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Modern viticulture faces significant challenges including climate change and

increasing crop diseases, necessitating sustainable solutions to reduce fungicide

use and mitigate soil health risks, particularly from copper accumulation.

Advances in plant phenomics are essential for evaluating and tracking

phenotypic traits under environmental stress, aiding in selecting resilient vine

varieties. However, current methods are limited, hindering effective integration

with genomic data for breeding purposes. Remote sensing technologies provide

efficient, non-destructive methods for measuring biophysical and biochemical

traits of plants, offering detailed insights into their physiological and nutritional

state, surpassing traditional methods. Smart phenotyping is essential for selecting

crop varieties with desired traits, such as pathogen-resilient vine varieties,

tolerant to altered soil fertility including copper toxicity. Identifying plants with

typical copper toxicity symptoms under high soil copper levels is straightforward,

but it becomes complex with supra-optimal, already toxic, copper levels

common in vineyard soils. This can induce multiple stress responses and

interferes with nutrient acquisition, leading to ambiguous visual symptoms.

Characterizing resilience to copper toxicity in vine plants via smart

phenotyping is feasible by relating smart data with physiological assessments,

supported by trained professionals who can identify primary stressors. However,

complexities increase with more data sources and uncertainties in symptom

interpretations. This suggests that artificial intelligence could be valuable in

enhancing decision support in viticulture. While smart technologies, powered

by artificial intelligence, provide significant benefits in evaluating traits and

response times, the uncertainties in interpreting complex symptoms (e.g.,

copper toxicity) still highlight the need for human oversight in making

final decisions.
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General aspects and introduction to
the main viticulture challenges

Modern agricultural practices face the urgent challenge of

significantly increasing crop yield to meet the growing global food

demand of a population projected to reach 9 billion people by 2050

(FAO, 2009; Tilman et al., 2011). However, phenomena like soil

degradation (e.g., erosion, salinization, and pollution) and

urbanization are diminishing the total agricultural land area,

potentially leading to reduced productivity (Ferreira et al., 2022),

posing also a threat for vital soil ecosystem services (AbdelRahman,

2023; Rathore et al., 2023). This scenario is further exacerbated by

climate change and global warming, leading to increasing abiotic

and biotic stress on crop plants (Raza et al., 2019), a trend clearly

observed in viticulture in recent decades. Notably, recent years have

been characterized by a significant resurgence in pathogenic

infections of grapevines (Bardsley et al., 2023), such as downy

mildew (Plasmopara viticola) and powdery mildew (Erysiphe

necator) (Rienth et al., 2021). To address this issue, the use of

fungicides has been increasingly relied upon to protect crops and

secure yields (Wong et al., 2001; Gessler et al., 2011; Fontaine et al.,

2019). However, beside its lack of long-term sustainability, this

approach has led to a gradual accumulation of fungicidal residues in

vineyard soils, posing a serious threat to soil health, as described for

the case of copper (Cu) (Brunetto et al., 2016). In fact, the soil

concentration of this metal, which naturally ranges from 2 to 50 mg

kg-1 (Oorts, 2013), can occasionally exceed 1000 mg kg−1 due to

agricultural inputs including Cu-based fungicides, notably observed

in vineyard soils in France and Brazil (Brunetto et al., 2016). This

phenomenon not only poses a serious threat to environmental

integrity but also hinders vineyard replanting. Severe instances of

Cu toxicity in grafted cuttings intended for vineyard rejuvenation

have become increasingly common in certain viticulture regions

(Cesco et al., 2021). This represents a significant challenge,

particularly considering the substantial contribution of this

production sector to the overall livelihood of the agricultural

context (Montalvo-Falcón et al., 2023). Hence, there is a pressing

need to implement targeted measures to enhance vine resilience

against both pathogens attacks and alterations in soil fertility. For

pathogen resistance, various initiatives—ranging from traditional

breeding methods to advanced assisted evolution techniques and

biotechnological strategies—have been successfully implemented or

are currently underway (Cesco et al., 2021). However, efforts to

develop vine plant materials specifically adapted to soils with

compromised fertility, such as those with Cu accumulation,

remain relatively limited. Furthermore, a comprehensive

evaluation of the performance of pathogen-resistant vine varieties

under altered soil fertility conditions is still needed.
Cu in viticultural soils and its toxic
effects in vine plants

Although Cu is an essential nutrient, when present in excess in

the soil, vine plants exhibit various phenotypic responses as
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adaptive mechanisms to cope with toxicity and ensure growth

and survival (Nagajyoti et al., 2010; Cesco et al., 2021). These

responses, whose intensity and severity progressively increase as the

levels of Cu available fractions in soil increase, include alterations in

morphology (e.g., limited root development, stunted shoot growth,

and leaf chlorosis), physiology (e.g., activation of antioxidant

defense systems, accumulation of osmoprotectants, enhanced

chelation of metals via phytochelatins and metallothioneins), and

biochemistry (enhanced synthesis of metal-binding proteins and

detoxification enzymes) (Cesco et al., 2021, 2022; Kosakivska et al.,

2021). Furthermore, when pronounced, soil Cu accumulation

impairs chlorophyll synthesis pathways, resulting in decreased

photosynthetic efficiency and chlorotic canopy appearance.

