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Estimation of potato canopy leaf
water content in various growth
stages using UAV hyperspectral
remote sensing and
machine learning
Faxu Guo, Quan Feng*, Sen Yang and Wanxia Yang

College of Mechanical and Electrical Engineering, Gansu Agriculture University, Lanzhou, China
To ensure national food security amidst severe water shortages, agricultural

irrigation must be reduced through scientific innovation and technological

progress. Efficient monitoring is essential for achieving water-saving irrigation

and ensuring the sustainable development of agriculture. UAV hyperspectral

remote sensing has demonstrated significant potential in monitoring large-scale

crop leaf water content (LWC). In this study, hyperspectral and LWC data were

collected for potatoes (Solanum tuberosum) during the tuber formation, growth,

and starch accumulation stage in both 2021 and 2022. The hyperspectral data

underwent mathematical transformation bymultivariate scatter correction (MSC)

and standard normal transformation (SNV). Next, feature spectral bands of LWC

were selected using Competitive Adaptive Reweighted Sampling (CARS) and

Random Frog (RF). For comparison, both the full-band and feature band were

utilized to establish the estimation models of LWC. Modeling methods included

partial least squares regression (PLSR), support vector regression (SVR), and BP

neural network regression (BP). Results demonstrate that MSC and SNV

significantly enhance the correlation between spectral data and LWC. The

efficacy of estimation models varied across different growth stages, with

optimal models identified as MSC-CARS-SVR (R2 = 0.81, RMSE = 0.51) for

tuber formation, SNV-CARS-PLSR (R2 = 0.85, RMSE = 0.42) for tuber growth,

and MSC-RF-PLSR (R2 = 0.81, RMSE = 0.55) for starch accumulation. The RPD

values of the three optimal models all exceed 2, indicating their excellent

predictive performance. Utilizing these optimal models, a spatial distribution

map of LWC across the entire potato canopy was generated, offering valuable

insights for precise potato irrigation.
KEYWORDS

hyperspectral remote sensing, inversion mapping, machine learning, leaf water content,
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1 Introduction

As global agriculture faces increasing pressure from water

scarcity, efficient water management has become more critical than

ever. The Food and Agriculture Organization (FAO) of the United

Nations projects that by 2050, the world will need to produce 60%

more food to meet the demands of a population expected to reach 9.7

billion, all while grappling with increasingly limited water resources

(Lakhiar et al., 2024). In this context, precision irrigation emerges as a

key strategy to optimize water usage, minimize waste, and ensure

sustainable agricultural productivity. Water plays an indispensable

role in the growth and development of crops (Féret et al., 2019; Liu

et al., 2022; Li et al., 2022a). Crops rely on water for photosynthesis,

transpiration, and the synthesis and decomposition of organic matter

(Sun et al., 2015; Meiyan et al., 2022). Obtaining crop water

information quickly and accurately is vital for timely crop

irrigation and yield improvement, especially in regions prone to

water scarcity. Efficient water use is critical in agriculture, especially in

water-scarce regions. In modern precision agriculture, technologies

like UAV hyperspectral remote sensing provide a promising solution

for monitoring crop water content in real-time. Among all crop

tissues, leaves exhibit the most vigorous metabolism and serve as the

primary site for photosynthesis (Zhou et al., 2020; Zhang et al., 2021).

Analyzing leaf water content (LWC) is critical for assessing crop

moisture status, as LWC level indicate the degree of crop water

deficiency. Traditional methods of measuring crop moisture, such as

drying and distillation, are accurate but time consuming and energy

intensive (Roberto et al., 2018; Wang et al., 2021). Therefore, more

efficient monitoring methods are needed for precise agricultural

management. When crops suffer from severe water shortages,

timely irrigation becomes a challenge.

In the past few decades, satellite-based hyperspectral remote

sensing technology has been extensively studied in large-scale

regional agricultural monitoring such as crop nitrogen content

(Zheng et al., 2022), crop chlorophyll content (Xie and Yang,

2020), and crop biomass (Jia et al., 2019). In China, the cultivated

land area of a farmer is usually no more than a few acres. On this

scale, the granularity of satellite remote sensing is too rough, and it

is difficult for a farmer to obtain remote sensing data in time. As a

result, this method cannot provide farmers with timely information

on drought conditions and irrigation guidance. In recent years, with

the development of technology, the price of unmanned aerial

vehicle (UAV) has been becoming cheaper. Chinese farmers have

used UAV for many field operations, such as spraying and short-

distance transport. Compared with satellites, the remote sensing

mode of UAV + hyperspectral sensing has many advantages such as

fine granularity, convenience, and flexibility. The combination of

the two technologies can make precision agriculture more practical

in China and can provide farmers with a scientific basis for

precision irrigation based on LWC measurements (Zhang et al.,

2021; He et al., 2023). UAV hyperspectral remote sensing offers

farmers timely, high-resolution data that can improve precision

irrigation strategies. For example, recent studies demonstrated its

effectiveness in optimizing water management in crops like maize

and wheat, leading to measurable water savings and increased yields

(Mohite et al., 2022; Luo et al., 2024).
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The widespread adoption of hyperspectral remote sensing

technology has enabled its extensive use in monitoring plant

water content (Suárez et al., 2009; Raj et al., 2021), and most

studies have focused on the infrared region at wavelengths greater

than 900 nm. Maes and Steppe (2019) discovered that the

vibrational movements of water and other molecules containing

O-H groups in plants result in spectral absorption peaks occurring

near 970 nm, 1200 nm, 1450 nm, 1940 nm, and 2500 nm in the

spectral reflectance of plants. Zhang et al. (2014) investigated the

optimal spectral indicators for determining LWC. Their findings

demonstrated that the regression model for leaf water content based

on the normalized difference spectral index NDSI (R1222, R2264)

and the ratio spectral index RSI (R2264, R1321), is closely aligned

with the measured and estimated values. Sun et al. (2021) utilized

the Fractional Order Savitzky-Golay Derivative (FOSGD) to

preprocess the hyperspectral reflectance data of maize leaves

spanning from 900 nm to 1700 nm. They employed Variable

Importance in Projection (VIP), Competitive Adaptive

Reweighted Sampling (CARS), and Random Frog (RF) methods

to identify sensitive wavelengths. They established a maize leaf

water content estimation model based on Partial Least Squares. The

results indicated that the FOSGD-CARS-PLS or FOSGD-RF-PLS

model can effectively predict the LWC of maize. Although near-

infrared spectra above 900 nm exhibit high reliability in measuring

vegetation moisture, the instruments acquiring these spectra are

characterized by their high cost, making it unaffordable for the

ordinary farmers.

