Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.
Sec. Technical Advances in Plant Science
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1458337
This article is part of the Research Topic Leveraging Phenotyping and Crop Modeling in Smart Agriculture View all 17 articles

Predicting alfalfa leaf area index by non-linear models and deep learning models

Provisionally accepted
  • 1 Ningxia University, Yinchuan, China
  • 2 Ningxia Normal University, Guyuan, China

The final, formatted version of the article will be published soon.

    Leaf area index (LAI) of alfalfa is a crucial indicator of its growth status and a predictor of yield. The LAI of alfalfa is influenced by environmental factors, and the limitations of non-linear models in integrating these factors affect the accuracy of LAI predictions. This study explores the potential of classical non-linear models and deep learning for predicting alfalfa LAI. Initially, Logistic, Gompertz, and Richards models were developed based on growth days to assess the applicability of nonlinear models for LAI prediction of alfalfa. In contrast, this study combines environmental factors such as temperature and soil moisture, and proposes a time series prediction model based on mutation point detection method and encoder-attention-decoder BiLSTM network (TMEAD-BiLSTM). The model's performance was analyzed and evaluated against LAI data from different years and cuts. The results indicate that the TMEAD-BiLSTM model achieved the highest prediction accuracy (R² > 0.99), while the non-linear models exhibited lower accuracy (R² > 0.78). The TMEAD-BiLSTM model overcomes the limitations of nonlinear models in integrating environmental factors, enabling rapid and accurate predictions of alfalfa LAI, which can provide valuable references for alfalfa growth monitoring and the establishment of field management practices.

    Keywords: alfalfa, leaf area index, non-liner model, Deep learning model, MOSUM.

    Received: 02 Jul 2024; Accepted: 17 Oct 2024.

    Copyright: © 2024 Yang, Ge, Wang, Liu and Fu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Yongqi Ge, Ningxia University, Yinchuan, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.