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1Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea
Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China, 2Hangzhou Ruikun
Technology Co., Ltd., Hangzhou, China, 3Tea Station of Xinchang County, Shaoxing, China
Accurate detection of tea leaf diseases and insects is crucial for their scientific

and effective prevention and control, essential for ensuring the quality and yield

of tea. Traditional methods for identifying tea leaf diseases and insects primarily

rely on professional technicians, which are difficult to apply in various scenarios.

This study proposes a recognition method for tea leaf diseases and insects based

on improved MobileNetV3. Initially, a dataset containing images of 17 different

types of tea leaf diseases and insects was curated, with data augmentation

techniques utilized to broaden recognition scenarios. Subsequently, the

network structure of MobileNetV3 was enhanced by integrating the CA

(coordinate attention) module to improve the perception of location

information. Moreover, a fine-tuning transfer learning strategy was employed

to optimize model training and accelerate convergence. Experimental results on

the constructed dataset reveal that the initial recognition accuracy of

MobileNetV3 is 94.45%, with an F1-score of 94.12%. Without transfer learning,

the recognition accuracy of MobileNetV3-CA reaches 94.58%, while with

transfer learning, it reaches 95.88%. Through comparative experiments, this

study compares the improved algorithm with the original MobileNetV3 model

and other classical image classification models (ResNet18, AlexNet, VGG16,

SqueezeNet, and ShuffleNetV2). The findings show that MobileNetV3-CA

based on transfer learning achieves higher accuracy in identifying tea leaf

diseases and insects. Finally, a tea diseases and insects identification

application was developed based on this model. The model showed strong

robustness and could provide a reliable reference for intelligent diagnosis of tea

diseases and insects.
KEYWORDS
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1 Introduction

Tea is a significant economic crop in China, characterized by

extensive cultivation and a wide variety of cultivars (Li et al., 2022).

However, during its growth and cultivation, tea is susceptible to

pests and diseases, which directly impact its quality and quantity

(Liu and Wang, 2021). Tea production is reduced by about 20%

each year due to tea leaf diseases and insects (Xue et al., 2023).The

traditional approach to identifying pests and diseases in tea plants

has relied heavily on the experience and visual inspection of

technicians. However, this methodology is often constrained by

the lack of specialized personnel and insufficient timeliness in the

identification process (Huang et al., 2019). Consequently, the real-

time and efficient monitoring of pest and disease conditions in tea

plantations is crucial for precise pest management and the

assurance of tea quality and safety.

With the advancement of machine vision technology, image

processing and machine learning methods have been widely

utilized in the identification of crop pests and diseases (Pal and

Kumar, 2023; Pan et al., 2022). Sun et al. (2019) proposed an

algorithm that combines simple linear iterative clustering with

Support Vector Machine (SVM). This method effectively extracts

important tea disease patterns from complex backgrounds, laying a

solid foundation for further research on tea disease identification.

Yousef et al. (2022) developed an apple disease recognition model

using digital image processing and sparse coding, achieving an

average accuracy rate of 85%. However, most of these studies are

based on the identification of insects and diseases using

characteristics such as color, texture, and shape, which often rely

on manual selection and design. This dependency limits the

adaptability of models to the environment, consequently resulting

in weaker accuracy and universality in pest and disease classification.

In response to the problems of machine learning methods, more

and more scholars are using deep learning models to identify tea

leaf disease and insect (Chen et al., 2020; Qi et al., 2022; Liu and

Zhang, 2023; Zhang and Zhang, 2023). Various models, including

AlexNet, GoogLeNet, VGG, and ResNet (Krizhevsky et al., 2012;

Szegedy et al., 2015; Simonyan and Zisserman, 2015), have

demonstrated outstanding performance in crop disease

identification. For example, an optimized Dense Convolutional

Neural Network structure, presented by Waheed et al. (2020),

achieved 98.06% accuracy in classifying corn leaf diseases. Li et al.

(2022) integrated the SENet module into the DenseNet framework

for tea disease identification using transfer learning. Sun et al.

(2023) introduced TeaDiseaseNet based on YOLOv5 for detecting

six tea leaf diseases, despite lower recognition rates and high-

resolution image challenges. The above recognition models

are improved by using a large-scale CNN, which is more

computationally complex, has a slightly larger number of

parameters, and imposes high requirements for deployment and

application. Therefore, a lightweight recognition model with high

accuracy is more valuable in actual production.