Visible and near-infrared spectroscopy (VIS-NIR) has been

extensively employed for estimating leaf water content (LWC)

due to its cost-effectiveness and wide accessibility. Previous

studies have demonstrated that vegetation indices derived from

VIS-NIR reflectance can effectively detect changes in LWC across a

variety of crops (Suárez et al., 2008; Kovar et al., 2019). For instance,

Ishikawa et al. (2013) found that spectral bands in the 650–690 nm

range were strongly correlated with LWC in diverse leaf samples,

underscoring the reliability of this method for water content

estimation. More recent research by Wang et al. (2023) utilized

partial least squares (PLS) models to predict moisture content in

fresh tea leaves, integrating spectral data to provide practical

applications in real-time monitoring systems. Similarly, Duarte-

Carvajalino et al. (2021) applied hyperspectral imaging techniques

to predict potato leaf water content, achieving high accuracy under

controlled experimental conditions. Nevertheless, these studies

predominantly focus on controlled environments, where factors

such as temperature, humidity, and lighting are strictly regulated.

As a consequence, the models developed may exhibit reduced

performance in field conditions, where environmental variability

introduces significant challenges.

Additionally, many studies have constructed spectral models

specific to particular growth stages, thereby limiting their

applicability across the entire crop life cycle (Panigrahi and Das,

2018). Given that crop spectral characteristics evolve with growth

stage, health status, and environmental conditions, models

developed for a single growth stage may fail to capture the full

extent of LWC variation throughout the entire growth period.

While some research, such as that by Liu et al. (2015), has
frontiersin.org
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compared models across multiple growth stages, these models often

require further validation to ensure their robustness under diverse

conditions. Consequently, there remains a critical gap in the

development of LWC estimation models that can be reliably

applied across multiple growth stages, particularly for crops like

potatoes, which exhibit varying water demands at different

phenological phases (Sudu et al., 2022).

Potato, along with rice, wheat, and corn, is one of the major

food crops globally (Zhang et al., 2017). The vitality and water

content of leaf play a crucial role in ensuring a nation’s food security

(Wijesinha-Bettoni and Mouillé, 2019). Especially in water-scarce

regions such as Gansu Province, potatoes, as a key crop, have

significant water requirements, making them an ideal subject for

research on improving irrigation efficiency. Although numerous

studies have applied hyperspectral remote sensing to monitor crop

water content, relatively few have specifically focused on potatoes,

particularly under real field conditions. Additionally, most existing

models are limited to a single growth stage, neglecting the variations

in moisture content across different stages of growth. As shown in

Table 1, these studies face challenges such as limited spatial

coverage, insufficient data acquisition speed, and a lack of

validation in real field conditions. This table summarizes the key

differences between our research and previous studies, highlighting

how our work addresses these limitations. This study aims to

address the limitations of previous research by developing and

validating a potato LWC estimation model across multiple growth

stages using UAV-based hyperspectral remote sensing combined

with machine learning algorithms. By focusing on critical growth

stages such as tuber formation, growth, and starch accumulation,

this research offers valuable insights for optimizing irrigation

strategies and advancing precision agriculture techniques in

water-scarce regions.
2 Materials and methods

2.1 Overview of the study area

Potato field trials were conducted in Huangyang Town,

Liangzhou District, within Wuwei City, from May to October in

both 2021 and 2022. Huangyang Town, located in the Hexi

Irrigation District of Gansu Province (37°81′49′′ N, 102°92′38′′ E)

(Figure 1), is a significant area for potato cultivation. The area is

situated at an altitude of 1660 m and lies in the eastern part of Hexi

Corridor. It has a continental temperate arid climate with a 150-day

frost-free period, averaging an annual temperature of 7.2°C and

receiving 160 mm of annual precipitation. The soil in this area is

grey calcareous with sandy loam texture and is high saline, PH value

of 7.82. The main crops cultivated are corn, wheat, and potatoes.

The potato variety ‘Qingshu9’ was planted in both years, courtesy of

Gansu Academy of Agricultural Sciences. ‘Qingshu 9’ is a medium-

to late-maturing fresh potato variety, with an average growth period

of approximately 115 days from emergence to maturity. This variety

is characterized by its high yield, resistance to late blight and scab,

and adaptability to local climatic conditions.
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Prior to planting, two types of fertilizers were applied:

diammonium phosphate (46%P2O5, 18%N) at a rate of 400 kg/

hm2, to provide the necessary phosphorus and nitrogen for the early

growth stages, and a Western compound fertilizer (15%N, 15%

P2O5, 15%K2O) at a rate of 750 kg/hm
2, to ensure adequate nutrient

supply throughout the reproductive period. Both fertilizers were

incorporated into the soil in a single application before sowing.

Irrigation was carried out using an under-membrane drip system,

with drip pipes buried 6cm deep (Aziz et al., 2021). The irrigation

system used drip pipes with a diameter of 16 mm (j16) and emitters

for water delivery, while the branch pipe was a 50 mm diameter

(j50) PE pipe with a pressure resistance of over 0.5MPa. To

minimize water evaporation and maintain soil moisture, the soil

surface was covered with a black polyethylene film, 90cm wide and

0.012mm thick. Throughout the growth cycle of the potato crop, the

total irrigation volume ranged from 2100 to 2300m3/hm2. In 2021,

irrigation was performed 10 times, while in 2022, it was conducted

11 times, with irrigation intervals of 10−12 days. The irrigation

frequency was adjusted according to3the potato2 growth stage and

soil moisture levels, with each irrigation delivering between 190 and

250 m/hm. Field management tasks such as sowing, fertilizing,

weeding, spraying pesticides, and other farming practices were

carried out according to local agricultural practices.
2.2 Hyperspectral image acquisition
and processing

Potatoes were planted on May 6, 2021, and May 10, 2022, and

harvested on October 3, 2021, and October 8, 2022, respectively.

The tuber formation stage began 65 days after planting and lasted

for approximately 30 days. The tuber growth phase commenced 95

days after planting and continued for about 25 days, while the

starch accumulation phase started 120 days after planting and lasted

for around 30 days (Aziz et al., 2021). The study conducted six field

trials at three crucial growth stages of potato: July 28, 2021 (S1 -

tuber formation stage), August 19 (S2 - tuber growth stage), August

30 (S3 - starch accumulation stage), and August 1, 2022 (S1 - tuber

formation stage), August 17 (S2 - tuber growth stage), August 31

(S3 - starch accumulation stage). Hyperspectral images were

obtained using the DJI M600 Pro® hexacopter drone, equipped

with the Gaia Sky-mini 2® imaging spectrometer (Jiangsu Dualix

Spectral Imaging Technology Co., Ltd, China) (Figure 2). The Gaia

Sky-mini 2 features a built-in push-scan imaging system with a

spectral range of 400 to 1000 nm and a spectral resolution of 3.5 nm.

