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Introduction: Monitoring crop spike growth using low-altitude remote sensing

images is essential for precision agriculture, as it enables accurate crop health

assessment and yield estimation. Despite the advancements in deep learning-

based visual recognition, existing crop spike detection methods struggle to

balance computational efficiency with accuracy in complex multi-scale

environments, particularly on resource-constrained low-altitude remote

sensing platforms.

Methods: To address this gap, we propose FDRMNet, a novel feature diffusion

reconstruction mechanism network designed to accurately detect crop spikes in

challenging scenarios. The core innovation of FDRMNet lies in its multi-scale

feature focus reconstruction and lightweight parameter-sharing detection head,

which can effectively improve the computational efficiency of the model while

enhancing the model's ability to perceive spike shape and texture.FDRMNet

introduces a Multi-Scale Feature Focus Reconstruction module that integrates

feature information across different scales and employs various convolutional

kernels to capture global context effectively. Additionally, an Attention-Enhanced

Feature Fusion Module is developed to improve the interaction between different

feature map positions, leveraging adaptive average pooling and convolution

operations to enhance the model's focus on critical features. To ensure

suitability for low-altitude platforms with limited computational resources, we

incorporate a Lightweight Parameter Sharing Detection Head, which reduces the

model's parameter count by sharing weights across convolutional layers.

Results: According to the evaluation experiments on the global wheat head

detection dataset and diverse rice panicle detection dataset, FDRMNet

outperforms other state-of-the-art methods with mAP@.5 of 94.23%, 75.13%

and R2 value of 0.969, 0.963 between predicted values and ground truth values.

In addition, the model's frames per second and parameters in the two datasets

are 227.27,288 and 6.8M, respectively, which maintains the top three position

among all the compared algorithms.
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Discussion: Extensive qualitative and quantitative experiments demonstrate that

FDRMNet significantly outperforms existing methods in spike detection and

counting tasks, achieving higher detection accuracy with lower computational

complexity.The results underscore the model's superior practicality and

generalization capability in real-world applications. This research contributes a

highly efficient and computationally effective solution for crop spike detection,

offering substantial benefits to precision agriculture practices.
KEYWORDS

crop spike head, detection and counting, feature diffusion reconstruction, unmanned
aerial vehicle remote sensing, precision agriculture
1 Introduction

Monitoring crop health and estimating yields are among the key

challenges in precision agriculture, guiding various production

stages and ensuring food security Omia et al. (2023). Crop spikes,

as a crucial component of crops, represent one of the most specific

manifestations of crop growth Tan et al. (2020a). They visually

reflect the actual growth status of crops and are of critical

importance for predicting crop yields. With the continuous

development of remote sensing technology, analyzing crop-related

information obtained from remote sensing platforms to predict

crop growth conditions and estimate parameters has gradually

become a mainstream research direction. Remote sensing-based

crop spike detection can effectively achieve precise farmland

management. By analyzing field information such as the density

and color of crop spikes within a certain area, it can help farmers

make timely decisions, assess overall yield, and forecast future

harvests Zhao et al. (2021).

There are two main types of remote sensing technology: high-

altitude remote sensing, represented by satellite remote sensing, and

low-altitude remote sensing, primarily using unmanned aerial

vehicles (UAVs) Osco et al. (2021); Rasmussen et al. (2021).

Compared to satellite remote sensing, UAVs are widely used in

crop growth monitoring due to their ability to capture higher-

resolution remote sensing images and conduct flight operations at

specific times and locations as needed Zhang et al. (2021); Sishodia

et al. (2020). Currently, methods for crop spike detection based on

UAV remote sensing images can be divided into two main

categories: traditional image processing methods Narisetti et al.

(2020); Bi et al. (2010) and deep learning-based methods Zhao et al.

(2022, 2023); Tan et al. (2023). Traditional image processing

techniques for crop spike detection rely on color analysis,

morphological operations, and edge detection to identify and

segment crop spikes. These methods analyze the visual differences

between crops and the background, such as color and shape, using

pixel-level operations to enhance and extract key features of crop

spikes. While these techniques perform well in scenarios with lower

computational resource consumption and relatively simple
02
implementation, they may struggle to adapt to complex or

dynamically changing environments and are highly dependent on

parameter adjustment and initial settings.

Deep learning is mainly used to mimic the working principle of

biological vision system by constructing neural network models to

automatically learn key features from a large number of remote

sensing images of crop spike heads, and according to the features to

achieve the classification, detection and segmentation of the target,

and the common methods are such as Convolutional Neural

Networks (CNNs) Gu et al. (2018) and You Only Look Once

(YOLO) Redmon et al. (2016); Redmon and Farhadi (2018);

Wang et al. (2023). This method can automatically learn and

extract high-level features from images without the need for

manually setting complex parameters and rules. Compared to

traditional image processing-based spike detection methods, deep

learning-based methods offer higher robustness and stronger

generalization capabilities. They can handle not only static image

data but also dynamic video stream data, enabling real-time

monitoring and prediction of crop growth processes. However,

deep learning-based spike detection methods also face several

challenges and limitations.

As shown in Figure 1, the current stage of typical datasets

related to crop spike images includes Figure 1A, the Diverse Rice

Panicle Detection (DRPD) Teng et al. (2023) dataset proposed by

Teng et al., and Figure 1B, the Global Wheat Head Detection 2021

(GWHD-2021) David et al. (2021) dataset proposed by David et al.

From Figure 2, it is evident that the appearance of crop spikes

changes due to varying outdoor light intensities and different

growth stages, posing a significant challenge for deep learning-

based spike detection methods. Additionally, when crop planting

density is high, issues such as overlap and intercrossing of spikes

can lead to reduced detection accuracy. Furthermore, low-altitude

remote sensing images captured by UAVs are affected by factors

such as image acquisition angles and flight altitudes, resulting in

inconsistent scales of spikes in the remote sensing images. This

inconsistency presents a challenge for deep learning-based spike

detection methods. Moreover, current spike detection methods

typically require substantial computational resources and storage
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space. However, low-altitude remote sensing platforms based on

UAVs often cannot provide extensive computational resources and

environments, making it crucial to achieve lightweight algorithms

and improve their real-time performance.
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To address the issue of reduced model recognition accuracy

caused by overlapping and intersecting crop spikes, many

innovative methods and techniques have been proposed. For

example, Wang et al. Wang et al. (2021) introduced an image
FIGURE 2

Comparison of spike head identification methods on typical datasets: (A) Ground Truth; (B) Yolov8; (C) WheatLFANet; (D) Ours.
FIGURE 1

