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Introduction: Brassica juncea is a major oilseed crop of Brassica. The seed

weight is one of yield components in oilseed Brassica crops. Research on the

genetic mechanism of seed weight is not only directly related to the yield and

economic value of Brassica juncea but also can provide a theory foundation for

studying other Brassica crops.

Methods: To map the genes for seed weight, the parental and F2 extreme bulks

derived were constructed from the cross between the heavy-seeded accession

7981 and the light-seeded one Sichuan yellow (SY) of B. juncea, and used in bulk

segregant sequencing (BSA-seq). Meanwhile, RNA-sequencing (RNA-seq) was

performed for both parents at six seed development stages.

Results:Our results showed that a total of thirty five SNPs were identified in thirty

two genes located on chromosomes A02 and A10, while fifty eight InDels in fifty

one genes located on A01, A03, A05, A07, A09, A10, B01, B02 and B04. The 7,679

differentially expressed genes were identified in developing seeds between the

parents. Furthermore, integrated analysis of BSA-seq and RNA-seq data revealed

a cluster of nine genes on chromosome A10 and one gene on chromosome A05

that are putative candidate genes controlling seed weight in B. juncea.

Discussion: This study provides a new reference for research on Brassica seed

weight and lays a solid foundation for the examination of seed in other

Brassica crops.
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1 Introduction

Brassica juncea is widely grown as an oilseed in China, India,

Bangladesh, Ukraine, Canada and Australia (Carruthers et al., 2017;

Kaur et al., 2020; Pal et al., 2021). Furthermore, this species is an

important vegetable in China and is used as a condiment. B. juncea

plants exhibit resistance to drought, poor soil, disease and insects

and are adapted to hot, dry regions (Tian et al., 2017).

Seed weight, measured by thousand seed weight (TSW), is one of

yield components in oilseed Brassica crops. Therefore, enhanced

TSW is the direct way to increase yield (Gegas et al., 2010; Zhang

et al., 2021; Zhou et al., 2022). Seed weight is reminiscent of seed size

and seed fullness. Cytologically, seed development is regulated mainly

by a combination of cell proliferation and cell enlargement

(Sundaresan, 2005) and requires the synergistic growth of the

embryo, endosperm and seed coat (Baud et al., 2008; Borisjuk

et al., 2013). The maternal tissue can influence seed size through

the regulation of transcription factor, ubiquitination, G protein and

hormone signaling pathways, among others (Li and Li, 2016; Li et al.,

2019). Seed weight is a quantitative trait controlled by multiple genes

and influenced by genotype and environmental conditions (Yadava

et al., 2012). The emergence of molecular markers, single-nucleotide

polymorphism (SNP) chips and other technologies has greatly

promoted the mapping of complex quantitative traits such as TSW

(Dhaka et al., 2017; Li et al., 2014). The three QTLs (Quantitative

Trait Loci) for TSW were identified on chromosome A07, C07 and

C09 in B. napus, respectively (Quijada et al., 2006). The thirty four

QTLs for TSW were also identified using DH populations, and SSR

and AFLP markers (Basunanda et al., 2010). In addition, GWAS

analysis identified the 320 SNPs linked with seed weight trait using

257 genotyped inbred rapeseed cultivars (Dong et al., 2018; Salami

et al., 2024). However, the few loci for TSW have been cloned in

Brassica species. Liu et al. successfully cloned the first TSW gene,

ARF18, which controls both silique length and TSW (Liu et al., 2015).

The gene ARF18 promotes silique elongation, increases pod wall

photosynthetic area, and therefore enhances TSW in rapeseed (Liu

et al., 2015). Shi et al. have isolated the gene BnaA9.CYP78A9D which

encodes a P450 monooxygenase that regulates the silique length by

promoting cell elongation (Shi et al., 2019).Bulk segregant sequencing

(BSA-seq) has been used to detect the allele frequency (AF) of SNPs

and insertion-deletions (InDels) by constructing DNA pools of both

parents and their F2 progenies with extreme values and thus

identifying the associated genes (Gao et al., 2022). Using BSA-seq,

Meng et al (Meng et al., 2023). located the candidate region associated

with trichome traits and identified the candidate gene in B. juncea.

Transcriptomic analysis using RNA-seq involves the study of gene

expression at the RNA level. It is an important tool for studying the

correlation between cell phenotype and gene function. Dynamic

transcriptome analysis of varieties with contrasting seed sizes was

used to identify the candidate genes associated with seed growth in B.

napus and B. rapa (Geng et al., 2018; Niu et al., 2020). Recently,

Shikha et al. performed comparative transcriptome analysis between

two lines of Brassica juncea, small-seeded EG-2 and large-seeded PJ,

at the initial stages of seed development and identified candidate

genes regulating the cell cycle, cell wall biogenesis/modification,

solute/sugar transport, and hormone signaling (Mathur et al.,
Frontiers in Plant Science 02
2022). Moreover, transcriptomic analysis revealed that cell cycle-

related genes play a key role in determining the seed size of B. juncea

(Dhaka et al., 2022). However, the molecular regulatory mechanism

of seed weight in Brassica species has not been fully elucidated.