It has a full-frame pixel resolution of 1392×1040 and weighs

approximately 1 kg. The device employs a surface-array detector

oriented perpendicularly to the direction of movement, allowing it

to perform a two-dimensional spatial scan as the motion platform

advances. The DJI M600 Pro hexacopter, when unloaded, has a

flight time of approximately 35 minutes per battery. Under a

maximum load of 6 kg, its battery life is reduced to around 16

minutes. To ensure high-quality hyperspectral images, all six

experiments were conducted between 11:00 a.m. and 1:00 p.m.

local time, following a fixed flight path on days with stable sunlight
frontiersin.or
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intensity and clear, cloudless weather. The drone operated at a flight

height of 100 m, with a 22° scanning field of view, a high-altitude

resolution of 0.039m, 80% lateral overlap, and 60% longitudinal

overlap between image data. Before the UAV’s departure, the

hyperspectral imager underwent radiometric calibration using a

whiteboard. The pre-processing of the hyperspectral data primarily

involves image correction, stitching, and reflectance extraction

(Guo et al., 2023).
2.3 Measurement and statistics of
LWC data

Potato leaf sampling and hyperspectral imaging were

synchronized. Sampling points were uniformly distributed

based on the study and potato planting areas. The center

coordinates of each observation were located and recorded

using a handheld high-precision GPS sampling device with a
Frontiers in Plant Science 04
positioning accuracy of< 5 cm. Twenty fully expanded and

undamaged leaves were collected from each sampling point in

the canopy. The collected leaves were sealed, and their fresh

weight (W1, g) was measured in the laboratory using a precision

electronic balance (JA3003, Shanghai Hengping Instrument and

Meter Co., Ltd., China). Next, the leaves from each sampling

point were dried in a laboratory oven at 105°C for 30 min and

then further dried at 80°C until a constant weight was achieved

(Xu et al., 2022). The dry weight of the leaves (W2, g) was

recorded. The LWC (%) of the potato was calculated by

Equation 1:

LWC =
W1 −W2

W1
� 100% (1)

This study measured the potato LWC data at three critical

growth stages. At stage S1, 50 samples were collected each year,

while at stages S2 and S3, 55 samples were collected each year. A

total of 320 samples were collected during the experimental phase.
TABLE 1 Overview of hyperspectral remote sensing methods and their limitations in existing studies.

Reference Cereals Remote Sensing
Platforms

Spectral
Range (nm)

Regressors Limitations Improvements in
This Study

Liu et al. (2022) Winter
Wheat

Ground-Based Platform 350–2500 MLR, SVR, PLSR Limited
spatial coverage

Utilized high-resolution UAV
for extensive coverage

Li et al. (2022a) Winter
Wheat

Ground-Based Platform 350–1350 GPR, CART, ANN Limited
spatial coverage

Utilized high-resolution UAV
for extensive coverage

Feng et al. (2022) Winter
Wheat

UAV-Based Platform 450–950 MLR, PLSR, RF Focused only on a
single growth stage

Monitored multiple growth
stages for potatoes

Li et al. (2022b) Winter
Wheat

UAV-Based Platform 400–1000 SVR, LRR,
RF, GPR

Focused only on a
single growth stage

Monitored multiple growth
stages for potatoes

Sun et al. (2015) Corn Ground-Based Platform 900–1700 PLSR, MLR, BP Not validated in real
field conditions

Collected data in actual
field conditions

Sun et al. (2021) Corn Ground-Based Platform 900–1700 PLSR, MLR Data collection
conditions determined

Collected data in actual
field conditions

Ndlovu
et al. (2021)

Maize UAV-Based Platform 475, 560, 668,
717, 840

RF, SVR, PLSR Focused only on a
single growth stage

Monitored multiple growth
stages for potatoes

Sudu et al. (2022) Summer
Maize

UAV-Based Platform 450–998 PLSR, RF, XGBoost Multi-Growth stage
mixed modeling

Independent modeling for each
growth stage

Tunca et al. (2023) Sorghum Ground-Based Platform 325–1075 RF, SVR, XGBoost Limited
spatial coverage

Utilized high-resolution UAV
for extensive coverage

Krishna
et al. (2019)

Rice Ground-Based Platform 350–2500 PLSR, MLR, ANN;
RF, SVR

Limited
spatial coverage

Utilized high-resolution UAV
for extensive coverage

Elsherbiny
et al. (2021)

Rice Ground-Based Platform 874–1734 BP, RF, PLSR Data collection
conditions determined

Collected data in actual
field conditions

Chen et al. (2020a) Cotton UAV-Based Platform 490, 550, 680,
720, 800, 900

MLR Focused only on a
single growth stage

Monitored multiple growth
stages for potatoes

Duarte-Carvajalino
et al. (2021)

Potato Ground-Based Platform 400–1000 RF, XGBoost, MLP,
CNN, SVR

Limited
spatial coverage

Utilized high-resolution UAV
for extensive coverage

Suyala et al. (2024) Potato Ground-Based Platform 337–2521 PLSR, SVR, BP Limited
spatial coverage

Utilized high-resolution UAV
for extensive coverage

Guo et al. (2023) Potato UAV-Based Platform 400–1000 PLSR, MLR Multi-Growth stage
mixed modeling

Independent modeling for each
growth stage
frontiersin.or
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2.4 Hyperspectral data transformation

During hyperspectral data processing, specific spectral

transformations can be used to mitigate the effects of

environmental factors and interferences, improve the signal-to-

noise ratio, and make spectral forms more sensitive to potato

LWC (Yang et al., 2023). In this study, several mathematical

transformations were applied to the raw spectra, resulting in six

spectral data types: raw reflectance (R), multiple scattering

correction (MSC), standard normal variate (SNV), reciprocal

transformation (RT), logarithm of the reciprocal [(Lg(1/R)], and

first derivative (FD).MSC is a normalization technique that reduces

baseline drift, improves the signal-to-noise ratio, and better reveals

differences and similarities between samples. It is commonly used to

eliminate the effects of scatter on spectral data (Chen et al., 2019;
Frontiers in Plant Science 05
Sun et al., 2020). SNV primarily eliminates the effects of solid

particle size, surface scattering, and optical path variations on

spectra. Elimination of baseline drift and enhancement spectral

signal characteristics contribute to improved accuracy and

reliability in spectral analysis (Genkawa et al., 2015; Tao et al.,

2020). RT and Lg(1/R) help to enhance features in low reflectance

regions, making subtle changes more detectable. Meanwhile, FD

highlights minute spectral changes, such as the positions of

reflectance peaks and valleys, although it may amplify noise in

regions with weaker signals (Sonobe and Hirono, 2022).
2.5 Extraction of hyperspectral
feature band

Considering the large number of collected hyperspectral bands,

numerous redundant and interfering bands exist. Extracting the

feature band related to potato LWC based on the potato

hyperspectral reflectance data is crucial. This study utilized two

hyperspectral feature band extraction algorithms: CARS and RF.