Typical states of crop spike head image related datasets: (A) Diverse Rice Panicle Detection; (B) Global Wheat Head Detection 2021.
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enhancement algorithm based on EfficientDet, which removes

interference boxes by considering the number and size of wheat

spikes in the image. This approach also incorporates an attention

mechanism to improve the model’s ability to refine features. Yang

et al. (2021) integrated a spatial-channel attention mechanism into

YOLOv4, thereby enhancing the model’s feature extraction

capability and improving recognition accuracy. Teng et al. (2023)

addressed the potential feature loss of small objects in YOLOv5’s C3

blocks by proposing a Panicle-Bottleneck module, which effectively

enhances the selective positioning of strong semantic and low-level

features, leading to improved recognition accuracy. Furthermore,

Zhou et al. (2022) enhanced the multi-scale feature extraction

capability of a model by adding a Feature Pyramid Network

(FPN) to the Swin-Transformer, which mitigated the recognition

accuracy loss caused by overlapping and intersecting spikes. These

methods demonstrate that current research primarily focuses on

enhancing the model’s feature extraction capabilities through

attention mechanisms and feature pyramid networks, improving

the model’s robustness against overlapping and intersecting issues.

However, efficient utilization of multi-scale feature information for

effective crop spike detection requires further research.

These approaches often rely on high-performance computing

environments, making model lightweighting a critical challenge.

Various methods have been proposed for lightweighting models.

For instance, Ye et al. (2023) introduced WheatLFANet, a

lightweight global regression network for wheat spike detection

and counting. This network compresses the input image to 1/16th

of its original size using a simplified cross-stage partial spatial

pyramid method in the backbone. Additionally, Khaki et al.

(2022) used a truncated MobileNetV2 as a lightweight backbone

feature extractor, while Bhagat et al. (2021) replaced convolutional

blocks in the baseline model with Mixed Depthwise Conv, reducing

the overall model parameters. These methods primarily reduce

model parameters and computational complexity by optimizing

the neck and backbone sections of detection models. However, since

the detection head is a critical component of the model, its

optimization is equally important for achieving lightweight

models. The challenge lies in achieving lightweight detection

heads without compromising detection accuracy, which remains

an important research direction.

In conclusion, to address the aforementioned challenges, we

propose FDRMNet, a novel Feature Diffusion Reconstruction

Network for crop spike detection, using Yolov8 as the baseline.

Specifically, we first introduce a Multiscale Feature-Focused

Reconstruction(MFFR) module. This module aggregates feature

information from different levels and scales, achieving

comprehensive capture of crop spike information. We further

process the combined features using depthwise separable

convolutions with multiple kernel sizes and employ residual

connections, ensuring that features at each scale possess detailed

contextual information, thereby enhancing the model ’s

representational capacity. Building on the MFFR module, we

outlining its framework separately. This network effectively

captures multiscale information of crop spikes through layer-by-

layer diffusion and reconstruction of features. It also enhances the

perception of spike shapes and textures, allowing the network to
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accurately identify spikes even in complex backgrounds. As

illustrated in Figure 2, which compares the spike detection

performance of WheatLFANet, yolov8, and our proposed method

on the GWHD-2021 dataset and DRPD dataset, the detection

results show that all three algorithms can achieve good detection

of spikes at different scales. However, yolov8 performs weakly in

detecting overlapping spikes. While WheatLFANet can identify

some overlapping wheat spikes to a certain extent, the recognition

is not sufficiently complete.

Additionally, we introduce a Lightweight Parameter Shared

Detection Head (LPSDH) to further reduce the model’s

parameter count, making it suitable for the limited computational

resources of low-altitude remote sensing platforms. As illustrated in

Figure 3, the current stage image detection heads have three

structural types. The first type uses independent detection heads

at different feature levels, which leads to low parameter utilization

efficiency since object features at relatively similar scales should be

similar. The second type incorporates shared parameter detection

heads into Group Normalization (GN). While this method uses

shared parameters to address different feature level scales, the

variability in scale features can result in decreased model

performance or increased computational cost during

normalization. The third type shares convolution layers in the

detection head while independently computing batch

normalization (BN). This approach reduces parameter

redundancy by sharing convolution layers in the detection head

and maintains the distinctiveness of each feature level through

independent BN layers. Following the third approach, we propose

LPSDH, which reduces parameter redundancy through shared

convolution layers while preserving the distinctiveness of each

feature level with independent BN layers. This design maintains

model performance while optimizing the number of parameters

and computational efficiency.

Finally, considering the real-time requirements of crop spike

detection tasks in actual deployment, performance optimization

was conducted. By adopting a lightweight network structure and

efficient computational strategies, we optimized the C2f module and

proposed an Attention-Enhanced Feature Fusion Module (AFFM).

Additionally, given the substantial overlap of targets in crop spike

detection, we introduced a powerful Intersection over Union with a

focusing mechanism (PIoU) as the loss function.

To be concrete, our contributions are summarized as:
• We introduce a novel crop spike detection network based

on a feature diffusion reconstruction mechanism network,

named FDRMNet. By leveraging the MFFR module, which

aggregates feature information from different levels and

processes it with convolutions of varying kernel sizes, the

network effectively extracts multiscale features. This enables

comprehensive capture of crop spike information and

enhances the perception of spike shapes and textures.

• We propose a Lightweight Parameter Shared Detection

Head that reduces parameter redundancy through shared

convolution layers while maintaining the distinctiveness of

each feature level with independent BN layers. This

optimization improves the model’s parameter efficiency
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and computational performance. At the same time, We

optimize the C2f module by introducing an Attention-

Enhanced Feature Fusion Module, which enhances the

model’s feature extraction capabilities.

• Extensive experiments conducted on public datasets

demonstrate that our FDRMNet outperforms state-of-the-

art image fusion algorithms in both visual performance and

quantitative metrics.
The subsequent sections of our paper are structured as follows:

In Section II, we conduct a review of related work. In Section III, we

outline the specific details of our detection method, while in Section

IV, we delve into the discussion of experimental results. Lastly, in

Section V, we provide the concluding remarks.
2 Related work

Crop spike detection is a crucial component of precision

agriculture, directly impacting crop yield estimation and quality

assessment. It has been a research hotspot in the field of agricultural

remote sensing. In recent years, with the advancement of computer

vision and deep learning technologies, image-based crop spike

detection methods have made significant progress. This section

briefly reviews the development of crop spike detection methods,

highlighting both traditional image processing and deep learning-

based approaches, and discusses the limitations of current crop

spike detection methods.
2.1 Traditional image processing-based
spike detection methods

In the early stages of crop spike detection, traditional image

processing methods were primarily used. These methods detect

spikes by extracting low-level features from images through

morphological filtering, edge detection, and color analysis. By

analyzing the visual differences between crop spikes and the

background in terms of color and shape, these techniques achieve

the detection and segmentation of spikes in images, enabling

localization and counting Qiongyan et al. (2014). For example,
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Zhou et al. (2018) employed a dual-segmentation method to count

wheat spikes. They first used the maximum entropy segmentation

method to obtain a rough segmentation of the image, then applied

morphological filters to denoise the rough segmentation results, and

finally used morphological reconstruction theory to segment the

adhered parts of the denoised image, achieving fine segmentation.