Symptomatically, in grapevine tissues Cu accumulation can lead

to necrosis, wilting, and stunted growth, impairing overall plant

vigor and productivity (Brunetto et al., 2016). Eventually, Cu

toxicity may alter fruit development and quality, leading to

decreased yield and compromised wine characteristics (Cambrollé

et al., 2013, 2015). In this regard, it is important to note that these

severe symptoms are typically observed in plants experiencing

severe Cu-toxicity conditions in soils (Cesco et al., 2021).

Conversely, moderate or latent ones often induce the

manifestation of milder symptoms that may not always be readily

and unequivocally identifiable.

Interestingly, several pieces of research have highlighted that,

among its various effects, Cu toxicity can also antagonize the

acquisition of other essential micro and macronutrients, in

different plant species, as for instance Arabidopsis (Hippler et al.,

2018), alfalfa, lettuce (Hong et al., 2015), sorghum (Roy et al., 2017),

grapevine (Toselli et al., 2009; Baldi et al., 2018), Citrus (Hippler

et al., 2016) and poplar (Tőzsér et al., 2023). Recent evidence has

suggested that this competition might be ascribable to an

impairment in the functionality of root mechanisms involved in

acquiring essential nutrients. In particular, despite the antagonism

between Cu and phosphorus (P) being known in poplar and

grapevine for a while (Teng and Timmer, 1990; Toselli et al.,

2009; Baldi et al., 2018), high concentrations of Cu were just

recently demonstrated to affect the biochemical mechanisms

underlying P acquisition (Feil et al., 2020). Additionally, Cu may

interfere with cucumber plants ability to induce the molecular

machineries involved in nitrate uptake in the high affinity range

(Feil et al., 2023), impairing the generation of the transmembrane

proton gradient required for the nitrate uptake mechanism.

Furthermore, a detailed investigation on grapevine rootstocks

exposed to Cu toxicity highlighted that the differential responses

were mainly ascribable to fine tuning of bivalent cations uptake and

allocation mechanisms (Marastoni et al., 2019b). Interestingly,

manganese (Mn) deficiency induced by Cu toxicity has been

described in the most sensitive rootstock, demonstrating an

antagonism between the two elements (Marastoni et al., 2019b).

This aspect is particularly critical in pathogen-resilient vine

cultivars. Despite expressing resistance genes, these cultivars still

rely on a pathogen response mechanism that involves local

increases in the concentration of several nutrients, Mn among

them, which are crucial for synthesizing secondary metabolites

and reactive oxygen species (Cesco et al., 2020). Taken together,
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these recent findings indicate that Cu excess in soil not only induces

typical leaf symptoms at different degrees of severity but also

significantly disrupts the functionality of nutrient acquisition

mechanisms in roots. This disruption can then lead to deficiency

situations, even if at latent levels.
Plant phenomics and phenotyping

Plants, as sessile organisms, must adapt their morphological and

physiological characteristics to cope with the environmental changes

(Foyer and Kranner, 2023). In this respect, crop plants will be

significantly impacted by the worsening climate conditions and

altered soil fertility, influencing the genotype-environment

interaction and affecting the expression of plant phenotypes (Gupta

et al., 2015). Therefore, to evaluate the potential of different

genotypes, it is essential to monitor changes in plants phenotype

under environmental stressors, either in field or controlled

conditions, to finally unravel the regulatory networks involved in

stress responses (Mickelbart et al., 2015). This aspect becomes more

relevant in the post-genomic era, where the genomic resources should

assist the selection of the most suitable and potentially successful crop

varieties. However, despite advancements of next-generation

sequencing and genotyping, the lack of accurate phenotype data

acquisition hinders the utilization of genomic knowledge for breeding

purposes (Furbank et al., 2019; Yang et al., 2020). In this respect, it

should be highlighted that plants phenomics is defined as the high-

throughput and accurate acquisition of data regarding plant

phenotypes (Houle et al., 2010), while phenotyping refers to a set

of methods and protocols aimed at monitoring plant traits under

varying environmental conditions, with specified accuracy and

precision at different scales, ranging from single organ to whole

canopy (Fiorani and Schurr, 2013; Mahlein, 2016). Until recently,

methods for assessing plant phenotypes have relied on destructive,

labor-intensive and time-consuming techniques (Zhao et al., 2019;

Yang et al., 2020; Singh et al., 2021). Therefore, there is a pressing

need to develop non-destructive methods that can accurately,

objectively, and efficiently assess plants’ phenotypic traits in

response to abiotic and/or biotic stresses (Zhao et al., 2019; Yang

et al., 2020; Singh et al., 2021). In this context, high-throughput

phenotyping could play a crucial role in facilitating breeders’ efforts to

develop novel and resilient genotypes across multiple environments

(Crossa et al., 2017). However, the advancement of phenomics

currently lags behind genomics, which poses a limitation in

applying these approaches to assess crop genotype performance

(Bohra et al., 2021). Concerning grapevine and viticulture, current

progress in smart phenotyping includes advancements in automated

data collection and analysis, enabling more accurate assessments of

plant health, growth patterns, and environmental responses. In this

respect, it is noteworthy the application of drones equipped with

multispectral imaging monitor vineyards, detecting plant health

issues like water stress, pests, and nutrient deficiencies (Campos

et al., 2021). In addition, robots and sensors have also been exploited

to measure vineyard canopy traits, aiding pruning decisions, crop

load management, and improving vine balance through automated
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data collection (Fernández-Novales et al., 2021). In the future, these