The CARS algorithm (Sun et al., 2021; Xing et al., 2021) is based

on in the evolutionary principle of “survival of the fittest”. It

integrates partial least squares (PLS) with CARS technology by

using the absolute value percentage of the PLS modeling coefficients

as a measure of significance for the target variables. And then it

selects wavelengths with substantial coefficients, and discarding

those with low weights. The process uses Monte Carlo Sampling

(MCS), exponential decay functions, and Adaptive Weighted

Sampling (ARS) to acquire an initial subset of wavelengths for

further screening. Multiple iterations of the CARS algorithm result

in a set of wavelengths closely linked to the target attributes. This

produces a high-performance feature wavelength set for regression

modeling. The comprehensive approach improves the accuracy and
FIGURE 1

Description of the geographic location of the study area.
FIGURE 2

UAV imaging hyperspectral system.
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reliability of spectral analysis, effectively selecting the best modeling

wavelength combinations. The RF algorithm (Li et al., 2012; Hu

et al., 2015) is a heuristic feature selection algorithm that is highly

suitable for spectral data. The RF algorithm mimics the random yet

systematic search behavior of a frog ‘leaping’ between different

subsets of features. Each ‘leap’ represents the algorithm’s movement

from one potential feature subset to another, selecting subsets based

on performance. By continuously performing crossbreeding,

mutation, and selection operations, the algorithm gradually

optimizes the feature subset to excel in the given task. This

method allows the algorithm to explore various feature

combinations in the search space to identify the best feature set,

thereby improving the model’s performance.
2.6 Machine learning modeling

Following the aforementioned processes on the hyperspectral

data, three regression algorithms (PLSR, SVR and BP) of machine

learning were used to construct a potato LWC estimation models.

PLSR (Cheng and Sun, 2017) is a traditional linear regression

technique that conducts principal component analysis on the

explanatory and response variables to identify a new feature space

that optimizes their covariance. This method effectively handles

multicollinearity, is suitable for high-dimensional data, and can

handle multiple response variables. PLSR ensures that each

component is associated with the target, allowing for multi-level

regression analysis by retaining different numbers of components to

achieve more robust predictions and a deeper understanding of the

relationship between independent and dependent variables (Burnett

et al., 2021). The model training process involved optimizing the

number of principal components, which in this study was varied

between two and two-thirds of the total number of features.

SVR (Virnodkar et al., 2020) is based on kernel statistical theory

and transforms the sample space into a high-dimensional or infinite-

dimensional feature space through nonlinear mapping. This

conversion turns the initially nonlinear separable problem in the

sample space into a linear separable problem in the feature space.

SVR can improve robustness against noise and outliers, exhibits

nonlinear modeling capabilities, excels in high-dimensional space,

and provides strong generalization performance, making it suitable

for various regression problems. In this study, a radial basis function

was employed, with the two parameters to be optimized being the

penalty coefficient (C) and the kernel function parameter (g). A grid

search approach was utilized to determine the optimal values for

these parameters, where the search range for C was from 0.5 to 500,

and for g, from 0.0001 to 0.05.

The Backpropagation (BP) neural network (Li et al., 2016) is

widely used for nonlinear modeling and data prediction. It consists

of input, output, and intermediate hidden layers. The learning

process involves two key steps: forward propagation and

backpropagation. During forward propagation, the input data is

processed layer by layer, starting with the input layer, then the

hidden layer, and finally the output layer. In case of an error

between the predicted result of the output layer and the actual

data, the backpropagation process is initiated. By using the gradient
Frontiers in Plant Science 06
descent method, the backpropagation algorithm methodically

adjusts the weights of each neuron layer by layer, continuing until

the error aligns with the predetermined criteria. In the present

research, it was necessary to determine the number of hidden layers

and the corresponding number of neurons in each layer. Two

hidden layers with the same number of neurons were employed.

The empirical formula (Equation 2) was applied to define an

appropriate range for the number of nodes in the hidden layers.

The optimal number of nodes in each hidden layer was then

selected using the grid-search method, with 1,000 iterations, a

learning rate of 0.01, and a training objective of 1×10−6.

q =
ffiffiffiffiffiffiffiffiffiffiffi
k +m

p
+ a (2)

where q denotes the number of nodes in the hidden layer, k

represents the number of input layer units, m indicates the number

of output layer units, and a is a constant in the range [1, 10].
2.7 Model evaluation methods

The regression algorithms employed in this research were

implemented in the Python 3.6.13 environment using the scikit-

learn 0.23.2 or TensorFlow 2.1.0 frameworks. Due to the limited

number of samples available for a single growth stage, the constructed

models were validated through leave-one-out-cross validation

(Wong, 2015). During the cross-validation process, each sample

was iteratively used as a test set. Model parameters were

determined by a comprehensive comparison of multiple training

iterations, providing results that are considered the closest

approximation to the expected value derived from training on the

entire dataset. We use the coefficient of determination (R2), root

mean square error (RMSE) and relative analytical error (RPD) as

evaluation metrics to assess model performance. R2 (closer to 1)

measures how well the model fits the data, while RMSE (closer to 0)

quantifies the spread of predicted values around the regression line. A

higher R2 and a lower RMSE indicate greater precision in model

estimation. The RPD is used to assess the predictive ability of a

model. It is defined as the ratio of the standard deviation of the

sample to the RMSE. When RPD< 1.4, the model is considered

unable to predict the samples accurately. If 1.4 ≤ RPD< 2, the model

is regarded as moderately effective and can be used for rough

assessments. For RPD ≥ 2, the model is considered to have

excellent predictive capability (Zhu et al., 2020). The calculation of

R2, RMSE, and RPD are shown in Equations 3–5, respectively.

R2 = 1 −o
n
i=1(ym − yp)

2

on
i=1(ym − �y)2

(3)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ym − yp)

2

s
(4)

RPD =
Sy

RMSE
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1on
i=1(ym,i − �ym)

2
q

RMSE
(5)
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Where n is the sample size; ym and yp are the actual and

predicted values of potato LWC, respectively; �y is the mean value of

the actual potato LWC; Sy is the standard deviation of the measured

value of potato LWC.
3 Results and analysis

3.1 Mathematical statistics of
collection sample

To ensure that the modeling and test data sets better capture the

entire dataset’s distribution, to mitigate bias from specific data

distributions, and to improve the generalizability of the model, we

used a random splitting method, allocating 75% of the samples for

modeling and 25% for testing. For the potato growth stage S1, 75

samples were selected for the modeling data set and 25 for the test

data set. Likewise, for the S2 and S3 growth stages, 83 samples were

selected for the modeling data set, and 27 in the test data set.