Li et al. (2018) used a dynamic threshold segmentation method to

detect wheat spikes, yielding satisfactory results.

Despite the good performance of traditional image processing

methods under low computational resource consumption, they face

numerous challenges in complex environments. For instance, these

methods’ robustness and adaptability significantly decrease under

varying lighting conditions, increased background complexity, and

overlapping spikes. Traditional methods are highly dependent on

parameters, often requiring meticulous parameter adjustments

based on specific application scenarios, making it difficult to meet

the detection needs of different crops and environments.
2.2 Deep learning-based spike
detection methods

In recent years, deep learning has achieved significant

breakthroughs in the field of computer vision, providing new

solutions for spike detection methods. Deep learning-based spike

detection methods primarily utilize neural networks for feature

extraction and classification of images. By training on large datasets,

these networks learn the feature representations of spikes, enabling

automatic detection. Compared to traditional image processing

methods, deep learning-based spike detection methods exhibit

greater robustness and higher detection accuracy. The existing

deep learning-based spike detection methods can be mainly

categorized into CNNs, Region Proposal Networks (R-CNNs),

and Single-Stage Detectors (SSD).

2.2.1 CNN-based methods
CNNs are the most commonly used image processing models in

deep learning. Through the stacking of convolutional and pooling

layers, CNNs automatically extract spatial features of images. CNNs

have shown excellent performance in tasks such as object detection

and image classification and have been widely applied in crop spike
FIGURE 3

Three structures of the image detectoin head: (A) Independent convolutional layer and BN layer; (B) Shared convolutional layer and GN layer; (C)
Shared convolutional layer and Independent BN layer.
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detection. For example, Tehran et al. Sadeghi-Tehran et al. (2019)

used Simple linear iterative clustering to segment images into

superpixels, followed by image classification using a CNN for

semantic segmentation of wheat spikes. Madec et al. (2019)

applied CNN methods to segment and count wheat spikes from

high-resolution images obtained via low-altitude remote sensing.

However, CNNs face challenges in real-time recognition tasks

due to their complex network structures, which result in slower

training and inference speeds and higher computational

complexity. This makes it difficult for these models to meet the

requirements of real-time recognition tasks.
2.2.2 R-CNN-based methods and their variants
R-CNN and their variants represent another important class of

methods in object detection tasks. These methods generate

candidate regions and classify and regress these regions to achieve

object localization and recognition. In crop spike detection, Faster

R-CNN Ren et al. (2017) is mainly used for research, achieving

object detection by generating candidate regions, extracting

features, and using an R-CNN to classify and regress these

regions, thereby effectively improving the inference speed of

object detection. For instance, Li et al. (2022) utilized Faster R-

CNN to detect and count wheat spikes, enhancing detection

accuracy and speed by enhancing the region proposal network

and feature extraction network. Hong et al. (2022) proposed an

improved Mask R-CNN combined with Otsu preprocessing for rice

spike detection and segmentation. Zhang et al. (2022) made

improvements to Faster R-CNN from three aspects: the feature

extraction network, scale feature maps, and Regions of Interest,

resulting in significant improvements in detection accuracy

according to experimental results.

Despite the excellent detection accuracy of R-CNN and its

variants, their computational resource requirements remain high,

especially when processing high-resolution remote sensing images.

Therefore, further optimizing network structures and

computational strategies to enhance real-time performance and

computational efficiency is a significant challenge for the

application of these methods in crop spike detection.

2.2.3 Single-stage detector-based methods
Single-stage detection methods are efficient approaches that

treat object detection as a single regression problem. They directly

predict bounding boxes and class probabilities at the output layer,

avoiding the region proposal extraction and post-processing steps

of traditional methods. This method simplifies the object detection

process, reduces the computational complexity of the model, and

achieves fast real-time prediction results, which is suitable for

applications such as crop monitoring with drones. In recent years,

with the continuous development of technology, single-stage

detection methods have been widely used in crop spike detection

based on low-altitude remote sensing. The most commonly used

single-stage detectors in the industry include the SSD and YOLO

series of algorithms. A typical example of the SSD algorithm is

EfficientDet Tan et al. (2020b), which is based on the EfficientNet

Tan and Le (2019) backbone and uses Bi-directional Feature
Frontiers in Plant Science 06
Pyramid Network for multi-scale feature fusion, improving model

speed while maintaining high detection accuracy.

The YOLO series is particularly notable for its excellent real-

time performance. YOLOv7 Wang et al. (2023) and YOLOv8, in

particular, have continued to optimize the model structure and

training strategies while maintaining the YOLO series’ fast

detection advantage, significantly improving detection accuracy.

Additionally, GOLD-Yolo Wang et al. (2024b), proposed by

Wang, has incorporated an aggregation and distribution

mechanism into YOLO, greatly enhancing its detection accuracy,

making it one of the mainstreammethods in the YOLO series today.

Besides single-stage detection methods like SSD and the YOLO

series, algorithms such as CornerNet Law and Deng (2018) and

CenterNet Duan et al. (2019) achieve detection by focusing on

keypoints of the object, further expanding the application scenarios

of single-stage detection methods.

In the field of crop spike detection, there is currently a

significant amount of research on single-stage detection methods.

For example, Gong et al. (2020) proposed a detection method based

on Yolov4 for wheat heads, improving both detection rate and

speed. Additionally, Bai-yi et al. (2020) used the SSD algorithm for

the first time to identify rice spikes. Although these methods have

achieved some success in crop spike detection, they still face some

challenges. Due to the direct regression prediction of single-stage

detectors, their accuracy may be slightly lower compared to two-

stage detectors. Moreover, since the size and shape of crop spikes

may vary significantly between different growth stages and varieties,

it is necessary to design appropriate feature extraction networks and

scale transformation strategies to better adapt to the detection of

targets at different scales.

To overcome these challenges, researchers have proposed many

improvement solutions. For example, OSWSDet improved the

YOLO framework by integrating circular smooth labels and

micro-scale detection layers, enhancing the ability to detect small-

sized wheat spikes and prevent detection errors Zhao et al. (2022).