technologies could contribute to precision viticulture by optimizing

disease management, improving yield predictions, and reducing

resource use, all of which will enhance the sustainability and

efficiency of modern viticulture (Poblete-Echeverrı ́a and

Tardaguila, 2022).
Image-based technologies for
plants’ phenotyping

The advancement of remote sensing technologies, such as Light

Detection and Ranging (LiDAR) and hyperspectral/multispectral

sensors, has significantly enhanced the development of rapid, non-

destructive methods for measuring the biophysical and biochemical

traits of plants. These advancements have made the identification

and evaluation of crop variety performance much more efficient

compared to traditional methods. These traits, which include

indicators of plant physiological state, photosynthetic capacity,

and nutrient stresses (Ali and Imran, 2021), were traditionally

determined through field surveys, soil or leaf nutrient sampling,

and climatology recording (Fournier and Hall, 2017). Image-based

technologies have shown potential for phenotyping by enabling the

real-time identification of alterations in plant reflectance, biomass,

and thermal radiation at a high resolution, providing valuable

information about their morphophysiological traits, growth and

development. Pioneering experiences utilizing imaging techniques

based on Red, Green and Blue (RGB) sensors as well as chlorophyll

fluorescence (ChF) imaging sensors, have already been documented

in the literature (Al-Tamimi et al., 2022).

From a functional perspective, remote sensing of vegetation

traits works by capturing electromagnetic radiation that interacts

with leaf or plant canopies, producing a spectral response curve.

This response, which combines reflected, absorbed and transmitted

or emitted radiation, is influenced by various factors. Pigments such

as chlorophyll, carotenoids, and anthocyanins affect reflectance in

the visible (VS) band (400–700 nm) and are, thus, detectable in this

region (Merzlyak et al., 2003). In contrast, the ratio of mesophyll

cells to intercellular air spaces per unit leaf area influences the near-

infrared (NIR, 700–1000 nm) reflectance, allowing for the

estimation of canopy structural parameters (Kattenborn et al.,

2019). The thermal, or long-wave, infrared band (750–1400 nm)

enables the measurement of canopy surface temperatures, canopy

transpiration rates, and leaf or stomatal conductance (Ishimwe

et al., 2014). Non-pigment biochemical contents, including water,

nitrogen (N), protein, lignin, and cellulose, predominantly influence

spectral reflectance into the micro or short-wave infrared (SWIR)

range (1400–2500 nm) (Féret et al., 2019). One widely used spectral

vegetation index is the Normalized Difference Vegetation Index

(NDVI) (Jones and Vaughan, 2010; Calcante et al., 2012; Xue and

Su, 2017), which is calculated as the normalized ratio between red

and near-infrared bands from multispectral information. In more

detail, the formula is provided below. It involves spectral radiance

(or reflectance) measurements recorded by sensors in the red

(visible) and NIR (near-infrared) regions (Huang et al., 2021).
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NDVI =
NIR − red
NIR + red

NDVI values range from -1 to +1 due to a normalization

procedure, with different values corresponding to differences in

spectral responses of objects/materials (such as water, wet soil, dry

soil, and leaves) (Huang et al., 2021). Moreover, NDVI values have

been linked to canopy structure, photosynthesis rates, and plant

health (Gamon et al., 1995). However, a specific NDVI value does

not have a singular interpretation (explicit meaning), as it is an

index created to simplify complex relationships (Xue and Su, 2017).

In addition to NDVI, numerous other vegetation indices combining

visible light radiation and non-visible spectra have been proposed to

obtain proxy quantifications of the vegetation cover, vigor, and

growth dynamics (see Xue and Su, 2017 for a detailed review).

Among such indices, it is worth mentioning the Plant Senescence

Reflectance Index (PSRI - Merzlyak et al., 2003), which assesses the

carotenoids to chlorophyll ratio, the Green Leaf Index (GLI -

Louhaichi et al., 2001), which is particularly suitable to determine

leaf chlorophyll, and the Green-Red Vegetation Index (GRVI -

Tucker, 1979), a useful indicator of vegetation phenology, especially

for leaf autumn coloring, but also disturbance and ecosystem types.

PSRI =
red − green

NIR

GLI =
2   green − red − blue
2   green + red + blue

GRVI =
green − red
green + red

Since vegetation indices have different effectiveness in

monitoring the spatiotemporal content of chlorophyll,

carotenoids and nitrogen, the integration of several detection

methods and indices related to the different bands of the leaf

spectral signature is advisable (Nestola et al., 2018).

Remote sensing can be conducted using various supports,

including spaceborne (micro- and nano-) satellites, airborne

platforms, drones, and ground-based (hand-held) devices.

Examples of critical analysis of these applications with crops are

the experience to monitor i) fruit-crop diseases in orchards (Zhang

et al., 2021), ii) fruit and canopy traits of Citrus sinensis orchards

(Ali and Imran, 2021) and iii) leaf nitrogen content in apple trees

(Zhang et al., 2012).

Experiences of yield predictions by using remote sensing

techniques (He et al., 2022) and orchard trees identification

through imaging techniques and vegetation indices (Ozdarici-ok

and Ok, 2023) have been also reported. Furthermore, such indices

can also be effectively adopted to track photosynthetic phenology,

which allows in turn the modeling of CO2 fluxes as well as forest

conditions and functionality (Nestola et al., 2018; Guo et al., 2024).