In this study, we used the heavy- and light- seed accessions 7981

and Sichuan Yellow as parents to construct an F2 segregating

population of B. juncea. Both parents and the bulks of the F2
progenies with extreme values were subjected to BSA-seq to identify

the candidate regions associated with TSW in B. juncea. Meanwhile,

differentially expressed genes (DEGs) were identified between the

two parents via RNA-seq at different seed development stages. The

combination of BSA-seq and RNA-seq identified candidate genes

for determining seed weight in B. juncea.
2 Materials and methods

2.1 Plant materials and phenotyping

Based on the preliminary examination of global oilseed mustard

(Brassica juncea) accessions grown in Changsha (short-day autumn

sowing), Guiyang (short-day autumn sowing), Kunming (long-day

summer sowing), and Xinjiang (long-day spring sowing) in two

consecutive years (2018 and 2019), two accessions, 7981 and

Sichuan Yellow, which showed phenotypic differences in

thousand seed weight (TSW) across regions in different years,

were chosen as materials. In this study, we named 7981 and

Sichuan Yellow as the large seed (LS) and the small seed

(SS), respectively.

The F1 hybrids was obtained by crossing 7981 with Sichuan Yellow,

and self-pollinated to get F2 progeny. About 3,000 F2 individual

seedlings were grown in Guiyang. The young leaves were collected

from each individual and stored at -80°C for use. At maturity, a total of

1000 seeds from each individual plant were counted by a seed count

instrument (CONTADOR, Pfeuffer, Germany), and then weighed by

an electronic scale (CONTADOR, Germany). The mean of three

replicates was taken as the measured value of TSW.

ANOVA was used to compare significant differences between

the two seed lines.
2.2 Library construction and BSA-seq

Thirty individuals with extreme heavy TSW and the same

number of individuals with extreme light TSW were selected

from F2 progeny and used for construction of F2 extreme bulks.

Ten individual plants from each parent were used for construction

of the parental bulks. The genomic DNA was extracted from each

bulk using the modified cetyltrimethyl ammonium bromide

(CTAB) method (Clarke, 2009). The purity and integrity of the

DNA were detected using a NanoDrop instrument (NanoDrop,

DE) and agarose gel electrophoresis, respectively. The DNA was

quantified by a Qubit Fluorometer (Thermo Fisher, MA). The

libraries were prepared according to the standard protocol of

Illumina and sequenced on an Illumina HiSeq2500 platform

(Illumina, CA).
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The clean reads obtained after removing the adapter from the

raw reads were aligned to the B. juncea reference genome (Brassica

juncea (L.) Czern & Coss, http://117.78.45.2:96/genomes/) using

BWA (v. 0.7.15-r1140, Burrows−Wheeler-Aligner) (Li and Durbin,

2009). SAMtools (v. 1.3.1) was used to remove duplicates (Li et al.,

2009). Then, the variant calling of SNPs and InDels was performed

with GATK (McKenna et al., 2010). ANNOVAR was used to

annotate the filtered SNP calls, and a high-quality SNP set was

ultimately obtained (Wang et al., 2010).
2.3 Identification of candidate genes for
TSW by analysis of allelic
frequency difference

Based on genotyping results, SNPs with homozygous

differences between two parents were screened. Then, the SNP-

index (SNP frequency) of each F2 bulk was calculated in each

screened SNPs using the parent as the reference. In order to reduce

the impact of sequencing and mapping errors, the SNPs were

filtered according to the SNP-index results, the filtration criteria

are as follows: 1) the SNPs with SNP-index less than 0.3 and SNP

depth less than 7 in both F2 individual pools, 2) a site where the

SNP-index of F2 progenies is missing, filters it out. To directly

reflect the distribution of SNP-index on chromosomes of each F2
individual, the distribution of SNP-index on chromosomes was

mapped. The 1Mb is selected as the window and 1kb as the step size.

The average SNP-index in each window is calculated to reflect the

SNP-index distribution of the two F2 bulks. After calculating the

SNP-index of each F2 individual in each SNP sites, the △(SNP-

index) value of each variant was calculated via QTLseqr (R

package). Then, the 1,000 permutation tests were performed and

the 95% confidence interval (CI) selected as the threshold for

screening the candidate region of TSW. The regions with △SNP-

index) above the 95% CI were identified as candidate regions

for TSW.