In the application of lightweight neural networks, MobileNet is

often used as a basic model (Ullah et al., 2023; Peng and Li, 2023).

To reduce the number of model parameters and the amount of
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computation, making the model more lightweight while ensuring

good recognition results, researchers have improved the model

structure and embedded an attention mechanism (Chen et al.,

2022; Bi et al., 2022). However, in the identification of tea

diseases, due to the small size of the dataset and the relatively

sparse distribution of disease spots in some images, existing

lightweight models struggle to achieve high-precision

classification results for this problem.

Therefore, this study addresses the aforementioned issues by

proposing a network model named MobileNetV3-CA, which

integrates MobileNetV3 (Howard et al., 2019) with a Coordinate

Attention (CA) module (Hou et al., 2021). The CA module

enhances the model’s discriminative ability by expanding the local

receptive field through the incorporation of attention mechanisms.

Given the limited research on tea leaf diseases compared to fruit and

cereal crops (Mu et al., 2023), images of tea leaf diseases were

collected and augmented to construct a dataset containing 17

common types of tea leaf diseases and insects. Utilizing transfer

learning, the model was pre-trained on a large-scale public dataset

and then fine-tuned on a dataset of tea leaf diseases and insects to

accelerate convergence and improve accuracy and robustness with

limited samples. Finally, the effectiveness of the MobileNetV3-CA

network model was validated through the recognition of common

tea leaf diseases and insects, as well as testing within

application programs.
2 Materials and methods

2.1 Construction of image data set of tea
leaf diseases and insects

The images of tea leaf diseases and insects used in this study

were sourced from tea-producing regions in Xinchang County,

Zhejiang Province. The primary tea plant varieties involved are

Longjing 43, Wuniuzao, Jiukeng, and Zhongcha 108. Data

collection occurred from March to April each year, from 2021 to

2023, during the high incidence period of tea diseases and insects,

facilitating the comprehensive collection of disease and insect data.

This study employed various smartphones, including models from

brands such as Huawei, Xiaomi, and Apple, for image capture. The

majority of image data was acquired through the team-developed

backend of the “Xinchang Tea Guardian” WeChat mini-program.

In total, 22,380 images were collected, encompassing 17 types of tea

leaf diseases and insects, such as anthracnose, tea blister blight,

ectropis obliqua hypulina. Some image samples of tea leaf diseases

and insects in the data set are shown in Figure 1. Considering the

significant morphological differences among certain insects in their

larval, pupal, and adult stages, this study categorizes them into

distinct groups. For instance, ladybugs and their larvae, as well as

corn earworm larvae and adults, are included in separate categories.

Furthermore, due to the uncertainty in collecting crop disease

images, the distribution of tea leaf disease and insect images

obtained is highly uneven. The number and proportion of various

tea diseases and insects are shown in Figure 2. For instance, tea
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blister blight accounts for approximately 3% of the total, while

ladybird pupa images constitute around 11%.
2.2 Data preprocessing

Based on the distribution of the statistical samples shown in

Figure 2, the number of images for different categories of diseases and

insects ranges from 500 to 2000. To prevent the model from

overfitting due to insufficient training samples, data augmentation

techniques were employed. These operations include flipping, adding

Gaussian noise, adjusting contrast, rotation, shear, and adding

histogram equalization, all of which were applied in random order.

Flipping refers to randomly flipping pictures up and down or left and

right with a probability of 0.5. Adding Gaussian noise refers to

applying Gaussian noise to images with a probability of 0.5, using a

Gaussian kernel with a random standard deviation sampled

uniformly from the interval [0.0, 0.6]. Adjusting contrast refers to

modifying the contrast of images according to 127 + alpha*(v-127),

where v is a pixel value and alpha is sampled uniformly from the

interval [0.75, 1.5] (once per image). Rotation refers to rotating

images by -20 to 20 degrees with a probability of 0.5. Shear refers

to shearing images by -20 to 20 degrees with a probability of 0.5.