Figure 3 shows the sample distribution in the modeling and test

data sets across the three growth stages of potato. As shown in

Figure 3, the mean and standard deviation (SD) values of the sample

points of the three different growth stages can be obtained. In the S1

stage, the distribution of LWC in the modeling data set ranges from

81.53% to 87.91% (SD = 1.22), while in the test data set, it ranges

from 81.70% to 86.62% (SD = 1.19). In the S2 stage, the distribution

of LWC in the modeling data set ranges from 79.28% to 83.99% (SD

= 1.12), while in the test data set, it ranges from 79.90% to 83.84%

(SD = 1.08). In addition, at the S3 stage, the distribution of LWC in

the modeling data set ranges from 76.28% to 80.72% (SD = 0.99),

while in the test data set, it ranges from 76.40% to 81.58% (SD =

1.27). The mean and standard deviation (SD) values between the

modeling and test datasets for the three growth stages show minor

variances, indicating a reasonable division of the data set.
3.2 Potato hyperspectral features

3.2.1 Hyperspectral transformation and
feature analysis

Figure 4 shows the original spectral curves and their

mathematical transformations for the potato samples. As can be
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seen from Figure 4A, there are obvious differences in the raw

reflectance (R) between the samples, and there are phenomena

such as baseline shift and tilt between the spectra. These

observations can be attributed to light scattering from the potato

canopy and changes in the optical path length. After processing

with by MSC (Figure 4B) and SNV (Figure 4C), the discrepancies in

reflectance are significantly decreased. The spectra show higher

concentration and consistent spectral curve characteristics. These

results provide the evidence that the two spectral transformation

methods can effectively address spectral shifts, eliminate

background interference and noise, and enhance spectral features.

As a result, feature wavelengths can be identified with greater

accuracy and precision. The RT transform (Figure 4D) effectively

enhances the spectral features in regions of low reflectance,

highlighting subtle changes that are less apparent in the original

spectrum. In contrast, the Lg(1/R) transform (Figure 4E)

emphasizes spectral variations while preserving the overall trend

of the spectrum, making it suitable for analyzing subtle differences.

The FD transform (Figure 4F) effectively highlights small changes in

the spectrum, such as the positions of reflectance peaks and valleys,

thereby reducing background interference and improving the

accuracy of feature extraction. However, a burr phenomenon is

observed beyond 800 nm in Figure 4F, primarily due to weak signal

strength in this spectral region, which results in noise amplification

during the derivative transformation process.
3.2.2 Analysis of the correlation between potato
canopy reflectance and LWC

Based on the actual measured data of LWC in three critical

growth stages of potato, the correlation between the reflectance of

each band before and after hyperspectral mathematical

transformation with LWC is analyzed during the entire growth

period of potato, and the results are shown in Figure 5. It can be

observed that the correlation coefficients r for MSC and SNV show

an increase compared to R. r between R and LWC ranges from -0.50

to 0.35, while for MSC and LWC, it ranges from -0.84 to 0.73, and

for SNV and LWC, it ranges from -0.80 to 0.75. The trend of change

in r between the reflectance of each band and LWC before and after

spectral transformation remains consistent in the range of 500-725

nm. The absolute value of the negative correlation coefficient r

reaches its highest point for each transformation at approximately
FIGURE 3

Distribution of potato LWC at different growth stages, (A) tuber formation stage S1, (B) tuber growth stage S2, (C) starch accumulation stage S3.
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725 nm, in fact, in this band, all three transformations show the

greatest negative correlation with LWC. This suggests that the

correlation between spectral features and LWC is better revealed

after applying MSC and SNV transformations in this spectral

region. In contrast, the correlation curves of RT, Lg(1/R), and FD

are smoother, with relatively small fluctuations in the correlation

coefficients. Although these transformations provide unique feature

information in specific bands (e.g., low reflectance regions), they do

not show a significant enhancement in correlation within critical

bands (e.g., near 725 nm). This is particularly evident for the FD

transform, which shows noise amplification in bands above 800 nm,

leading to large fluctuations at high frequencies. As shown in

Figure 5, MSC and SNV spectral data are more effective in

revealing the relationship between LWC and spectral reflectance.

While the RT, Lg(1/R), and FD transforms offer some information

gain, their correlation performance is limited in key bands and is

more susceptible to noise interference in certain regions. Therefore,

R, MSC, and SNV spectral data are selected for subsequent

experiments to improve the accuracy of the analysis and the

reliability of the model.
3.3 Selection of feature band for
potato LWC

The results of band selection processed by CARS and RF are

shown in Figure 6, which shows the influence of different selection

methods and potato growth stages on the results. Utilizing RF for
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band selection involves choosing the top 20 bands based on their

selection probability, representing 11.36% of all bands. For S1, the

feature band identified by the RF band selection methods across in

the three types of spectral data was mainly concentrated in the near

infrared region of 760-1000 nm, with a smaller distribution in the

visible light region of 400-475 nm. For S2, the feature band screened

by the RF band selection methods on the three types of spectral data

are distributed in both visible light and near-infrared regions, with a

more scattered distribution. Fewer feature band selected by RF on

the three types of spectra are distributed in the near-infrared region.

For S3, the distribution of the feature band selected by RF on the

three types of spectra follows the same pattern as in the S2 stage,

with a few distributed in the near-infrared region.

For S1, the feature band selected by CARS based on R, MCS, and

SNV spectral data are 25, 16, and 22, accounting for 14.20%, 9.09%,

and 12.50% of the total bands, respectively. For S2, the feature band

screened by the CARS band selection methods on the three types of

spectral data are distributed in both visible light and near-infrared

regions, with a more scattered distribution. CARS selects 35, 14, and 40

the feature band based on R, MCS, and SNV spectral data, accounting

for 19.89%, 7.95%, and 22.73% of the total bands, respectively. For S3,

the distribution of the feature band selected by CARS on the three

spectra is quite similar, mainly concentrated between 550-830 nm. The

feature band selected based on R, MCS, and SNV spectral data are 31,

20, and 31, accounting for 17.61%, 11.36%, and 17.61% of the total

bands, respectively. Both band selection methods reduce the spectral

dimensions across the three spectral data types, simplifying the model

and reducing the computational load.
FIGURE 4

Raw and mathematically transformed spectra of potato, (A) raw spectra, (B) multiple scattering correction transformation spectrum, (C) standardized
normal variate transformation spectrum, (D) inverse transformation spectrum, (E) ogarithm of the reciproca transformation spectrum, (F) first
derivative transformation spectrum.
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3.4 Potato LWC estimation models

We used machine learning methods, such as PLSR, SVR, and

BP, to develop estimation models for LWC. To achieve more

accurate predictions, three different growth stages were modeled

independently. In addition, we analyzed the impacts of the full-

band and the feature band as variables in the models. 75% of the

data is randomly selected to construct the modeling set, and the rest

was used as the test set. Figure 7 shows the results of various models

on the modeling set.

For S1, the PLSR models show the accuracies ranging from 0.49

to 0.76 for R2 and 0.60 to 0.87 for RMSE. The MSC-CARS-PLSR

model demonstrates the highest R2 and the smallest RMSE, while

the SNV-RF-PLSR model has the lowest R2 and the largest RMSE.