As above, based on genotyping results, the InDels of

homozygous differences between two parents were screened. The

missing sites of F2 bulks were filtered out to reduce the impact of

sequencing and alignment errors. Then the InDel-index and

△(InDel-index) were calculated using the above methods, and

the regions with △(InDel-index) above the 95% CI were identified

as candidate regions for TSW.

According to the annotation information of SNPs and InDels in

candidate regions, sites causing stop loss or stop gain, non-

synonymous mutations, variable splicing sites or frameshift

mutations were preferentially selected, and the genes having these

sites were selected as candidate genes.
2.4 RNA-seq library preparation
and sequencing

The developing seeds were harvested for RNA-seq from both

parents at 15, 20, 25, 30, 35 and 40 days after pollination (DAP),

referred to as stages S1, S2, S3, S4, S5 and S6, respectively.
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Three biological replicates were performed for each seed sample.

The mRNA libraries were constructed from high-quality RNA

samples using an NEBNext Ultra Directional RNA Library Prep

Kit (NEB, UK) according to the manufacturer’s instructions and

sequenced on a HiSeq 4000 (Illumina, San Diego) using a paired-

end run (2 × 150 bp). The raw reads generated were filtered to

remove adapter, poly-N and low-quality reads. Then, the clean

paired-end reads were aligned to the above B. juncea reference

genome using HISAT2 (v.2.1.0) with default parameters (Kim

et al., 2015).
2.5 Identification and annotation of DEGs

The gene expression level was estimated by HTSeq (v.0.6.1), and

an FPKM greater than 1 was used as a threshold for determining

gene expression (Trapnell et al., 2012). Differentially expressed

genes (DEGs) between 7981 and Sichuan yellow at six seed

developmental stages were identified using the DESeq2 package

(Love et al., 2014). A DEG with a log2 ratio > 0 in the read count

between two libraries was considered as upregulated expression,

while a log2 ratio<0 was considered as downregulated expression.

The DEGs were annotated by Gene Ontology (GO) functional

enrichment using GOseq (v.2.12) (Young et al., 2010) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) functional

enrichment using KOBAS (v. 2.0) (Kanehisa et al., 2008). DEGs

were considered as significantly enriched if the adjusted P value

was <0.05.
2.6 qRT−PCR validation of the DEGs

Differentially expressed genes were subjected to qPCR analysis

using the Bio-Rad CFX96 Real-Time PCR System with a two-step

protocol after total RNA extraction, quantification, qualification,

and first-strand cDNA synthesis. The primers used for the qRT

−PCR analysis is shown in Supplementary Table S1. The reaction

program included an initial denaturation at 95°C for 30 s, followed

by 40 cycles of denaturation at 95°C for 10 s and annealing and

extension at 60°C for 30 s. Each sample was run with three

biological replicates. The expression level of the actin gene was

used as an internal control. The relative expression levels of each

gene were calculated with the 2–DDCt method (Livak and

Schmittgen, 2001).
3 Results

3.1 Seed phenotype of two B. juncea
parental accessions

The seed phenotype of both parents 7981 and Sichuan yellow

(SY) was shown in Figure 1. As shown in Figure 1B, TSW of 7981

grown at four sites was heavier than that of Sichuan Yellow at two

consecutive years. The mean TSW of Sichuan Yellow is 1.8g

whereas that of 7981 is 3.7g over four sites in two years
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(Figure 1C). In addition, the seed size also exhibited significant

differences between the parents (Figure 1A). Figure 1D showed the

distribution of F2 progeny in TSW.
3.2 Detection of SNPs and InDels by
BSA-seq

BSA-seq generated raw data of a total of 126,953,330,700 bp.

After quality control, 125,289,937,200 bp of clean data were

obtained. The guanine cytosine (GC) content of these clean

reads ranged from 38.06% to 39.75%, and the quality of the

sequencing data was high (Q20 ≥ 96.31%, Q30 ≥ 90.22%)

(Supplementary Table S2). The clean reads were subsequently
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mapped against the reference genome, with a mapping rate

ranging from 97.27% to 99.11% and an average coverage of 11×

for both parents and approximately 40× for two F2 bulks. The

degrees of coverage of 1× and 4× were 88.85% and 77.79%,

respectively (Table 1).