Adding histogram equalization refers to applying histogram

equalization to input images with a probability of 0.5. Data

augmentation could enhance sample diversity and simulate natural

conditions for the identification of diseases and insects. After data

augmentation, the number of images for each category was increased
Frontiers in Plant Science 03
to 2000, totaling 34,000 images. For example, the data augmentation

process for tea blister blight is illustrated in Figure 3. The

augmentation adjusted the original images’ rotation angle,

brightness, and blurriness, highlighting the local details of diseases

and insects. Additionally, considering the potential differences in

image format and size due to varying sample sources, all images were

standardized to a uniform size of 224 pixels × 224 pixels.
2.3 Construction and improvement of
disease and insect recognition model

2.3.1 An overall introduction to the
improved model

Common lightweight neural network models include SqueezeNet

(Iandola et al., 2016), MobileNet, EfficientNet (Tan and Le, 2019),

among others. In this study, MobileNetV3 from the MobileNet series

was selected. The MobileNetV3 model retains its lightweight

characteristics while continuing to utilize the depthwise separable

convolutions and inverted residual modules from the MobileNetV2

model (Sandler et al., 2018). It enhances the bottleneck structure by

integrating the SE (Squeeze-and-Excitation) module (Hu et al., 2018),

which strengthens the emphasis on significant features and

suppresses less important ones. Additionally, the new hard-swish

activation function is adopted to further optimize the network

structure. These improvements allow the MobileNetV3 model to

maintain its lightweight nature while enhancing accuracy in tasks

such as image classification. The MobileNetV3 model is available in
frontiersin.or
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Some image samples of tea leaf diseases and insects in the data set.
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large and small versions based on resource availability, and this study

employs the MobileNetV3-large model as the baseline. Its structural

parameters are shown in Table 1.

2.3.2 Improvement of attention mechanisms
While incorporating the SE module into the bottleneck structure

of MobileNetV3-Large has indeed improved model performance, the

SE module only considers information between channels to

determine the importance of each channel. However, it overlooks

the crucial positional information in the visual space. As a result, the

model can only capture local feature information, leading to issues

such as scattered regions of interest and limited performance. To

address these limitations, the ECA module improves on the SE

module by avoiding dimensionality reduction and capturing cross-

channel interaction information more efficiently (Wang et al., 2020).
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Even though the ECA module is an improvement over the SE

module, it still only considers the information between channels in

essence (Jia et al., 2022). Therefore, in order to improve the

recognition rate of the model and enhance its ability to capture the

location information of tea leaf diseases and insects, the coordinate

information must be considered. In this study, we replace the SE

module in the MobileNetV3 structure with the CA module to

improve MobileNetV3. The overall structure of the improved

MobileNetV3-CA model is shown in Figure 4. To accurately obtain

the relative position information in the image of diseases and insect

pests of tea leaves, the CA module was introduced into the attention

module of the bottleneck structure of layers 4-6 and layers 12-16.

The CA module can focus the model’s attention on the region of

interest through effective positioning in the pixel coordinate system,

thereby obtaining information that considers both channel and
FIGURE 3

Examples of data augmentation.
FIGURE 2

Proportion and quantity of all kinds of diseases and insect pests in the original data set.
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position in the tea leaf image, reducing the attention to interference

information, and thus improving the feature expression ability of the

model. The basic structure of the CA module is shown in Figure 5.

For a given characteristic graph X, the number of channels is C,

the height is H, and the width is W. The CA module first pools the

input X in two spatial directions, namely, height and width, to

obtain feature maps in both directions. Next, it concatenates the

feature maps from these two directions in spatial dimensions, and

then changes the dimensions to the original C/r using a 1×1

convolution transformation. Subsequently, it applies batch

normalization and Swish activation operations to obtain an

intermediate feature map containing information from both

directions, as shown in the formula below.

f = d (F1(½
1
Wo∞

0≤j≤Wxc(h, j),   
1
Ho

∞
0≤i≤Hxc(i,w)�)) (1)

In the formula, f is the intermediate feature map obtained by

encoding spatial information in two directions, d is the activation

function Swish, and F1 is the convolution transformation function of

1×1. Here, xc is the feature information of the specific position of the

feature graph in channel c, h is the specific height of the feature map,

and j is the width of the feature map, with the value range of [0, W].