Similarly, the SVR models have accuracies ranging from 0.45 to 0.81

for R2 and 0.53 to 0.90 for RMSE. The accuracies of the BP models

ranged from 0.41 to 0.79 for R2 and from 0.56 to 0.93 for RMSE.

Within this context, the SNV-CARS-BP model demonstrates the

highest R2 and the smallest RMSE, whereas the R-CARS-BP model

exhibits the lowest R2 and the largest RMSE. In the models

constructed using raw spectral data R, the full-band models

exhibit better modeling performance than the models constructed

from selected the feature band. For the models established with
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spectral data transformed by SNV and MSC, those developed with

the feature band selected by CARS outperform the full-band

models. However, the performance of the models based on the

feature and selected by RF is inferior to that of the full-band models.

In addition, after applying SNV and MSC transformations to the

original spectral data R, the modeling effect was improved to

varying degrees. In particular, the MSC-CARS-SVR model

achieves the best modeling effect at the S1 stage.

For S2, the modeling accuracy of the PLSR models ranges from

0.54 to 0.86 for R2 and from 0.41 to 0.75 for RMSE. Among the

models, the SNV-CARS-PLSR model has the highest R2 and the

smallest RMSE, while the R-RF-PLSR model has the lowest R2 and

the highest RMSE. The modeling accuracy of the SVR models

ranges from 0.65 to 0.85 for R2 and 0.42 to 0.65 for RMSE. In this

case, the SNV-CARS-SVR model presents the highest R2 and the

smallest RMSE, while the R-RF-SVR model indicates the lowest R2

and the highest RMSE. Additionally, the modeling accuracy of the

BP models ranges from 0.63 to 0.85 for R2 and 0.42 to 0.67 for

RMSE, with the SNV-CARS-BP model achieving the highest R2 and

the smallest RMSE and the R-CARS-BP model recording the lowest

R2 and the highest RMSE. In models established based on the

spectral data after MSC transformation, those using the full-band

for modeling showed better performance than those using models
FIGURE 5

Correlation analysis of potato LWC with different transformed spectra.
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built with selected the feature band. In the models established based

on the original spectral data R and spectra after SNV

transformation, models constructed using bands selected by

CARS had better performance than those built using the full-

band. However, models built with bands selected by RF

performed worse than models established with the full-band.

Notably, three models established based on data processed by

SNV-CARS all achieved optimal predictive performance, with the

SNV-CARS-PLSR model emerging as the most accurate at the

S2 stage.

For S3, the PLSR model’s R2 modeling accuracy falls between 0.80

and 0.82, with an RMSE ranging from 0.41 to 0.44. Importantly, the

MSC-CARS-PLSRmodel demonstrates the highest R2 and the smallest

RMSE, while the SNV-CARS-PLSR model exhibits the lowest R2 and

the largest RMSE. Likewise, the SVR model’s R2 modeling accuracy

spans from 0.81 to 0.87, with an RMSE between 0.36 and 0.43. Once

more, the MSC-CARS-SVR model yields the highest R2 and the

smallest RMSE, with the SNV-CARS-SVR model recording the

lowest R2 and the highest RMSE. In the case of the BP models, the

R2 modeling accuracy ranges from 0.80 to 0.86, with an RMSE between

0.37 and 0.44. In this context, the MSC-CARS-BP model demonstrates

the highest R2 and the smallest RMSE, while the R-CARS-BP model

exhibits the lowest R2 and the largest RMSE. Comprehensive analysis

reveals that all the models developed during the S3 stage show an

R2 above 0.80 in the prediction set, with minor variations in R2 and
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RMSE among the models. Remarkably, three models established based

on data processed by MSC-CARS all achieved optimal predictive

performance, with the MSC-CARS-SVR model boasting the highest

prediction accuracy during the S3 stage.

The potato LWC estimation models should demonstrate high fit

universality and repeatability. Accordingly, we further evaluated the

accuracy of each growth stage models on the test set. For S1,

Figure 8 presents the validation results on the test set for each

model. Among them, the nine models based on the R spectrum data

show poor test fitting on the test set, with R2 ranging from 0.25 to

0.63, RMSE ranging from 0.76 to 1.01, and RPD ranging from 1.18

to 1.57. It is noteworthy that, when models being built with the

feature band, only the PLSR models surpasses the full-band models.

Conversely, the test performances of the SVR and BP models are

inferior to the full-band models. In contrast, the nine models based

on the MSC spectral data demonstrate good test fitting on the test

set, with R2 ranging from 0.40 to 0.81, RMSE ranging from 0.51 to

0.90, and RPD ranging from 1.32 to 2.33. Models with the feature

band selected by CARS demonstrate superior test performance

compared to those of the full-band, while models with the feature

band selected by RF show inferior test performance. Concerning the

nine models based on the SNV spectral data, the test set R2 ranges

from 0.16 to 0.75, RMSE ranges from 0.58 to 1.07, and RPD ranging

from 1.11 to 2.05. Models established using the feature band display

a test performance similar to that of the MSC spectral data, where
FIGURE 6

Distribution of feature band screened by different feature band screening algorithms.
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the CARS models demonstrate better test performance than those

of the full-band, and the RF models demonstrate inferior test

performance. Comparing the test effects of various models for the

potato S1 phase, the MSC-CARS-SVR model demonstrates the best

test set performance, with R2 = 0.81, RMSE = 0.51, and RPD=2.33,

indicating its potential for potato S1 phase LWC content inversion.

For S2, Figure 9 presents the validation results of the test set

samples on each model. In the group of nine models based on the R
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spectrum data, the test set R2 ranges from 0.40 to 0.81, with RMSE

ranging from 0.47 to 0.82, and RPD ranging from 1.32 to 2.30.

Remarkably, the PLSR models with the full-band surpass the those

with the feature band in terms of test performance. For the SVR and

BP models, the test performance of the models using the feature

band selected by the CARS algorithm is superior to the full-band

models. Conversely, the RF models demonstrates inferior test

performance. Concerning the nine models relying on the MSC
FIGURE 7

Comparison of potato LWC estimation accuracy using three machine learning models: (A-C) R2, (D-F) root mean square error (RMSE).
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spectral data, the test set R2 ranges from 0.48 to 0.81, RMSE ranges

from 0.47 to 0.77, and RPD ranging from 1.41 to 2.30. Solely the

feature band PLSR models outperforms the full-band models in

terms of test performance, while the SVR and BP lag behind.