SpikeRetinaNet improved the detection and counting efficiency of

wheat spikes by introducing weighted bi-directional feature

pyramid networks, focal loss, and attention modules, and using

soft non-maximum suppression to address occlusion issues Wen

et al. (2022). Panicle-Cloud Teng et al. (2023) uses YOLOv5 as the

baseline model, effectively enhancing its detection accuracy for rice

panicles by introducing an attention mechanism and improving the

model ’s receptive field for small objects. Additionally,

WheatLFANet Ye et al. (2023) proposed a single-stage detection

network based on feature encoding-decoding. This method first

encodes the image in three stages, then fuses and remaps the

extracted features, and finally uses a decoder to output the

predicted object classes and coordinates. This approach not only

significantly improves detection accuracy but also reduces the

model’s size to some extent.

Existing spike detection methods have achieved satisfactory

performance in practical applications. However, they often

overlook the capture, fusion, and recognition of different scale

target features in overlapping environments, as well as the

computational performance requirements for low-altitude remote

sensing platforms. To address this issue, we have designed a crop
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spike detection network based on a feature diffusion reconstruction

mechanism, which effectively extracts multi-scale features by

summarizing feature information from different levels and

processing them with different sizes of convolution kernels.

Additionally, we proposed a Lightweight Parameter Sharing

Detection Head(LPSDH), which reduces parameter redundancy

by sharing convolutional layers, while using independent BN

layers to maintain the differences in features at each level,

optimizing the quantity of model parameters and computational

efficiency to a certain extent.
3 Methodology

In this section, we first introduce the detailed architecture of our

method, followed by a detailed description of the loss function.
3.1 Overall framework

Our FDRMNet is a standard object detection framework

composed of three main components: a lightweight backbone

based on HGNet-v2 Zhao et al. (2024), a neck with a feature

diffusion reconstruction mechanism, and a lightweight parameter-

sharing detection head. The specific workflow is illustrated in

Figure 4. Specifically, we inject the features S2, S3, S4 extracted

from the last three stages of the backbone into the neck for feature

fusion. The neck, equipped with the feature diffusion reconstruction

mechanism, aggregates feature information from different levels

and processes them with convolutional kernels of varying sizes,

converting multi-scale features into image features. Finally, the

lightweight parameter-sharing detection head generates the class

and bounding boxes from the fused features, completing the object

detection task.
3.2 Backbone

In existing object detection frameworks, the backbone

component predominantly employs traditional convolutional

layers for feature extraction. While convolutional layers excel in

feature extraction from images, they may encounter issues such as

vanishing gradients and computational redundancy as the network

depth increases. Therefore, we have adopted HGNet-v2 as the

backbone in our network, which combines an efficient network

structure with lightweight components to achieve better feature

extraction and computational efficiency. HGNet-v2 primarily

utilizes the HGStem and HGBlock modules.

As shown in Figure 4, HGStem captures features at different

scales by using convolutions and pooling layers of various sizes,

allowing for rapid feature extraction in the early stages of the

network. By reducing the spatial resolution of feature maps, it

decreases computational load, thus contributing to a lightweight

design. HGBlock forms the main body of the convolutional neural

network using multiple ConvBNAct modules, and further improves

computational efficiency and reduces model parameters through
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grouped convolution. Additionally, the introduction of Depthwise

Separable Convolution (DWConv) Chollet (2017) further reduces

the overall model parameter count and computational load. The

inclusion of the SPPF module separates contextual information to

minimize information loss.

Specifically, for a given image I ∈ RH�W�3 to be used for object

detection, we extract features at different levels through four stages:

stage1 : F1
vi = HGBlock(HGStem(Ivi)), (1)

stage2 : F2
vi = HGBlock(DWConv(F1

vi)), (2)

stage3 : F3
vi = HGBlock3(HGStem(F2

vi)), (3)

stage4 : F4
vi = SPPF(HGBlock(DWConv(F3

vi))), (4)

where Fi
vi represents the image features at the i-th scale in the

backbone. HGBlocki represents the use of i-th HGBlock in HGNet-

V2. DWConv Represents a depth-separable convolution operation
3.3 Neck

In the task of object detection, feature extraction and fusion are

crucial, especially for images of crops in fields where multiple

objects of different sizes and scales may appear in the same

image. Therefore, in the neck part of the network, we propose a

MFFR module for extracting and fusing features of different scales,

and an Attention-enhanced Feature Fusion Module for enhancing

the feature extraction capability.

3.3.1 Multiscale feature-focused
reconstruction module

The architecture of MFFR module is shown in Figure 5.

Spec ifica l l y , the input f ea ture F2
vi, F

3
vi, F

4
vi

� �
∈ RHi�Wi�Ci

undergoes upsampling or downsampling to ensure scale

consistency. Further, the aligned features are concatenated to

achieve multiscale feature focus. The process of feature focus can

be expressed as follows:

Fff = Concat(ADown(F2
vi),Conv(F

3
vi),Conv( ↑ (F2

vi))), (5)

where ADown is a downsampling module proposed in yolov9Wang

et al. (2024c), which can reduce the number of parameters while

maintaining the detection accuracy of the target. ↓, ↑ respectively

represents operations where the features undergo upsampling

and downsampling.

Furthermore, by using DWConv with different kernel sizes, the

focused features are processed to capture contextual information at

different scales, and all contextual information is merged to

generate a more comprehensive and detai led feature

representation. Specifically, the feature reconstruction process

utilizes DWConv with kernel sizes of 3 × 3,5 × 5,7 × 7, and 9 ×

9. These four different sizes of convolutional kernels can perceive

local and global information in the image to varying degrees.

Moreover, based on the idea of ResNet He et al. (2016), the

focused features are added to the reconstructed features, which
frontiersin.org
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can further improve the model’s generalization ability, ultimately

achieving the functionality of the feature focusing and

reconstruction module. The feature reconstruction process can be

expressed as follows:

F
0

re   =  Conv(o
i=n
DW  Convi�i(Ff  f )), (6)

Fre =   Fff + F
0

re, (7)
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where DWConvi�i represents a depthwise separable convolution

with a kernel size of i, and   n ∈   3,  5,  7,  9f g.

3.3.2 Attention-enhanced feature fusion module
As illustrated in Figure 6, we enhance the existing C2f module

by incorporating the RepVGGDW block from RepViT Wang et al.

(2024a) and the attention mechanism from EMANet Li et al.