Similarly, w is the specific width of the feature map, and i is the height

of the feature map, with the value range of [0, H]. F is decomposed

into two separate tensors hf andwf along the spatial dimension in two

directions. Through two 1×1 convolution transformation functions,

hf and wf are converted into tensors with the same number of

channels as the input X. Next, the attention weights in height and

width are obtained by activating the function s. Finally, we multiply

the extended attention weight with X to get the output of the CA

module, as shown in the equation below.

yc = xc(i, j) · (s ½Fh(f h)�) · (s½Fw(f w)�) (2)
FIGURE 4

The structure of MobileNetV3-CA model. Conv stands for convolution layer; Bneck and CA-Bneck stand for a bottleneck structure and a bottleneck
structure after introducing coordinate attention module, respectively; Pool represents pooling layer; BatchNorm stands for batch normalization;
ReLU6/hard-swish stand for activation function.
TABLE 1 MobileNetV3-large structure.

Input Operation
SE

module
Activation
function

Stride

2242×3 Conv2d – HS 2

1222×16 Bneck, 3×3 – RE 1

1222×16 Bneck, 3×3 – RE 2

562×24 Bneck, 3×3 – RE 1

562×24 Bneck, 5×5 √ RE 2

282×40 Bneck, 5×5 √ RE 1

282×40 Bneck, 5×5 √ RE 1

282×40 Bneck, 3×3 – HS 2

142×80 Bneck, 3×3 – HS 1

142×80 Bneck, 3×3 – HS 1

142×80 Bneck, 3×3 – HS 1

142×80 Bneck, 3×3 √ HS 1

142×112 Bneck, 3×3 √ HS 1

142×112 Bneck, 5×5 √ HS 2

72×160 Bneck, 5×5 √ HS 1

72×160 Bneck, 5×5 √ HS 1

72×160 Conv2d, 1×1 – HS 1

72×960 Pool, 7×7 – – 1

12×960
Conv2d,
1×1,NBN

– HS 1

12×17
Conv2d,
1×1,NBN

– – 1
Conv2d stands for convolution layer; Bneck stands for a bottleneck structure; Pool represents pooling
layer; NBN stands for batch normalization; RE and HS stand for ReLU6 and hard-swish, respectively.
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Where yc is the output of the c-th channel, s is the activation

function Sigmoid, and Fh and Fw are convolution transformation

functions in height and width.
2.4 Transfer learning

In deep learning models, a large number of parameters are

typically required for training, often necessitating extensive support

from large-scale datasets. However, not all tasks have access to

sufficiently large datasets for training. Transfer learning offers a

solution to this issue. Transfer learning facilitates the application of

the same model to another research context. Given that there are

often commonalities between different samples, sharing similar

characteristics, leveraging models pre-trained on large datasets to

retrain for new tasks can achieve effective training outcomes and

rapid convergence speeds. Therefore, in order to make full use of

the existing labeled data and ensure the recognition accuracy of the

model on new tasks, this study adopts transfer learning to optimize

the model. Specifically, the fine-tuning method involves freezing

part of the convolution layers as the optimization strategy for

transfer learning. First of all, the large dataset ImageNet (Szegedy

et al., 2015) serves as the source domain for network pre-training.

The learned model weights from this pre-training phase are then

transferred to identify diseases and insects in tea leaves. Drawing on

existing prior knowledge allows for efficient handling of similar

recognition tasks. Subsequently, the model parameters are fine-

tuned during the training process on images of tea leaf diseases and

insects, ultimately producing the final tea leaf disease and insect

recognition model.
3 Results and discussion

3.1 Test environment and
parameter setting

To evaluate the performance of the tea leaf disease and insect

recognition model MobileNetV3-CA, acquired images of tea leaf

diseases and insects were used for both training and testing. The

dataset was divided into training, validation, and test sets in a ratio
Frontiers in Plant Science 06
of 7:2:1. The experiment employed the PyTorch 1.10.0 deep

learning framework, programmed in Python 3.8. The

development environment was set up using VSCode. The

computer used for running the programs is equipped with an

Intel® Core i5-1135G7 CPU @ 2.40 GHz, 32 GB of RAM, and

operates on a 64-bit Windows 10 system.