Remote sensing technologies are increasingly being applied in

viticulture to improve vineyard management by providing

valuable data for decision-making. These technologies use satellite

imagery, drones, and sensors to monitor various aspects of the

vineyard without direct contact, offering real-time information that

can optimize viticulture practices. Specific experiences in which
Frontiers in Plant Science 04
remote sensing technologies have been applied to vineyards and

viticulture are reported in Table 1.

The high-throughput plant phenotyping can also rely on digital

applications that represent a new source of quantitative trait data in

ecological field studies that offers complementary, multi-

dimensional insights into plant communities (Klein et al., 2017;

Zieschank and Junker, 2023). In this direction, an automated plant

phenotyping system was adapted for mobile use in the field to

facilitate ‘digital whole-community phenotyping’ (DWCP),

enabling the acquisition of 3-dimensional structures and

multispectral data of plant communities. The effectiveness of

DWCP was demonstrated through the recording of plant

community responses to experimental land-use treatments over a

two-year period. In particular, changes in morphological and

physiological community properties in response to different

treatments were successfully captured (Zieschank and Junker,

2023). Alongside these developments, recent research has

demonstrated the potential of hyperspectral and RGB imaging,

coupled with machine learning, to further enhance the precision of

non-invasive phenotyping of grapevine. We summarize below the

main results of some relevant studies on the topic.

Gutiérrez et al. (2018) proposed a novel approach for classifying a

large number of grapevine varieties under field conditions by utilizing

on-the-go hyperspectral imaging combined with machine learning

algorithms. Their experiments, conducted on 30 different varieties,

demonstrated that the system effectively classified leaves and could be

considered a new non-destructive tool for plant phenotyping in field

settings. Similarly, Briglia et al. (2019) investigated whether

morphophysiological traits—such as leaf area and leaf water

potential—of drought-stressed grapevines could be determined

through non-invasive RGB and NIR image-based analysis

techniques. Their study successfully modeled plant canopy area

estimation based on the pixel count of RGB images from vines

subjected to varying levels of drought. Moreover, the results indicated

that the NIR and Dark Green color fractions decreased with

increasing drought severity, while the Yellow fraction increased.

Montanaro et al. (2024) applied RGB-based phenotyping to

detect salt stress responses in potted grapevines, analyzing both the

pixel fraction of specific color bands (Yellow, Green, Brown, and

Dark Green) and the mean pixel values for R, G, and B. Their

findings revealed that a decrease in the relative pixel fraction of

Dark Green was associated with an increase in soil electrical

conductivity. Additionally, the mean pixel value of R proved to be

a reliable predictor of electrical conductivity. Bendel et al. (2020)

employed hyperspectral imaging (400–2500 nm) alongside disease

detection models to identify grapevines infected with phytoplasma.

While the system accurately differentiated between symptomatic

and healthy plants (up to 96% accuracy), detecting infected but

asymptomatic vines proved more challenging, warranting

further investigation.

In a further study on pest detection, del-Campo-Sanchez et al.

(2019) demonstrated that combining geometric and computational

vision techniques with geomatic products derived from

conventional RGB images—acquired by UAV-mounted cameras

—enabled more precise segmentation of vegetation affected by the

pest Jacobiasca lybica healthy vegetation and the ground.
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Smart phenotyping in resilient vine
varieties exposed to Cu toxicity

The smart phenotyping approach, renowned for its precise,

high-throughput, and non-destructive assessments of plant traits,

has undeniably provided significant advantages in selecting crop

varieties with desirable characteristics like drought and heat

tolerance, early maturity, and resistance to pests and diseases

(Costa et al., 2019; Langstroff et al., 2022; Maier et al., 2022). This

approach might also represent a valuable tool for the identification
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of i) vine varieties that better adapt themselves to conditions of

altered soil fertility, such as those affected by Cu excess, and/or ii)

the pathogen-resilient ones (including those already available on the

market such as PIWI grape varieties) that best express their

resistance traits under varying soil fertility conditions, including

Cu toxicity. However, while smart phenotyping is effective in

identifying plants manifesting typical Cu toxicity symptoms when

grown under high soil Cu availability (acute toxicity), its application

becomes more complex in cases of lower but supra-optimal and still

toxic Cu concentrations, which are very common in vineyard soils,
TABLE 1 Specific examples of remote sensing technologies applied to viticulture.

Remote Sensing Technology Application in viticulture Reference

Normalized Difference Vegetation Index (NDVI) Grapevine canopy mapping (De Castro et al., 2018)

Vigour maps and long-term monitoring (Nonni et al., 2018)

Monitoring of canopy health and vigour (Mazzetto et al., 2010)

Monitoring vine water status, yield, and berry composition (Kotsaki et al., 2019)

Yield estimation (Hacking et al., 2019)

Characterization of vine foliage (Milella and Reina, 2024)

Diagnosis of Plasmopara viticola in vine (Calcante et al., 2011)

Total Leaf Area assessment (Vélez et al., 2020)

Multispectral and Hyperspectral Imaging Assessment of vegetative, productive, and berry composition spatial
variability within a vineyard

(Rey-Caramés et al., 2015)

Assessment of biophysical and geometrical parameters at
grapevine scale

(Pádua et al., 2020)

Assessment of geometrical parameters at grapevine scale (Sousa et al., 2022)