(2019), proposing an AFFM module. Specifically, AFFM builds

upon the characteristics of the RepVGGDW block, with further
FIGURE 5

The architecture of the proposed Multiscale feature-focused reconstruction module.
FIGURE 4

The overall architecture of the proposed FDRMNet method.
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optimizations applied to the token mixer and channel mixer. In the

token mixer part, we introduce more complex transformations to

better capture the interrelationships between different positions in

the feature map. Simultaneously, in the channel mixer part, we

employ additional convolutional layers to enhance information

interaction between channels. This design enables AFFM to

maintain efficient inference while extracting more comprehensive

and detailed feature information.

Furthermore, in terms of integrating attention mechanisms,

AFFM employs an adaptive approach to determine attention

weights. Specifically, we aggregate channel and spatial

information through adaptive average pooling and convolution

operations to generate attention weights. These weights are then

used to modulate the input feature map, enhancing the model’s

ability to focus on important features while reducing sensitivity to

irrelevant features. The forward propagation process of AFFM can

be described by the following equations:

FConv = Conv(Finput), (8)

F1
Split , F

2
Split = Split(FConv), (9)

F1
Bottleneck = EM  Attention(RepVGGDW((F2

Split))), (10)

Fi
Bottleneck = Bootleneck(Fi−1

Bottleneck), (11)

FOutput = Conv(Concat(F1
Split , F

1
Bottleneck,⋯, Fn

Bottleneck)), (12)

where Split represents dividing the input features by 1:1, and EM  

Attention represents the use of the EMA attention module.
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3.4 Head

To better address the limited computational resources of low-

altitude remote sensing platforms, we employ a parameter-sharing

strategy in the network’s head section. By sharing the weights of

certain convolutional layers, we reduce the model’s parameter

count. The architecture of LPSDH is illustrated in Figure 3C.

Specifically, in the detection head, we design a set of shared

convolutional layers that receive feature maps from different

scales P3, P4, P5f g as input. Specifically, pixels are first encoded

across channel context via dot convolution. Then, shared 3×3

convolutional layers aggregate channel-spatial context.

Furthermore, independent BN layers are employed to maintain

the distinctiveness of features at different levels. Finally, the features

from each level are fed into their respective classification and

regression sub-networks. The non-maximum suppression

algorithm is then applied to filter out redundant detection results

from the generated prediction boxes, yielding the final

detection outcomes.
3.5 Loss function

The total loss function is combined of a Classification Loss Lclass,

Bounding Box Regression Loss Lbox and a Confidence Loss Lconf ,

which can be shown follows:

Ltotal = lclassLclass + lboxLbox + lconfLconf , (13)

where Lclass, Lbox, Lconf is a trade-off parameter, and we set to 1.0,5.0

and 1.0 respectively.
FIGURE 6

The architecture of the proposed Attention-enhanced feature fusion module.
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3.5.1 Classification loss
Lclass is primarily used to measure the discrepancy between the

detected target class and the true class. Common classification loss

functions include Cross-Entropy Loss Zhang and Sabuncu (2018)

and Focal Loss Lin et al. (2017). Considering that crop head images

obtained from low-altitude remote sensing may exhibit multi-scale

and overlapping targets, Focal Loss is preferred over Cross-Entropy

Loss as it increases the loss weight of these hard-to-classify targets.

This, in turn, guides the model to better learn complex features and

improve detection performance. Therefore, Focal Loss is chosen as

the classification loss function in this paper. It is expressed as follows:

LClass = −a(1 − pt)
g log(pt), (14)

where pt is the predicted probability for the true class, a is a

balancing factor, and g is a focusing parameter.

Furthermore, to better handle crop head images of varying

complexity and reduce the impact of noisy data in real-world

images on recognition performance, this paper proposes an

optimization to the existing Focal Loss, called Dynamic Focal

Loss. This method replaces the fixed focusing parameter g with a

dynamically adjustable parameter g t , allowing for a smoother

transition in the model’s attention to samples. The expression for

Dynamic Focal Loss is as follows:

LClass = −a(1 − pt)
g t log(pt), (15)

g t = g0 + (1 − pt)
b , (16)

where g0 is the initial focusing parameter, set to 2.0. b is a parameter

that adjusts the dynamic range.

3.5.2 Bounding box regression loss
Lbox is primarily used to measure the difference between the

position and size of the detected box and the ground truth box. The

main method involves calculating the Intersection over Union(IoU)

loss between the predicted box and the ground truth box. We

employ the shape-IoU Zhang and Zhang (2023) to calculate the

bounding box loss, which is formulated as shown below:

LShape−IoU = 1 − IoU + distanceshape + 0:5�Wshape, (17)

IoU =
B ∩  Bgtj j
B ∪  Bgtj j , (18)

ww =
2� (wgt)scale

(wgt)scale + (hgt)scale
, (19)

hh =
2� (hgt)scale

(wgt)scale + (hgt)scale
, (20)

distanceshape = hh� (xc − xgtc )
2=c2 + ww� (yc − ygtc )

2=c2, (21)

Wshape = o
t=w,h

(1 − e−wt )q , q = 4, (22)
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where B and Bgt represent the predicted box and the GT box,

respectively. scale is the scale factor, which is related to the scale of

the target in the dataset, and ww and hh are the weight coefficients

in the horizontal and vertical directions respectively, whose values

are related to the shape of the GT box. wgt and hgt represents the

width and height of the predicted boxes, respectively.

3.5.3 Confidence loss
Lconf is mainly used to measure the difference between the

confidence that the predicted bounding box contains the target and

the actual situation. We use the binary cross-entropy loss to achieve

this goal, which is calculated as shown below:

Lconf =o
N

i=1
lobji (Ci − Ĉ i)

2 + lnoobjo
N

i=1
lnoobji (Ci − Ĉ i)

2, (23)

where N is the total number of prediction boxes. Ci is the

confidence level of the i-th prediction box. Ĉ i is the true

confidence of the i th prediction box, with a value of 1 when the

box contains the target and 0 when the box does not contain the

target. lobji is an indicator function with a value of 1 when the i-th

prediction box contains the target and 0 otherwise. lnoobji is an

indicator function with a value of 1 when the i-th prediction box

does not contain the target and 0 otherwise. lnoobj is a weight

parameter used to balance the loss contribution of the prediction

box with and without targets, which we set to 0.5.
4 Experiment validation

In this chapter, we will provide a detailed explanation of the

experimental setup and implementation details of our work.

Subsequently, we will present the application experiments of

FDRMNet in spike detection and counting.
4.1 Configurations and
implementation details

4.1.1 Datasets and metrics
We select two widely recognized benchmarks to verify our

detection performance, namely DRPD and GWHD-2021. For the

DRPD dataset, the original data divides the images according to the

height at which they were captured by the drone into three scales: 7

meters, 12 meters, and 20 meters. To evaluate the model’s

recognition capability for multi-scale targets, we combine images

from all three scales in the DRPD dataset to create a new multi-scale

mixed DRPD dataset, referred to as the multi-scale DRPD (MS-

DRPD) dataset. Our model is trained on the GWHD-2021 training

set (2698 images) and the MS-DRPD training set (3222 images).