The Batch Size of the experiment was set to 16. In order to

improve the convergence of the model, the classified cross-entropy

is used as the loss function, and the random gradient descent

method (Stochastic Gradient Descent, SGD) is used to train the

model. The learning rate, weight attenuation and momentum of the

three training parameters are set to 0.001, 0.00001 and 0.9,

respectively, and the learning rate attenuation strategy is set.

Every 5 Epoch, the learning rate decays to 80% of the original.
3.2 Evaluation index

In order to comprehensively evaluate the performance of the

MobileNetV3-CA model, this experiment selected four indicators

to comprehensively evaluate the recognition effect of the model:

Precision, Recall, F1-score and Accuracy. The calculation formulas

are as follows:

Precision =  
TP

TP + FP
� 100% (3)

Recall =  
TP

TP + FN
� 100% (4)

F1 _ score =   2� Recall  �Precision
Recall + Precision

(5)

Accuracy =  
TP + TN

TP + TN + FP + FN
� 100% (6)

In the formula, TP, FP, FN and TN are the statistics of the

classification of different tea insects and diseases by the classification

model in the confusion matrix respectively. Among them, TP(True

Positive) represents the number of samples whose true value is

positive and identified as positive, FP(False Positive) represents the

number of samples whose true value is negative but identified as

positive, FN(False Negative) represents the number of samples
FIGURE 5

The structure of CA modules. “X/Y Avg Pool” is the average pool in X/Y direction; “Concat” stands for concatenate; “BatchNorm” stands for batch
normalization; “Swish” and “Sigmoid” represent nonlinear activation functions; C is the number of channels; H is the height of the feature map; W is
the width of the feature map; R is the reduction factor.
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whose true value is positive but identified as negative, and TN(True

Negative) represents the number of samples whose true value is

negative and identified as negative. For the purpose of identifying

diseases and insects, the actual number of categories of samples to

be identified is regarded as the positive sample number, while the

sum of all other categories is considered the negative

sample number.
3.3 Comparative experiment of transfer
learning training methods

There are three common ways of transfer learning: the full

parameter migration method, which involves freezing all

convolution layers and only training the fully connected layer; the

reuse model method, which only uses the model structure but not

the pre-trained parameters; and the fine-tuning method, which

involves freezing part of the convolution layers. This study adopts

the fine-tuning method of freezing only part of the convolution

layers. To test the effectiveness of the fine-tuning method used in

this study, the above three transfer learning methods were used to

train three models. Experiments were conducted based on the

improved MobileNetV3-CA model using the same experimental

data. The experimental results are shown in Table 2, and the

variation curve of training and validation accuracy of the three

transfer learning methods is shown in Figure 6.

It can be seen from Table 2 that under the same experimental

conditions, the accuracy of the fine-tuning method is the highest,

while the accuracy of the full migration method is the lowest.
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Additionally, the F1 value of the fine-tuning method is also the

highest among the three methods. In the full parameter migration

method, all the initial parameters of the model are obtained by pre-

training, and only the fully connected layer is trained, making it

difficult to optimize the model’s parameters. As shown in Figure 6,

in the reuse model method, the initial parameters of the model are

set randomly, and it takes a long time to improve the recognition

accuracy. In contrast, the fine-tuning method uses initial

parameters obtained after extensive data training, rather than

random settings, allowing the model to find suitable parameters

more quickly. Moreover, the fine-tuning method retrains the

convolution layers in the middle of the model, making the model

parameters more suitable for the tea leaf disease and insect

identification task. Therefore, the four indicators in the

comprehensive experiment show that the fine-tuning transfer

learning method used in this study is more effective than the

other two transfer learning methods.
3.4 Performance analysis of MobileNetV3-
CA model

In the fine-tuning transfer learning method, the loss value

change curve of the MobileNetV3-CA model on the self-built

training set is shown in Figure 7. During the training process, the

model’s loss value decreased rapidly in the first 10 epochs and

gradually slowed down after 10 epochs of training. By the time the

training reached 20 epochs, the loss value curves of the model

tended to flatten, indicating that the MobileNetV3-CA model had

reached saturation. Notably, during the training process, the change

trend of the loss curve of the MobileNetV3-CA model on both the

training and validation sets was basically the same. This shows that

the overall convergence trend of the model is good and there is no

overfitting, verifying the effectiveness and learnability of the

MobileNetV3-CA model.