Additionally, the nine models based on the SNV spectral data

display satisfactory test fitting on the test set, with R2 ranging from

0.47 to 0.85, RMSE ranging from 0.42 to 0.78, and RPD ranging

from 1.39 to 2.58. Specifically, only the SVR models constructed

using the feature band selected by CARS exhibits lesser test

performance than the full-band models. Conversely, the

remaining models using the feature band demonstrate superior

test performance. By comparing the test effects of various models

for the potato S2 phase, the SNV-CARS-PLSR model emerges with

the most optimal test set performance, boasting R2 = 0.85, RMSE =

0.42, and RPD = 2.58, signifying its effectiveness in inverting the

potato S2 phase LWC content.
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For S3, Figure 10 presents the validation results of the test set

samples on each model. All models exhibit a test set R2 above 0.70,

RMSE below 0.68, and RPD above 1.87. Particularly, among models

constructed with the feature band, the test performance of the SVR

models, utilizing the feature band selected by CARS, is inferior to the

full-band models for the R and MSC spectral data. However, in all

other cases, the test performance of the models constructed using the

feature band surpasses that of the full-band models. When comparing

the test effects of various models for the potato S3 phase, the MSC-RF-

PLSR model stands out with the most superior test set performance,

boasting an R2 of 0.81, RMSE of 0.55, and RPD of 2.58. This model

effectively monitors the LWC content of potato S3 phase.

Overall, it can be seen that there is no “omnipotent” model to

make the most accurate prediction of LWC in different growth

stages, so modeling the different growth stages separately is a better

choice. For S1, S2 and S3 stages, the most appropriate prediction
FIGURE 8

Comparison of test set accuracy of potato S1 phase LWC estimation using three machine learning models: (A-C) PLSR models, (D-F) SVR models,
(G-I) BP models.
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models are MSC-CARS-SVR, SNV-CARS-PLSR and MSC-RF-

PLSR respectively.
3.5 Spatial distribution of field potato LWC

Utilizing the best LWC estimation models outlined in Section

3.4, Figure 11 displays the spatial distribution map of LWC for S1,

S2, and S3 in 2021 and 2022. Potato LWC levels exhibit notable

variations across diverse plots and growth stages, with the S1 stage

displaying higher LWC content than the S2 and S3 stages.

Additionally, noticeable disparities in potato LWC are observed

among different regions within the same plot. Potato plants

demonstrate a decrease in LWC during the S3 phase when

contrasted with S2. During the S3, the plants prioritize nutrient

transfer to the tubers to facilitate tuber growth and starch

accumulation. Therefore, foliage may undergo a reduction in

water content during this phase to fulfill the nutritional

requirements for tuber development. It can be observed that the
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distribution of LWC in the map is uneven. Some regions, shown in

light yellow or orange, indicate higher LWC and may be in

vegetation growth and sufficient moisture content. In contrast,

dark green regions mean lower LWC and may be under-irrigated.

The uneven distribution can indicate which areas should be

prioritized for irrigation. By utilizing this map, farmers and

managers can pinpoint regions in need of precision irrigation,

potentially increasing crop yield achieving the goal of water-

saving irrigation.
4 Discussion

4.1 Spectral transformation and feature
selection for potato LWC

Mathematical transformation to the original spectrum is

essential to improve data quality and modeling accuracy. In our

study, we applied MSC and SNV transformations to the potato
FIGURE 9

Comparison of test set accuracy of potato S2 phase LWC estimation using three machine learning models: (A-C) PLSR models, (D-F) SVR models,
(G-I) BP models.
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canopy hyperspectral data, which resulted in a significant

improvement in the correlation between spectral data and potato

LWC. This result is consistent with the research results of Sun et al.

(2017) and Chen et al. (2020b), who reported improved correlation

values after mathematical transformations of the spectra of purple

sweet potatoes and apple leaves. Hyperspectral data contain a

significant number of bands, many are irrelevant to potato LWC

and make little contribution to the accuracy of the estimation

model. Therefore, the full-band modeling is not the best choice.

The selection of the feature band handled by CARS and RF helps to

reduce data redundancy and improve modeling performance, the

result consistent with that of Sudu et al. (2022) and Liu et al. (2020).
4.2 Hyperparameter selection for machine
learning models

The performance of machine learning models is heavily

influenced by the selection of hyperparameters, and optimizing

these hyperparameters directly impacts both the generalization
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capability and predictive accuracy of the models. To ensure

optimal model performance, this study employs grid search and

cross-validation to optimize the hyperparameters of PLSR, SVR,

and BP. For the PLSR model, the number of principal components

is a crucial hyperparameter that influences the model’s complexity

and generalization ability. Taking the optimization of the number of

principal components in the SNV-CARS-PLSR model during the

potato S2 stage as an example, Figure 12 demonstrates a clear

relationship between the number of principal components and the

model’s R2 and RMSE values. As the number of principal

components increases from 2 to 20, the R2 value rises while the

RMSE decreases, reaching a peak R2 of 0.85 at 20 components, with

the RMSE minimizing at 0.48. However, beyond 20 components,

the R2 value begins to decline, and the RMSE increases, leading to a

decrease in model performance. Therefore, the optimal number of

principal components for this model is 20.

For the SVR model, the MSC-CARS-SVR model at the potato

S1 stage was used as an example to optimize the hyperparameters C

and g. As shown in Figure 13, the RMSE exhibits a clear trend with

varying values of C and g. When C = 10 and g = 0.001, the model
FIGURE 10

Comparison of test set accuracy of potato S3 phase LWC estimation using three machine learning models: (A-C) PLSR models, (D-F) SVR models,
(G-I) BP models.
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achieves the lowest RMSE (0.53), indicating optimal generalization

ability. Additionally, Figure 13 illustrates the variation in R2 values

corresponding to different C and g parameters. Consistent with the

RMSE heatmap, the model reaches its highest R2 value of 0.81 at C =

10 and g = 0.001, further confirming the best model fit under this

parameter combination. Therefore, the optimal parameters for this

model are C = 10 and g = 0.001.
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For the BPmodel, theMSC-CARS-BPmodel during the potato S3

stage was used as an example, and grid search was employed to

identify the optimal constant a. As shown in Table 2, variations in the

number of q and the constant a resulted in significant fluctuations in

the model’s R2 and RMSE values. Notably, when q = 7 and a = 3, the

model achieved the highest R2 value of 0.86 and the lowest RMSE of

0.37, indicating optimal model fit. However, an excessive number of
FIGURE 12

Variation of R2 and RMSE during the optimization of the number of principal components in the SNV-CARS-PLSR model at the potato S2 stage, with
40 input features.
FIGURE 11

Spatial distribution of potato LWC based on the optimal estimation models: (A-C) S1-S3 period in 2021, (D-F) S1-S3 period in 2022.
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nodesmay cause a decrease in R2 and an increase in RMSE, potentially

due to network complexity leading to overfitting. Therefore, the

optimal parameters for this model are q = 10 and a = 3.

By optimizing the hyperparameters of the PLSR, SVR, and BP

neural network models, this study successfully enhanced the

prediction accuracy and generalization ability of each model. The

results demonstrate that proper hyperparameter tuning is crucial for

improving model complexity and predictive performance. Future

research could explore more complex model structures and

optimization algorithms to further enhance model performance.
4.3 Impact of different machine learning
algorithms on potato LWC
estimation performance

The spectral features of crops are intricately linked to their

growth stages, health status, and external environment. These
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spectral curves undergo distinctive changes across different

growth stages (Panigrahi and Das, 2018). A single model can’t

make accurate predictions for the LWC of the three growth periods.