The GWHD-2021 test set (675 pairs) and the MS-DRPD test set

(537 images) are adopted to assess our detection performance.

Six objective evaluation metrics are used for comparison:

precision (Pr), recall (Re), mean average precision (mAP), frames

per second (FPS), parameters (Params), and floating point

operations (FLOPs). Specifically: Pr measures the accuracy of the
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model, i.e., the proportion of correctly predicted targets among all

predicted targets. High precision indicates fewer false positives. Re

measures the detection capability of the model, i.e., the proportion

of actual targets correctly identified by the model. High recall

indicates fewer false negatives. mAP is the mean of the average

precision (AP) across all classes, used to comprehensively evaluate

the model’s detection performance across multiple categories and

different IoU thresholds. In this paper, mAP@.5 is selected as the

evaluation metric, representing the mAP value calculated at an IoU

threshold of 0.5.FPS is the number of image frames the model can

process per second, used to measure the model’s runtime speed.

Params is the total number of trainable parameters in the model,

used to measure the model’s complexity and size. FLOPs is the

number of floating-point operations required for a single forward

pass, used to measure the computational complexity of the model.

4.1.2 Implementation details
Our experiments were conducted on a deep learning framework

built on PyTorch 1.12.1+cu113 and CUDA 11.3, utilizing an

NVIDIA GeForce RTX 3090 GPU (24GB) and an Intel 4310

CPU(2.10GHz).

During the training phase, the training set images were uniformly

preprocessed to have a maximum side length of 640 pixels, with the

width scaled proportionally. Our FDRMNet network was optimized

over 200 epochs using the Adam optimizer with a batch size of 16.

The initial learning rate was set to 0.01, with a final learning rate of

0.001, utilizing a multi-step learning rate decay strategy. The

momentum coefficient was set at 0.937, and the weight decay at

5×10−4. Additionally, to prevent overfitting during the training

process, we implemented an early stopping mechanism. If the

model’s performance on the validation set does not improve within

50 epochs, the training will automatically stop. Notably, we did not

rely on pre-trained model weights during transfer learning to ensure

that our model’s performance reflects its true potential. To ensure

objectivity, all comparative algorithms were implemented according

to their original papers.
Frontiers in Plant Science 11
4.2 Detection comparison and analysis

In this section, we compare the detection results with state-of-

the-art methods, including Yolov8, Yolov7 Wang et al. (2023), Gold

Yolo Wang et al. (2024b), Faster R-CNN Ren et al. (2017),

CenterNet Duan et al. (2019), EfficientDet Tan et al. (2020b),

WheatLFANet Ye et al. (2023), and Panicle-Cloud Teng

et al. (2023).
4.2.1 Qualitative comparison and analysis
The visual results on two representative datasets, GWHD-2021

and MS-DRPD, are presented in Figure 7 and Figure 8. From the

recognition results in the images, it can be observed that most

algorithms can accurately detect conventional spike images for the

two different crops. However, there are significant differences in

performance among the algorithms when dealing with complex

spike images, such as those with overlaps and occlusions. As

shown in Figure 7, which displays an overhead image of wheat at

the ripening stage, the green box indicates a magnified region of

the image with typical overlapping spikes. Additionally, because the

overlapping spikes are at different heights, multi-scale information

becomes an important factor for recognition. From the magnified

region, we can see that Faster R-CNN performs poorly, failing to

successfully identify multiple overlapping spikes. Although YOLOv8,

YOLOv7, CenterNet, EfficientDet, and WheatLFANet are able to

recognize the surface parts of spikes in the overlapping regions, they

still struggle to effectively detect spikes with only partial features due

to the overlap. In contrast, the algorithms with better recognition

performance—Gold YOLO, Panicle-Cloud, and Ours—can

accurately locate and distinguish overlapping spikes by identifying

partial features, with Ours being the closest to the Ground Truth in

terms of the number of spikes detected. This is primarily because our

network can aggregate feature information from different levels and

scales, enabling comprehensive capture and representation of crop

spike information.
FIGURE 7

Qualitative comparison of our method with nine state-of-the-arts fusion methods on GWHD-2021 dataset.
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Furthermore, to verify the robustness of our algorithm in complex

environments, we selected rice during the heading stage in an actual

paddy field as the test subject, as shown in Figure 8. Due to the

complexity of the paddy field environment and the small size and light

color of rice spikes during the heading stage, the detection task becomes

more challenging. The magnified region in the image highlights

incomplete spike targets. From the image, it can be seen that

CenterNet, Faster R-CNN, and EfficientDet fail to effectively detect

spike targets, while YOLOv7, Gold YOLO, and WheatLFANet can

identify the spike targets but with some false positives. In comparison,

our proposed network not only identifies small targets but also

effectively reduces false positives. This is mainly because FDRMNet

performs multi-dimensional feature extraction on the image using

convolution kernels of different sizes and enhances key features while

suppressing background noise based on the attention mechanism.

Through the above qualitative experimental comparisons, it is

demonstrated that our method can not only accurately detect multi-

scale spikes in overlapping regions but also overcome the challenges

posed by complex environments.
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4.2.2 Quantitative comparison and analysis
Quantitative comparison results with state-of-the-art fusion

methods on the two datasets are presented in Tables 1 and 2.

From the results, it is evident that our method achieves the best

performance in terms of Pr, FPS, and mAP@.5. Compared to the

second-best model, our method improves Pr by 0.7%, mAP@.5 by

0.45%, and FPS by 27 on the MS-DRPD dataset. Additionally, our

model reduces the number of parameters by 50% and the GFLOPs

by 24% compared to the model with the second-highest Pr. On the

GWHD-2021 dataset, our model also shows slight improvements in

Pr and mAP@.5. This advantage can be attributed to our MFFR

module and the LPSDH module. The MFFR module effectively

integrates feature information from different scales, enhancing the

model’s adaptability to complex scenes.

Meanwhile, the LPSDH module reduces the number of

parameters, lowers computational complexity, and thus increases

detection speed.

Notably, although our method does not achieve the best

performance in Re, the difference compared to the best method is
TABLE 1 Quantitative comparison of our method with eight state-of-the-arts fusion methods on GWHD-2021 dataset, where boldface underlining,
boldface and underline show the best, second-best values and third-best, respectively.