In order to further verify the performance of the MobileNetV3-

CA model, the classification results on the self-built test set were

analyzed. The test set contained 17 species of tea leaf pests and

diseases, including 200 pictures for each species, for a total of 3400
TABLE 2 Performance of MobileNetV3-CA trained by 3 different
transfer methods.

Methods
Precision

/%
Recall
/%

F1-score
/%

Accuracy
/%

Fine tuning 95.98 96.19 96.01 95.88

Full migration 94.66 93.96 94.33 94.14

Reuse model 94.89 94.55 94.72 94.58
FIGURE 6

Accuracy variation curves of three transfer methods on validation set.
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pictures. Overall, the average recognition accuracy, recall rate, and

F1-score of the MobileNetV3-CA model on the test set are

95.88%, 96.19%, and 96.01%, respectively, all exceeding 95%.

These experimental results demonstrate that the improved

MobileNetV3-CA model can efficiently locate and extract small

feature differences in tea leaf disease and insect images.
3.5 Comparative experiment on different
attention mechanisms

In order to further verify the competitive advantage of

introducing the CA module into the attention module, the SE

attention module in the MobileNetV3-Large model was replaced

by two classical attention mechanisms, namely, the ECA (Efficient

Channel Attention) module (Wang et al., 2020) and the CBAM

(Convolutional Block Attention Module) (Woo et al., 2018), under

the same experimental conditions.

Figure 8 shows the confusion matrix of the recognition results

for each model on the self-built test set. Overall, the recognition

accuracy of the MobileNetV3-Large, MobileNetV3-CBAM, and

MobileNetV3-CA models is 94.45%, 94.80%, and 95.88%,

respectively. This demonstrates that compared with the other two

models, the MobileNetV3-CA model can more accurately identify
Frontiers in Plant Science 08
the characteristics of diseases and insects in tea leaves, effectively

improving the model’s accuracy. Details in Figure 9 show that the

introduction of the ECA, CBAM, and CA modules can alleviate

misclassification and omission issues in the MobileNetV3-Large

model to some extent, making the model more suitable for

identifying diseases and insects in tea leaves. Therefore, compared

with other attention mechanisms, the introduction of the CA

module can better improve the recognition performance of the

MobileNetV3-Large model, verifying the competitive advantage of

the CA module.
3.6 Comparative test of different models

Regarding image classification, ShuffleNetV2 and Inceptionv3

are two excellent lightweight convolutional neural networks that

can be easily deployed on mobile devices. Meanwhile, AlexNet,

VGG16, and the ResNet series models are also representative

convolutional neural networks in visual tasks, achieving excellent

results in visual classification tasks. They provide valuable reference

points and comparability for the tea leaf disease and pest

recognition method proposed in this study. To demonstrate the

effectiveness of the proposed model, it was compared with six other
FIGURE 7

Loss value curves of the MobileNetV3-CA model on the training set and validation set.
FIGURE 8

Confusion matrix of 3 different models.
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models using the same experimental data and training strategy. The

performance of these models on the test set is shown in Table 3.

As seen in the table, ResNet18 has strong feature extraction

ability and shows good recognition performance in the experiment,

but it consumes a lot of memory and computing resources. The

accuracies of AlexNet and VGG16 models on the test set are slightly

lower than that of the ResNet18 model. Additionally, both models

have a large amount of model parameters, which require more

storage space. The SqueezeNet model has small parameters, but its

accuracy index is low compared to other models. The ShuffleNetV2

model uses the idea of grouped convolution to reduce the number

of parameters and calculations. However, its recognition accuracy is

slightly poor on the tea leaf diseases and insects image dataset with

insignificant feature differences, resulting in poor model stability.