Assessment of water stress index (Buunk et al., 2023)

Investigation of grapevine photosynthetic parameters (Ozelkan et al., 2015)

Prediction of degree brix in wine grapes (Swe et al., 2023)

In-situ optical monitoring of grape ripening (Oliveira et al., 2024)

Determination of biophysical variables (Darra et al., 2021)

Thermal Imaging Prediction of grapevine canopy nitrogen status (Walker et al., 2021)

Monitoring of water use and stress in vineyards (Knipper et al., 2019)

Detection of biotic or abiotic stress in vineyards (Fevgas et al., 2023)

Light Detection and Ranging (LiDAR) Canopy size assessment (Pagliai et al., 2022)

Automatic detection of vine rows (Biglia et al., 2022)

Automatic grapevine trunk detection (Jurado et al., 2020)

Satellite Imagery Assessment of vineyards soil erosion (Straffelini et al., 2022)

Mapping vineyard leaf area (Johnson et al., 2003)

Automatic detection of vine rows (Comba et al., 2015)

Detection of vineyard spatial variation (Dorin et al., 2024)

Detection of vineyard spatial variation (Gatti et al., 2020)

Detection of vineyard spatial variation (Di Gennaro et al., 2019)

Assessment of phenological growth stage of vine plants (Kasimati et al., 2023)

Assessment of intra-vineyard vegetation spatial variability (Matese et al., 2015)
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as previously demonstrated by our group (Cesco et al., 2021;

Signorini et al., 2021, 2023; Genova et al., 2022). In such

instances, high concentrations of Cu in soils can induce both

toxicity phenomena and interfere, for example, with the

mechanisms underpinning the acquisition of other nutrients (e.g.,

N, P, Mn) at root level, thus inducing shortages, as described before.

In this latter scenario, there is a high risk that visual symptoms are

either a mixture of those induced by individual stress (the real – Cu

toxicity, and the secondary induced one – nutrient shortage) or

rather than exclusively ascribable to the secondary one, thus,

making ambiguous the relationship between the primary stressor

and the manifested phenotype (Figure 1). An example is the bluish

darkening of leaf blades, a typical symptom of P deficiency,

observed in vine plants exposed to Cu toxicity (Marastoni et al.,

2019a). Moreover, a common phenotypic manifestation such as

canopy yellowing in plants under stress could be attributed to a

multitude of possible causes (e.g., Cu toxicity as well as deficiency of
Frontiers in Plant Science 06
a nutrient). For example, the limited soil availability of N can induce

vine plants to manifest a range of symptoms, including low vigor,

low berry set, reduced photosynthetic capacity, and generalized

yellowing of all leaves and green tissue (Cocco et al., 2021; Verdenal

et al., 2021). Furthermore, yellowing of the interveinal area of older

leaves is also a symptom exhibited in Mn shortage (Alejandro et al.,

2020), often mistaken for Zn or Fe deficiency (Val et al., 1993;

Barman et al., 2018). It is worth noting that NDVI values have been

used to evaluate canopy health based on the availability levels of

certain nutrients, being such applications documented in various

crops (e.g., N (Akeem et al., 2018), Fe (Beyyavas et al., 2023).

Furthermore, typical symptoms of Cu toxicity such as leaf chlorosis,

necrosis and stunted plant development (Cesco et al., 2022;

Vasilachi et al., 2023) can also be induced by heavy metals such

as Cd and Pb, which are commonly found in cultivated soils (Rashid

et al., 2023), adding further complexity to the system. Given these

factors, it appears that automated canopy assessments can
FIGURE 1

Schematic representation of multiple interactions between Cu and macro- (N and P) and micronutrients (Fe and Mn) at rhizosphere level. High levels
of bioavailable Cu in the rhizosphere can result in typical leaf Cu-toxicity symptoms (e.g., chlorosis, wilting and necrosis). In addition, high Cu
concentrations can interfere with the acquisition of specific macro- and micronutrients. Copper excess can generate N shortage in plants since it
prevents the acquisition of nitrate at root level, by impairing the generation of the proton gradient required for the uptake. The induced-N deficiency
is shown by the yellowing of leaf blades. The antagonism between Cu and P is ascribable to a direct interaction of Cu with P acquisition
mechanisms, which result indeed inhibited. The induced-P deficiency is shown by bluish darkening of leaf blades. Copper toxicity also induces a fine
tuning of the acquisition (e.g., direct competition for the same transporters) and allocation mechanisms of other divalent cations (e.g., Fe and Mn),
often creating deficiency conditions that are mainly shown by chlorosis of leaf blades.
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effectively highlight plant distress in such circumstances, though

they may not definitively identify the underlying cause. In this

context, it is important to recognize that the agricultural

environment is a complex system where multiple factors often

simultaneously limit the full productive potential of a cultivated

plant species, as seen in cases of concurrent sulfur (S) and iron (Fe)

deficiencies (Astolfi et al., 2021). Moreover, low availability of one

nutrient can impair the acquisition mechanisms of others (e.g., Fe

for nitrate (Agnolon et al., 2002), N for Fe (Nikolic et al., 2007), S for

Fe (Astolfi et al., 2021)), further complicating the sequence of events

at the plant’s adaptive response to Cu toxicity and the

characteristics of the resulting phenological manifestation.