Method Pr (%) Re (%) mAP@.5 (%) FPS Params (M) GFLOPs

Yolov8 91.43 89.32 93.89 129 11.1 28.6

Yolov7 90.95 88.53 93.14 181 10.31 30.7

GoldYolo 92.33 89.73 94.10 253 13.6 29.9

Faster R-CNN 77.54 83.17 79.50 41 39.64 91.3

CenterNet 83.24 88.72 90.83 112 61.12 31.84

EfficientDet 79.83 77.38 82.19 64 5.95 10.77

WheatLFANet 90.90 84.30 90.00 164 0.72 4.07

Panicle-Cloud 92.04 89.50 93.98 233 8.14 28.6

Ours 92.34 88.51 94.23 227.27 6.80 22.7
FIGURE 8

Qualitative comparison of our method with nine state-of-the-arts fusion methods on MS-DRPD dataset.
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minimal, demonstrating that our method remains competitive in

terms of recall. This can be mainly attributed to our proposed

feature fusion strategy, enabling the model to more accurately locate

and recognize targets.

In comparison, Gold Yolo and Panicle-Cloud also perform well

in terms of precision and recall but require further improvements in

FPS. YOLOv8 and YOLOv7 exhibit similar performance, with

higher FPS but slightly lower precision. Faster R-CNN and

CenterNet, although excelling in some aspects, suffer from high

computational complexity and parameter counts, affecting their

practicality. EfficientDet and WheatLFANet show advantages in

lightweight design but slightly lag in precision.

Additionally, as seen in Tables 1 and 2, there is a significant

difference in recall rates between the two datasets, which is primarily

due to the distinct characteristics of these datasets. The GWHD-2021

dataset consists mainly of high-resolution images of wheat spikes,

with more uniform image backgrounds and clearer spike features,

resulting in a higher recall rate. In contrast, the MS-DRPD dataset

comprises images of rice spikes at various stages collected from actual

paddy fields using drones at three different heights: 7m, 12m, and

20m. The overall background of this dataset is more complex, and the

image quality is lower, leading to a relatively lower recall rate.

Overall, our method maintains high precision while achieving

high detection speed, with advantages in parameter count and

computational complexity.
4.3 Spike head counting comparison
and analysis

Crop spike head counting is a primary downstream task of spike

head detection and can significantly enhance the accuracy of crop

parameter predictions. To validate the effectiveness of our

FDRMNet network in the task of spike head counting, we

randomly selected 200 images from both the MS-DRPD and

GWHD-2021 datasets to evaluate the performance of our

network in counting wheat heads.

In this experiment, we primarily performed linear regression on

the Ground Truth (GT) and predicted values of spike heads in the
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images. We used the coefficient of determination (R2), Root Mean

Square Error (RMSE), Mean Absolute Percentage Error (MAPE),

and p-value as evaluation metrics for the counting results.
4.3.1 Spike head counting experiment on
GWHD dataset

Figure 9 shows the spike head prediction correlation

comparison of our method with eight state-of-the-art detection

methods on the GWHD-2021 dataset. The results indicate that in

terms of R2, CenterNet demonstrated the highest value of 0.9731,

showcasing its strong correlation in explaining data variation.

Faster R-CNN followed closely with an R2 of 0.9725. Our method

achieved an R2 of 0.9694, which is also highly excellent and slightly

lower than YOLOv8 (0.9702) and WheatLFANet (0.9705),

indicating a high precision in capturing data variation.

In terms of RMSE, WheatLFANet showed the lowest value of

3.2782, indicating high prediction accuracy. Our method had an

RMSE of 3.4433, which is only second to WheatLFANet,

demonstrating similarly excellent performance. YOLOv8 and

CenterNet had RMSE values of 3.6438 and 3.6772, respectively,

which, although slightly higher than our method, remain within a

low error range. Faster R-CNN had the highest RMSE of 4.4361,

indicating relatively higher prediction errors.

Regarding MAPE, our method performed outstandingly with

the lowest value of 6.44%, indicating the smallest relative prediction

error and highest reliability. YOLOv8 followed with a MAPE of

6.52%, showing relatively low prediction error. In contrast, Gold

YOLO had a MAPE of 6.97%, and Faster R-CNN had the highest

MAPE of 8.07%, indicating relatively higher prediction errors.

Overall, our method achieves high correlation while

maintaining low prediction errors, particularly excelling in

relative error reduction. These results demonstrate the superiority

and practicality of our method in the spike head prediction task.

Although it is slightly inferior to CenterNet and Faster R-CNN in

terms of R², the performance in RMSE and MAPE compensates for

this shortcoming, especially with the lowest MAPE (6.44%),

highlighting the significant advantage of our method in reducing

relative error.
TABLE 2 Quantitative comparison of our method with eight state-of-the-arts fusion methods on MS-DRPD dataset, where boldface underlining,
boldface and underline show the best,second-best values and third- best, respectively.

Method Pr (%) Re (%) mAP@.5 (%) FPS Params (M) GFLOPs

Yolov8 87.07 61.54 68.19 150 11.1 28.6

Yolov7 86.39 61.41 70.29 193 10.31 30.7

Gold Yolo 87.70 64.13 74.68 253 13.6 29.9

Faster R-CNN 65.70 60.72 69.53 41 39.64 91.3

CenterNet 74.67 61.60 67.80 157 61.12 31.84

EfficientDet 70.73 60.64 72.25 103 5.95 10.77

WheatLFANet 86.51 61.33 68.27 164 0.72 4.07

Panicle-Cloud 87.20 61.43 70.94 261 8.14 28.6

Ours 88.40 61.79 75.13 288 6.80 22.7
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4.3.2 Spike head counting experiment on MS-
DRPD dataset

Figure 10 shows the spike head prediction correlation

comparison of our method with eight state-of-the-art detection

methods on the MS-DRPD dataset. The results indicate that

YOLOv8 and our method both demonstrate excellent

performance in terms of R2, with values of 0.9642 and 0.9632,

respectively. This signifies their high correlation in explaining data

variation. Higher R2 values indicate better model fitting, thus both

methods lead in prediction accuracy compared to others.

In terms of RMSE, our method achieves the lowest value of

7.1261, indicating high precision in predictions. Although YOLOv8

follows closely with an RMSE of 7.221, it remains at a relatively low

level, indicating minimal prediction errors. WheatLFANet also

performs well with an RMSE of 7.2727.

Conversely, Faster R-CNN shows the highest RMSE of 8.721,

indicating significant prediction errors and the poorest

performance among all models.