Although the MobileNetV3-Large model uses deep separable

convolution to restrict the depth and width of the network, it still

achieves excellent results in the task of disease and insect

identification in tea leaves, with performance close to ResNet18

and better than ShuffleNetV2, AlexNet and SqueezeNet. Compared
Frontiers in Plant Science 09
with other models, the MobileNetV3-CA model achieves better

recognition results, with a recognition accuracy as high as 95.88%,

which is 1.33, 5.66, 1.80, 7.48, 3.65, and 1.43 percentage higher than

ResNet18, AlexNet, VGG16, SqueezeNet, ShuffleNetV2, and

MobileNetV3-Large, respectively. In general, the MobileNetV3-

CA model not only ensures the detection speed but also improves

the identification efficiency of diseases and pests in tea leaves, better

balancing the complexity and recognition effect of the model.
3.7 Application of the proposed
recognition model

To verify the practical application effectiveness of this method

and to better support actual tea production, an application program

for identifying tea diseases and insects was developed using cloud

and mobile terminals. Users can capture or upload images of tea

leaves with diseases or insects using their mobile devices, which are

then sent to the cloud for processing. The cloud-based program
FIGURE 9

Feature visualization heat map of three different models.
TABLE 3 Comparison of accuracy, parameters and computation between models.

Models Accuracy/% Params/M Precision/% Recall/% F1-score/%

ResNet18 94.55 1.12 × 107 94.02 94.24 94.02

AlexNet 90.22 1.46 × 107 90.45 90.66 90.87

VGG16 94.08 1.34 × 106 93.55 93.42 94.46

SqueezeNet 88.40 7.25 × 105 88.34 89.21 88.26

ShuffleNetV2 92.23 1.26 × 106 92.29 92.33 92.22

MobileNetV3-large 94.45 4.21× 106 94.96 94.29 94.12

MobileNetV3-CA 95.88 2.7 × 106 95.98 96.19 96.01
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identifies tea leaf insects and diseases using the developed

identification model and sends the identification results back to

the mobile terminal. The interface of the mobile recognition process

and results can be seen in Figure 10. The recognition results include

the most probable category information of diseases and insects,

such as the category name and the probability of the category label,

accompanied by corresponding prevention and control suggestions.

The system has been implemented in tea gardens located in

Xinchang County, Zhejiang Province, and Fuding County, Fujian

Province, China. It has been utilized to identify and diagnose

numerous common tea leaf diseases and insects, such as tea

blister blight, tea anthracnose, larva of Ectropis obliqua hypulina,

Chrysopa sinica, among others, achieving an average accuracy of

90.36%. According to the test results, due to the similarities among

certain diseases and insects, occasional misjudgments may occur;

however, the average misjudgment rate remains below 6%. Hence,

this system holds practical value for application.
4 Conclusion

In summary, this study makes several significant contributions.

It introduces an enhanced classification algorithm for tea leaf

disease and insect recognition based on MobileNetV3, leveraging

the CA attention mechanism and transfer learning to notably

improve model performance.

1. The research presented an improved classification algorithm

for tea leaf disease and insect recognition, named MobilenetV3-CA,
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which builds upon the MobileNetV3 architecture. The findings

demonstrate that incorporating the CA attention mechanism into

the MobileNetV3 model could enhances the performance of disease

and insect recognition in tea leaves. The introduction of the CA

attention mechanism enables the model to better comprehend and

utilize spatial information, thereby improving its ability to identify

disease locations.

2. The study also investigates the algorithm’s effectiveness in

transfer learning, validating its ability to improve model

performance. Through transfer learning, the model can rapidly

adapt and learn when faced with new tea leaf disease data, and the

accuracy rate of disease recognition is raised from 94.45% to

95.88%, resulting in an overall increase in recognition accuracy.

This provides a reliable theoretical basis and experimental support

for the application of the MobilenetV3-CA algorithm in actual tea

leaf disease monitoring systems.

3. The advancements in this study offer promising applications

in real-world tea leaf disease monitoring and management systems,

introducing innovative approaches for integrating intelligent

technologies into agriculture. However, the current images of tea

tree leaf pests primarily focus on the adult stage of the pests, a point

at which the infestation may have already spread extensively or

become significantly harmful. The next step is to collect more

images of pests in their earlier stages to better facilitate early

identification and warning of pest outbreaks. Additionally, future

research directions may include further extending the application of

this algorithm to the identification of other stages of insect pests and

to other areas of crop pests and diseases, thereby expanding its

impact and utility in agricultural practice.
FIGURE 10

The interface of the mobile recognition process and results of the recognition model.
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