Although the application of smart phenotyping in characterizing

resilience to Cu toxicity in grapevine plants is complex and

challenging due to the intricate network of stress responses

involved, it is important to note that trained professionals can

unequivocally identify the primary stressor when provided with

specific details (e.g., canopy location of affected leaves, type and

intensity of symptoms on nearby indicator plants, including weeds,

symptoms at the root level, analytical data from plant tissues, etc.).

This aspect opens possibilities for effectively utilizing data obtained

through smart technologies when integrated (data fusion) with other

methods (such as analytical data collected also with destructive

approaches) and transformed in actionable information (Mazzetto

et al., 2010). However, the entire procedure becomes enormously

more complicated as the number of data sources increases, along with

the relative levels of uncertainty (blur) associated with each source. A

clear example is found in diagnostic processes that rely on data

derived from image analysis. In situations like these, where purely

deductive approaches are practically infeasible, artificial intelligence,

particularly exploiting neural networks, can provide significant

cognitive support. Nevertheless, before they can be used to

recognize patterns and complex relationships in data, neural

networks must be trained through a training algorithm with a very

high number of input/output correspondences known a priori.

Through this learning step, the neural network may be able to

autonomously identify patterns and relationships in the data,

extracting general rules or abstract representations. Examples

include the automatic identification of the vegetative stage and

phytosanitary conditions of crops, as well as preventive diagnostics

of various physio-pathologies and pest infections (Kamilaris and

Prenafeta-Boldú, 2018; Popescu et al., 2023), which show promising

elements for potential use in the context of vine plants and the soil Cu

issue. However, it is noteworthy that these inferential procedures,

based on inductive logic, do not guarantee absolute certainty in the

validity of results, even when they are considered highly probable.

The reliability of these outcomes depends on the quality of the prior

training process, which is influenced by the number of input/output

combinations and the completeness and reliability of the information

used (Mazzetto et al., 2010). For these reasons, the contribution of the

neural inferences of artificial intelligence to smart phenotyping in the

viticultural sector (i.e., for the breeding of new rootstocks and

varieties) should still be considered as a decision support system in

which the final decision remains with an operator. Although

proposed for breeding programs, it cannot be excluded that in the

near future, advancements in these technologies could be applied in
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routine agricultural practices, such as for smart fertilization and/or

the smart management of phytosanitary defense in vineyards.

Moreover, a step forward towards levels of the automation process

that implements creativity and design features can probably be made

with the more widespread application of generative artificial

intelligence through particularly advanced neural processes with

machine learning capable of generating original data or content. It

should be added that the applications of this AI technology might

offer significant advantages in analyzing complex cases in viticulture,

through the simultaneous analysis of large numbers of individuals,

leveraging big data, and providing rapid response times.
Conclusions

The challenges linked to climate change and the need for

increasingly sustainable viticulture underscore the essential need

for vine varieties/cultivars that are more resilient to various abiotic

and biotic stresses, which are gradually becoming more severe. In

this selection process, the frequent alteration of vineyard soil

fertility due to excessive Cu availability necessitates a careful

evaluation, especially in viticulture-suited areas. This includes not

only assessing the traits related to Cu toxicity resistance in both old

and new rootstocks and sprouts but also examining the expression

levels of pathogen-resilience traits in new vine varieties or cultivars

when exposed to these altered soil conditions. Moreover, the

complexity of Cu-toxicity symptoms in plants makes this process

particularly challenging, especially for non-acute toxicity

conditions, which represent the majority of cases. In this context,

the applications of smart technologies associated with artificial

intelligence neural networks can make a notable contribution

both in terms of the number of individuals analyzed and response

time. However, despite their undeniable advantages, the inherent

uncertainties in the inductive logic inferential procedures of neural

networks mean that artificial intelligence should still be viewed as a

decision support system, rather than a replacement for the

operator’s final judgment.

Indeed, by improving phenotyping techniques, researchers can

more accurately assess how different plant varieties respond to

environmental stresses, nutrient availability, and other critical

factors. This knowledge is crucial for developing more resilient

crops, optimizing agricultural practices in the face of climate

change. Emphasizing the importance of such studies will foster

innovation and support the development of sustainable agricultural

systems. Moreover, these technologies are highly applicable to both

viticulture and sustainable agriculture, offering enhanced precision

in disease detection, optimized resource management, and data-

driven decision-making, ultimately improving sustainability

and productivity.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1459670
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pii et al. 10.3389/fpls.2024.1459670
Author contributions

YP: Writing – original draft, Writing – review & editing. GO:

Writing – original draft, Writing – review & editing. FM: Writing –

review & editing. PS: Writing – review & editing. SC:

Conceptualization, Writing – original draft, Writing – review

& editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was carried out within the Agritech National Research Center and

received funding from the European Union Next-Generation EU

(PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) –

MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D.