Regarding MAPE, EfficientDet exhibits the best performance with

a value of 10.57%, indicating the smallest relative prediction error and

high reliability. Our method also performs excellently with a MAPE of

12.14%, second only to EfficientDet. YOLOv8, with an updated MAPE

of 12.76%, shows slightly higher error compared to our method but
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remains within an acceptable range. In contrast, Gold YOLO has the

highest MAPE of 14.13%, indicating relatively larger prediction errors.

Overall, our method stands out in multiple key metrics,

particularly in terms of low RMSE and MAPE, indicating high

prediction accuracy and stability. While YOLOv8 performs

similarly to our method in terms of R², its slightly higher RMSE

and MAPE suggest that our method has an advantage in overall

performance. Other methods, such as EfficientDet, show good

performance in MAPE but are slightly less effective in RMSE. Thus,

our method demonstrates the best overall performance, especially in

minimizing errors and enhancing prediction accuracy, proving its

superiority and practicality in the task of spike head prediction.
4.4 Ablation studies

4.4.1 Multiscale feature-focused
reconstruction module

We employ the MFFR module to achieve multi-scale feature

extraction and fusion. Specifically, MFFR module captures contextual

information at different scales by using DWConv kernels of various

sizes, ultimately generating more comprehensive and detailed

feature representations.
FIGURE 9

Spike head prediction correlation comparison of our method with eight state-of-the-arts detection methods on GWHD-2021 dataset.
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Tables 3 and 4 present the ablation experiments for each module

on the GWHD-2021 dataset and MS-DRPD dataset, respectively.

From the experimental results, we observe that on the GWHD-2021

dataset, without the MFFR module, the detection Pr is 92.97%, Re is
Frontiers in Plant Science 15
89.88%, and mAP@0.5 reaches 94.41%. On the MS-DRPD dataset, the

detection Pr is 88.33%, Re is 61.98%, and mAP@0.5 is 71.60%. These

results indicate that the proposed MFFR module is highly effective in

feature extraction and fusion, especially in complex scenarios.
FIGURE 10

Spike head prediction correlation comparison of our method with eight state-of-the-arts detection methods on MS-DRPD dataset.
TABLE 3 The detection performance of ablation studies on GWHD-2021 dataset, where boldface and underline show the best and second-best
values, respectively.

Pr (%) Re (%) mAP@.5 (%) FPS Params (M) GFLOPs

w/o MFFR 92.97 89.88 94.41 137 10.46 32.5

w/o AFFM 91.73 89.32 94.14 625 7.85 21.6

w/o LPSDH 91.59 88.66 94.02 500 8.99 26.6

FDRMNet 92.34 88.51 94.23 227.27 6.80 22.7
TABLE 4 The detection performance of ablation studies on MS-DRPD dataset, where boldface and underline show the best and second-best
values, respectively.

Pr (%) Re (%) mAP@.5 (%) FPS Params (M) GFLOPs

w/o MFFR 88.33 61.98 71.60 135 10.46 32.3

w/o AFFM 87.53 65.61 76.06 625 7.85 21.6

w/o LPSDH 86.90 66.64 75.40 500 8.99 25.8

FDRMNet 88.40 61.79 75.13 288 6.80 22.7
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4.4.2 Attention-enhanced feature fusion module
We utilize the Attention-Enhanced Feature Fusion Module to

improve feature extraction capabilities. Specifically, AFFM enhances

the comprehensive representation of features by incorporating

attention mechanisms and optimizing feature fusion methods.

From the experimental results, we observe that on the GWHD-

2021 dataset, without the AFFMmodule, the detection Pr is 91.73%,

Re is 89.32%, and mAP@0.5 reaches 94.14%. On the MS-DRPD

dataset, the detection Pr is 87.53%, Re is 65.61%, and mAP@0.5 is

76.06%. These results demonstrate that the proposed AFFMmodule

is highly effective in feature extraction and fusion, significantly

enhancing detection performance, especially in complex scenarios.

4.4.3 Lightweight parameter shared
detection head

We employ the Low-Parameter Shared Detection Head to

reduce the model’s parameter count and computational load.

Specifically, LPSDH achieves efficient feature aggregation by

sharing weights across certain convolutional layers.

From the experimental results, we observe that on the GWHD-

2021 dataset, without the LPSDH module, the detection Pr is

91.59%, Re is 88.66%, and mAP@0.5 is 94.02%. On the MS-

DRPD dataset, the detection Pr is 86.90%, Re is 66.64%, and

mAP@0.5 is 75.40%. These results indicate that the proposed

LPSDH module maintains high detection performance while

significantly reducing the usage of computational resources,

making it particularly suitable for low-resource environments.
5 Conclusion

In conclusion, this paper proposes a novel feature diffusion

reconstruction network for crop spike detection, named FDRMNet.

In this network, we first design a MFFR module and its framework.

This framework integrates feature information from different levels

and then employs convolutional kernels of various sizes to capture

global multi-scale information. Subsequently, to achieve better

extraction and computational efficiency, we adopt HGNet-v2 as

the feature extraction network, which combines an efficient network

structure with lightweight components. Furthermore, to better

capture the interactions between different positions in the feature

maps, we propose an AFFM. This module utilizes adaptive average

pooling and convolution operations to aggregate channel and

spatial information, enhancing the model’s focus on important

features. Lastly, to address the limited computational resources of

low-altitude remote sensing platforms, we introduce a LPSDH. By

sharing the weights of certain convolutional layers, we reduce the

model’s parameter count. Our method performs excellently in spike

detection and counting tasks, enhancing detection accuracy while

further reducing the model’s parameter count and computational

complexity. Qualitative and quantitative experiments validate the

superiority of FDRMNet in terms of detection performance and

metrics. Spike counting experiments demonstrate that FDRMNet
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offers better practicality and generalization capability in real-

world applications.

For future work, we plan to explore the application of more

advanced deep learning algorithms in crop spike detection, such as

diffusion models, mixture of experts models, and large agricultural

models, to improve the accuracy and efficiency of wheat head

detection. Additionally, we will further investigate methods to

enhance model lightweighting, such as introducing knowledge

distillation techniques to transfer the knowledge of large, complex

models to lightweight models, thereby reducing computational

resource consumption while maintaining detection accuracy. We

will also explore model compression techniques, such as pruning

and quantization, to reduce the model’s storage requirements and

increase inference speed. Lastly, we will consider multi-modal data

fusion techniques by combining remote sensing images, satellite

data, and ground sensor information to improve the robustness and

accuracy of detection results. By integrating data from different

sources, we can better address the challenges posed by complex and

variable agricultural environments and enhance the model’s

generalization capability. These research efforts will provide

stronger technical support for the development of smart

agriculture, driving crop monitoring and management towards

greater intelligence and precision.
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