In order to solve this problem, we established LWC estimation

models for tuber formation, growth, and starch accumulation stage,

respectively - three pivotal growth stages of potatoes. Upon

analyzing the potato LWC estimation results for these stages,

variations in model accuracy are evident. The model accuracy

exhibits a trend of initial increase and subsequent decrease as the

growth stages progress, possibly attributed to changes in canopy

structure, biomass accumulation, and the distribution of leaf water

content as potato growth stages advance, leading to varied

predictive performance. Notably, PLSR models emerge as good

choice for estimating LWC during the growth and starch

accumulation stage. In contrast, SVR models proves better during

the tuber formation stage. Primarily, this preference for PLSR is

justified by the challenge of multicollinearity among the

hyperspectral bands, wherein PLSR demonstrates superior

capability in handling multicollinearity compared to SVR and BP

algorithms. Additionally, the small sample size of this study

suggests that SVR and BP may be susceptible to overfitting. PLSR

generally requires less data for small sample sizes, making models

established by PLSR more robust than those derived from SVR

and BP.
4.4 Application of potato LWC distribution
maps in adjusting precision
irrigation strategies

During potato cultivation, LWC is a key indicator of crop water

status and plays a critical role in growth (Suyala et al., 2024;

Zununjan et al., 2024). Analysis of LWC data derived from UAV-

based hyperspectral inversion shows that the water requirements of

potatoes vary significantly at different developmental stages. This

finding highlights the importance of developing precise irrigation

strategies. The spatial distribution map of LWC can guide irrigation

in three main aspects. First, irrigation regulation can be based on

LWC variability. As shown in Figure 11, certain regions have low
TABLE 2 Variation of R2 and RMSE during the optimization of BP model
hyperparameters C and g.

q a R2 RMSE

5 1 0.83 0.41

6 2 0.85 0.39

7 3 0.86 0.37

8 4 0.84 0.40

9 5 0.83 0.41

10 6 0.83 0.41

11 7 0.80 0.44

12 8 0.79 0.45

13 9 0.77 0.47

14 10 0.77 0.47
q represents the number of nodes in the hidden layer of the BP neural network, and a is a
constant within the range [1, 10]. Using the MSC-CARS-BP model at the potato S3 stage as an
example, the number of input features is 20.
FIGURE 13

Variation of R2 and RMSE during the optimization of hyperparameters text C and g in the MSC-CARS-SVR model at the potato S1 stage.
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LWC (e.g., yellow and orange areas), indicating insufficient soil

moisture, which may limit crop growth. In these regions, timely

increases in irrigation are needed to maintain adequate moisture,

promoting root growth and normal tuber development. In contrast,

regions with higher LWC (e.g., green areas) should receive reduced

irrigation to avoid wasting water and potential soil salinization.

Second, precision irrigation can be implemented through zoning

management. By using spatial analysis of hyperspectral images, the

field can be divided into multiple zones. Each zone can then receive

precision drip irrigation based on its LWC levels. The drip irrigation

system allows flexible adjustment of water supply according to

actual soil moisture needs. This zoning management ensures that

each area receives an appropriate water supply during the

reproductive period, realizing the principle of ‘water supply

according to demand.’ Finally, irrigation timing should be

dynamically adjusted. Time-series analysis of hyperspectral

images reveals that potato water demand fluctuates at different

growth stages. During S1 and S2 stages, water demand is higher,

especially in areas with lower LWC (see Figure 11). In these cases,

irrigation frequency and volume should be increased to prevent

water shortage. However, during the S3 stage, while water remains

important, irrigation should be moderated to prevent excess

moisture from inhibiting starch accumulation. Future research

will integrate hyperspectral data with soil moisture sensors and

meteorological data to further optimize water usage. This will

enhance automated irrigation management, contributing to

improved potato productivity and quality.

The study aims to develop potato LWC estimation models based

on the feature band. Despite achieving impressive accuracy, it faces

challenges during training with the machine learning algorithm. This

is primarily due to the limited number of test samples, resulting in

overfitting and degradation of the model. To overcome this

limitation, it is essential to expand the scope of the investigation by

increasing the number of sample, period, and potato varieties to

validate and enhance the model’s applicability. Future research will

focus on acquiringmore data in more sites, leveraging a larger sample

size to enhance the model’s robustness and accuracy.
5 Conclusion

The rapid measurement of LWC in the canopy allow farmers

know the water distribution of potatoes in the field, so as to

formulate water-saving irrigation strategies. In this study, UAV

was used as a platform to efficiently collect hyperspectral data of

potato canopy at the field scale, and LWCs were actually measured

on the ground. After mathematical transformation and the feature

band selection, the relationships between LWC and hyperspectral

data were analyzed, and the estimation models of LWC were

modeled by machine learning. In order to make the model

prediction results more accurate, we modeled the LWC of the

three main growth stages of potato. The original spectral data

underwent two mathematical transformations: MSC and SNV.

The methods of the feature band selection contained CARS and

RF algorithms. Our modeling approaches included PLSR, SVR, and

BP. The investigation yielded the following pivotal findings:
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1. Applying MSC and SNV mathematical transformations to

the potato canopy hyperspectral data significantly

enhanced the correlation between the spectral data and

potato LWC. Specifically, the correlation coefficient based

on R increased by -0.50 to 0.35 under MSC and by -0.30 to

0.40 under SNV.

2. The band extraction algorithms CARS and RF effectively

selected the most relevant bands and reduced data

redundancy. Feature band selected by RF represented

approximately 11.36% of all bands, while those selected

by CARS accounted for 7.95% to 22.73%.

3. The accuracy of the models varied at different stages of

potato growth. The optimal models for estimating LWC in

stages S1 to S3 were MSC-CARS-SVR, SNV-CARS-PLSR,

and MSC-RF-PLSR. These three models consistently

provided stable and accurate estimation of potato LWC.
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estimation of sorghum crop water content under different water stress levels using
machine learning and hyperspectral data. Environ. Monit. Assess. 195, 877.

Virnodkar, S. S., Pachghare, V. K., Patil, V. C., and Jha, S. K. (2020). Remote sensing
and machine learning for crop water stress determination in various crops: a critical
review. Precis. Agric. 21, 1121–1155.

Wang, S., Wu, Z., Cao, C., An, M., Luo, K., Sun, L., et al. (2023). Design and
experiment of online detection system for water content of fresh tea leaves after
harvesting based on near infra-red spectroscopy. Sensors 23, 666.

Wang, F., Yi, Q., Hu, J., Xie, L., Yao, X., Xu, T., et al. (2021). Combining spectral and
textural information in uav hyperspectral images to estimate rice grain yield. Int. J.
Appl. Earth Observ. Geoinform. 102, 102397.
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