1032 17/06/2022, CN00000022 CUP:I53C22000730007). In

particular, our study represents an original paper related to the

Spoke 4 Multifunctional and resilient agriculture and forestry

systems for the mitigation of climate change risks and in

particular to the following, Tasks: 4.1.2 titled Smart phenotyping

platforms for the on-farm selection of resilient varieties and
Frontiers in Plant Science 08
rootstocks (YP, SC and PS) and 4.2.3 titled Big data analysis and

decision support systems for the climate adaptation of agriculture

and forestry (FM and GO). This manuscript reflects only the

authors’ views and opinions, neither the European Union nor the

European Commission can be considered responsible for them.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
AbdelRahman, M. A. E. (2023). An overview of land degradation, desertification
and sustainable land management using GIS and remote sensing applications.
Rendiconti Lincei. Sci. Fisiche e Naturali 34, 767–808. doi: 10.1007/s12210-023-
01155-3

Agnolon, F., Santi, S., Varanini, Z., and Pinton, R. (2002). Enzymatic responses of
cucumber roots to different levels of Fe supply. Plant Soil. 241, 35–41. doi: 10.1023/
A:1016034631038

Akeem, L. ,. B., Akintunde, R. ,. I., Godfrey, O. E., and Omogoye, A. M. (2018).
Prediction of Nitrogen application in maize based on the Normalised Difference
Vegetation Index (NDVI). AJSSPN 3, 1–13. doi: 10.9734/AJSSPN/2018/43886

Alejandro, S., Höller, S., Meier, B., and Peiter, E. (2020). Manganese in plants: from
acquisition to subcellular allocation. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00300

Ali, A., and Imran, M. (2021). Remotely sensed real-time quantification of
biophysical and biochemical traits of Citrus (Citrus sinensis L.) fruit orchards – A
review. Scientia Hortic. 282, 110024. doi: 10.1016/j.scienta.2021.110024

Al-Tamimi, N., Langan, P., Bernád, V., Walsh, J., Mangina, E., and Negrão, S. (2022).
Capturing crop adaptation to abiotic stress using image-based technologies. Open Biol.
12, 210353. doi: 10.1098/rsob.210353

Astolfi, S., Celletti, S., Vigani, G., Mimmo, T., and Cesco, S. (2021). Interaction
between sulfur and iron in plants. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.670308

Baldi, E., Miotto, A., Ceretta, C. A., Quartieri, M., Sorrenti, G., Brunetto, G., et al.
(2018). Soil-applied phosphorous is an effective tool to mitigate the toxicity of copper
excess on grapevine grown in rhizobox. Scientia Hortic. 227, 102–111. doi: 10.1016/
j.scienta.2017.09.010

Bardsley, D. K., Bardsley, A. M., and Conedera, M. (2023). The dispersion of climate
change impacts from viticulture in Ticino, Switzerland. Mitigation Adaptation
Strategies Global Change 28, 16. doi: 10.1007/s11027-023-10051-y

Barman, H., Das, S. K., and Roy, A. (2018). Zinc in soil environment for plant health
and management strategy. ujar 6, 149–154. doi: 10.13189/ujar.2018.060501

Bendel, N., Backhaus, A., Kicherer, A., Köckerling, J., Maixner, M., Jarausch, B., et al.
(2020). Detection of two different grapevine yellows in Vitis vinifera using
hyperspectral imaging. Remote Sens. 12. doi: 10.3390/rs12244151

Beyyavas, V., Ramazanoglu, E., Sakin, E., Cevheri, C.I.̇, and Seyrek, A. (2023). Responses
of some soil enzymes and cotton plant to foliar application of ferrous sulfate in a
calcareous alkaline soil. J. Plant Nutr. 46, 3421–3434. doi: 10.1080/01904167.2023.2205878

Biglia, A., Zaman, S., Gay, P., Ricauda Aimonino, D., and Comba, L. (2022). 3D point
cloud density-based segmentation for vine rows detection and localisation. Comput.
Electron. Agric. 199, 107166. doi: 10.1016/j.compag.2022.107166
Bohra, A., Satheesh Naik, S. J., Kumari, A., Tiwari, A., and Joshi, R. (2021).
“Integrating phenomics with breeding for climate-smart agriculture,” in Omics
Technologies for Sustainable Agriculture and Global Food Security (Vol II)
(Singapore: Springer), 1–24. doi: 10.1007/978-981-16-2956-3_1

Briglia, N., Montanaro, G., Petrozza, A., Summerer, S., Cellini, F., and Nuzzo, V.
(2019). Drought phenotyping in Vitis vinifera using RGB and NIR imaging. Scientia
Hortic. 256, 108555. doi: 10.1016/j.scienta.2019.108555

Brunetto, G., Bastos de Melo, G. W., Terzano, R., Del Buono, D., Astolfi, S., Tomasi,
N., et al. (2016). Copper accumulation in vineyard soils: Rhizosphere processes and
agronomic practices to limit its toxicity. Chemosphere 162, 293–307. doi: 10.1016/
j.chemosphere.2016.07.104
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Verdenal, T., Dienes-Nagy, Á., Spangenberg, J. E., Zufferey, V., Spring, J.-L., Viret, O.,
et al. (2021). Understanding and managing nitrogen nutrition in grapevine: a review.
OENO One 55, 1–43. doi: 10.20870/oeno-one.2021.55.1.3866

