izd. Sel'skochoz. Lit).

Rambaut, A. (2019). FigTree Tree Figure Drawing Tool Version 13; Institute of Evolutionary 623 Biology (Edinburgh, Scotland: University of Edinburgh). Available online at: http://treebioedacuk/software/figtree/ (Accessed 10 November 2023).

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 61, 539–542. doi: 10.1093/sysbio/sys029

Santos, A. C. S., Trindade, J. V. C., Lima, C. S., Barbosa, R. N., Costa, A. F., Tiago, P. V., et al. (2019). Morphology, phylogeny, and sexual stage of *Fusarium caatingaense* and *Fusarium pernambucanum*, new species of the *Fusarium incarnatum-equiseti* species complex associated with insects in Brazil. *Mycologia* 111, 244–259. doi: 10.1080/00275514.2019.1573047

Singh, A. K., Singh, V. K., and Shukla, D. N. (2010). Effect of plant extracts against *Pythium aphanidermatum* – the incitant of fruit rot of muskmelon (*Cucumis melo*). *Indian J. Agric. Sci.* 80, 51–53.

Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22, 2688–2690. doi: 10.1093/bioinformatics/btl446

Subrahmanyam, A. (1983). Fusarium laceratum. *Mykosen* 26, 478–480. doi: 10.1111/j.1439-0507.1983.tb03242.x

Suwannarach, N., Khuna, S., Kumla, J., Tanruean, K., and Lumyong, S. (2019). First report of *Lasiodiplodia theobromae* causing fruit rot on melon (*Cucumis melo*) in Thailand. *Plant Dis.* 104, e280. doi: 10.1094/PDIS-07-19-1454-PDN

Suwannarach, N., Kumla, J., Matsui, K., and Lumyong, S. (2015). Characterization and efficacy of *Muscodor cinnamomi* in promoting plant growth and controlling Rhizoctonia root rot in tomatoes. *Biol. Control.* 90, 25–33. doi: 10.1016/j.biocontrol.2015.05.008

Vella, F. M., Cautela, D., and Laratta, B. (2019). Characterization of polyphenolic compounds in cantaloupe melon by-products. *Foods* 8, e196. doi: 10.3390/foods8060196

Wang, M. M., Chen, Q., Diao, Y. Z., Duan, W. J., and Cai, L. (2019a). *Fusarium incarnatum-equiseti* complex from China. *Persoonia* 43, 70-89. doi: 10.3767/ persoonia.2019.43.03

Wang, M. M., Crous, P. W., Sandoval-Denis, M., Han, S. L., Liu, F., Liang, J. M., et al. (2022b). *Fusarium* and allied genera from China: Species diversity and distribution. *Persoonia* 48, 1–53. doi: 10.3767/persoonia.2022.48.01

Wang, Y., Lei, Z., Ye, R., Zhou, W., Zhou, Y., Zou, Z., et al. (2022a). Effects of cadmium on physiochemistry and bioactive substances of muskmelon (*Cucumis melo L.*). *Molecules* 27, e2913. doi: 10.3390/molecules27092913

Wang, Y., Wang, C., Wang, L., Li, Z., Zhang, X., Liu, Z., et al. (2019b). Identification and biological characteristics of a novel pathogen *Fusarium incarnatum* causing muskmelon fruit Fusarium rot. *Acta Hortic. Sin.* 46, 529–539. doi: 10.16420/ j.issn.0513-353x.2018-0820

Wilkinson, K., Grant, W. P., Green, L. E., Hunter, S., Jeger, M. J., Lowe, P., et al. (2011). Infectious diseases of animals and plants: An interdisciplinary approach. *Philos. Trans. R. Soc B.* 366, 1933–1942. doi: 10.1098/rstb.2010.0415

Wonglom, P., and Sunpapao, A. (2020). *Fusarium incarnatum* is associated with postharvest fruit rot of muskmelon (*Cucumis melo*). J. Phytopathol. 168, 204–210. doi: 10.1111/jph.12882

Xia, J. W., Sandoval-Denis, M., Crous, P. W., Zhang, X. G., and Lombard, L. (2019). Numbers to names—restyling the *Fusarium incarnatum-equiseti* species complex. *Persoonia* 43, 186–221. doi: 10.3767/persoonia.2019.43.05

Yamada, K., Sonoda, R., and Ishikawa, K. (2016). Population genetic structure of QoI-resistant *Pestalotiopsis longiseta* isolates causing tea gray blight. *Plant Dis.* 100, 1686–1691. doi: 10.1094/PDIS-09-15-1114-RE

Yi, R. H., Lian, T., Su, J. J., and Chen, J. (2022). First report of internal black rot on *Carica papaya* fruit caused by *Fusarium sulawesiense* in China. *Plant Dis.* 106, e319. doi: 10.1094/PDIS-04-21-0721-PDN

Yin, Y., Miao, J., Shao, W., Liu, X., Zhao, Y., and Ma, Z. (2023). Fungicide resistance: progress in understanding mechanism, monitoring, and management. *Phytopathology* 113, 707–718. doi: 10.1094/PHYTO-10-22-0370-KD

Zakaria, L. (2023). Fusarium species associated with diseases of major tropical fruit crops. Horticulturae 9, e322. doi: 10.3390/horticulturae9030322

Zhang, X. P., Cao, X. D., Dang, Q. Q., Liu, Y. G., Zhu, X. P., and Xia, J. W. (2022b). First report of fruit rot caused by *Fusarium luffae* in muskmelon in China. *Plant Dis.* 106, e1763. doi: 10.1094/PDIS-08-22-1984-PDN

Zhang, X. P., Dang, Q. Q., Cao, X. D., Liu, Y. G., Bi, Z. B., Zhu, X. P., et al. (2023). First report of muskmelon fruit rot caused by *Fusarium nanum* in China. *Plant Dis.* 107, e226. doi: 10.1094/PDIS-04-22-0965-PDN

Zhang, X. P., Xia, J. W., Liu, J. K., Zhao, D., Kong, L. G., and Zhu, X. P. (2022a). First report of *Fusarium pernambucanum* causing fruit rot of muskmelon in China. *Plant Dis.* 106, e1997. doi: 10.1094/PDIS-07-21-1520-PDN

Zhao, J., and Huang, M. (2023). Characterization and in *vitro* fungicide sensitivity of two *Fusarium* spp. associated with stem rot of dragon fruit in Guizhou, China. *J. Fungi.* 9, e1178. doi: 10.3390/jof9121178