Walker, H. V., Jones, J. E., Swarts, N. D., Rodemann, T., Kerslake, F., and Dambergs,
R. G. (2021). Predicting grapevine canopy nitrogen status using proximal sensors and
near-infrared reflectance spectroscopy. J. Plant Nutr. Soil Sci. 184, 204–304.
doi: 10.1002/jpln.202000320
frontiersin.org

https://doi.org/10.1080/10106040108542184
https://doi.org/10.1094/PDIS-03-15-0340-FE
https://doi.org/10.3390/crops2040024
https://doi.org/10.1016/j.chemosphere.2018.09.127
https://doi.org/10.3389/fpls.2019.00946
https://doi.org/10.3390/rs70302971
https://doi.org/10.1007/s11119-010-9186-1
https://doi.org/10.1023/A:1025608728405
https://doi.org/10.1038/nrg3901
https://doi.org/10.1016/j.measurement.2024.114817
https://doi.org/10.3390/agronomy13030871
https://doi.org/10.20870/oeno-one.2024.58.1.7757
https://doi.org/10.1007/s10311-010-0297-8
https://doi.org/10.1007/s10311-010-0297-8
https://doi.org/10.1016/j.scitotenv.2017.08.167
https://doi.org/10.1071/FP07022
https://doi.org/10.1553/giscience2018_01_s105
https://doi.org/10.1016/j.compag.2023.108599
https://doi.org/10.1007/978-94-007-4470-7_13
https://doi.org/10.1016/j.scienta.2023.112333
https://doi.org/10.1016/j.scienta.2023.112333
https://doi.org/10.3390/rs12010139
https://doi.org/10.3390/rs14051145
https://doi.org/10.1007/978-3-030-89123-7_206-1
https://doi.org/10.1007/978-3-030-89123-7_206-1
https://doi.org/10.3389/fpls.2023.1237695
https://doi.org/10.3390/agronomy13061521
https://doi.org/10.3389/ffgc.2023.1289325
https://doi.org/10.3390/plants8020034
https://doi.org/10.3390/rs71114458
https://doi.org/10.3389/fpls.2021.717223
https://doi.org/10.3389/fpls.2021.717223
https://doi.org/10.1007/s10534-017-0045-7
https://doi.org/10.1016/j.apsoil.2021.104088
https://doi.org/10.1016/j.apsoil.2021.104088
https://doi.org/10.1007/s00248-022-02115-4
https://doi.org/10.1007/s00248-022-02115-4
https://doi.org/10.1016/j.tplants.2020.07.010
https://doi.org/10.3390/s22176574
https://doi.org/10.3390/s22176574
https://doi.org/10.1016/j.still.2022.105418
https://doi.org/10.1016/j.compag.2023.108037
https://doi.org/10.1007/s11356-023-27244-2
https://doi.org/10.1007/BF00041365
https://doi.org/10.1073/pnas.1116437108
https://doi.org/10.1111/j.1755-0238.2008.00040.x
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1007/978-94-017-2496-8_77
https://doi.org/10.3390/agriculture13101983
https://doi.org/10.3390/app10103612
https://doi.org/10.3390/app10103612
https://doi.org/10.20870/oeno-one.2021.55.1.3866
https://doi.org/10.1002/jpln.202000320
https://doi.org/10.3389/fpls.2024.1459670
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pii et al. 10.3389/fpls.2024.1459670
Wong, F. P., Burr, H. N., and Wilcox, W. F. (2011). Heterothallism in Plasmopara
viticola. Plant Pathol. 50, 427–432. doi: 10.1046/j.1365-3059.2001.00573.x

Xue, J., and Su, B. (2017). Significant remote sensing vegetation indices: A review of
developments and applications. J. Sensors 2017, 1353691. doi: 10.1155/2017/1353691

Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., et al. (2020).
Crop phenomics and high-throughput phenotyping: past decades, current challenges, and
future perspectives. Mol. Plant 13, 187–214. doi: 10.1016/j.molp.2020.01.008

Zhang, C., Valente, J., Kooistra, L., Guo, L., and Wang, W. (2021). Orchard
management with small unmanned aerial vehicles: a survey of sensing and analysis
approaches. Precis. Agric. 22, 2007–2052. doi: 10.1007/s11119-021-09813-y
Frontiers in Plant Science 11
Zhang, Y., Zheng, L., Li, M., Xiaolei, D., and Hong, S. (2012). Predicting apple tree
leaf nitrogen content based on hyperspectral applying wavelet and wavelet packet
analysis 85271A. doi: 10.1117/12.977397

Zhao, C., Zhang, Y., Du, J., Guo, X., Wen, W., Gu, S., et al. (2019). Crop
phenomics: current status and perspectives. Front. Plant Sci. 10. doi: 10.3389/
fpls.2019.00714

Zieschank, V., and Junker, R. R. (2023). Digital whole-community phenotyping:
tracking morphological and physiological responses of plant communities to
environmental changes in the field. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.
1141554
frontiersin.org

https://doi.org/10.1046/j.1365-3059.2001.00573.x
https://doi.org/10.1155/2017/1353691
https://doi.org/10.1016/j.molp.2020.01.008
https://doi.org/10.1007/s11119-021-09813-y
https://doi.org/10.1117/12.977397
https://doi.org/10.3389/fpls.2019.00714
https://doi.org/10.3389/fpls.2019.00714
https://doi.org/10.3389/fpls.2023.1141554
https://doi.org/10.3389/fpls.2023.1141554
https://doi.org/10.3389/fpls.2024.1459670
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Advances in viticulture via smart phenotyping: current progress and future directions in tackling soil copper accumulation
	General aspects and introduction to the main viticulture challenges
	Cu in viticultural soils and its toxic effects in vine plants
	Plant phenomics and phenotyping
	Image-based technologies for plants’ phenotyping
	Smart phenotyping in resilient vine varieties exposed to Cu toxicity
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