A total of 4,801,126 SNPs and 1,063,911 InDels were called out

using GATK 3.8 (Supplementary Table S3). Among them, 576,970

SNPs and 38,158 InDels were mapped to the exon regions using

ANNOVAR, including 3,715 SNPs and 1,300 InDels in “Stop gain”,

842 SNPs and 144 InDels in “Stop loss”, 338,742 SNPs in

“Synonymous”, 230,855 SNPs in “Nonsynonymous”, 11,159

InDels in “Frameshift deletion”, 10,136 InDels in “Frameshift

insertion”, 7,868 InDels in “Nonframeshift deletion”, and 7,551

InDels in “Nonframeshift insertion” (Supplementary Table S3).
TABLE 1 Quality statistics of mapping with the reference genome for BSA-seq.

Sample Mapped reads Total reads Mapping
rate (%)

Average
depth (X)

Coverage at
least 1X (%)

Coverage at
least 4X (%)

7981 78,439,304 80,024,838 98.02 11.75 88.85 77.79

Sichuan Yellow 88,373,484 89,167,750 99.11 11.9 97.71 91.4

LS_bulk 308,440,316 317,095,674 97.27 39.71 98.65 98.05

SS_bulk 341,588,558 348,977,986 97.88 50.04 98.53 97.92
FIGURE 1

The phenotypic comparisons between the Brassica juncea accessions 7981 and Sichuan Yellow. (A) Comparisons in seed size and color in matured
seeds of 7981 and Sichuan Yellow. (B) the TSW of two accessions grown in four geographical sites at two consecutive years (2018, 2019). e.g. the
18GYTSW in x axis means the seeds collected in Guiyang at 2018. (C) Comparison in TSW of matured seeds between 7981 and Sichuan Yellow. The
measurement data are shown with standard error bars from four geographical sites at two years. The data are the means ± SE (n = 8). p value
denotes a significant difference between two lines in TSW. (D) The frequency distribution in TSW of F2 individual plants.
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3.3 Identification of candidate genes for
TSW in B. juncea

From the 822,583 SNPs with homozygous differences between two

parents, we identified 817,134 SNPs with SNP-index values more than

0.3 and depths more than 7. The Manhattan map showed the

distribution of SNP-index of each F2 bulk (Figure 2A). 120 SNPs on

chromosomes A01, A02, A09, A10, B02 and B07 were identified with

the△(SNP-index) value above the 95%CI (Supplementary Data Sheet

S1). Annotation of these SNPs revealed that thirty-one SNPs were

located in exons and these SNPs were distributed in chromosome A10,

including eight synonymous mutations (Table 2, Supplementary Data

Sheet S1). These eight nonsynonymous mutations were in six genes

(BjuA10g14470S, BjuA10g16450S, BjuA10g18390S, BjuA10g18960S,

BjuA10g20540S and BjuA10g23440S) (Table 1). Among these genes,

BjuA10g16450S, BjuA10g18960S, BjuA10g20540S and BjuA10g23440S

were annotated as a PIWI domain, a BolA-like protein, a PPR and a

histidine kinase, respectively (Table 1). In addition, a total of 32 genes

(30 genes in chromosome A10 and 2 genes in chromosome A02)

harboring 35 significant SNPs were identified as candidate genes

according to the annotation of candidate region of SNPs

(Supplementary Data Sheet S2).

Similarly, 687,851 InDels were filtered out from 694,636 InDels.

After calculating the InDel-index and△(InDel-index), the distribution

of each bulk was presented in Manhattan map (Figure 2B). According

to the△(InDel-index), 302 InDels were identified with the△(InDel-

index) value above 95% CI (Supplementary Data Sheet S3). The

annotation showed that four InDels were located within exons,

including one frameshift insertion, one nonframeshift insertion and

two nonframeshift deletions (Table 2, Supplementary Data Sheet S3).
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Among these InDels, three were located in three genes, namely,

BjuA10g22200S (a CCAAT-binding transcription factor-encoding

gene), BjuA10g14570S (a PPR repeat protein-encoding gene) and

BjuA10g08890S (a ribosomal protein S2-encoding gene) (Table 2).

The candidate gene analysis showed that fifty eight InDels significantly

associated with TSW were distributed on chromosomes A01, A03,

A05, A07, A09, A10, B01, B02, and B04, and located in 51 candidate

genes (Supplementary Data Sheet S2).
3.4 Dynamic seed transcriptomic
comparison between both B.
juncea parents

To explore the seed weight-related genes in B. juncea, the seed

transcriptomes were dynamically analyzed via RNA-seq. More than

1.66 ×109 raw reads were generated from thirty-six libraries, with an

average of 6.79 Gb of clean reads for each sample and a Q30 of

92.7% across all samples (Supplementary Table S4). Mapping of the

clean reads to the SY reference genome yielded a percentage of

90.89% (Supplementary Table S4).
3.5 Differentially expressed genes shared at
various seed development stages between
B. juncea parents

The genes that were differentially expressed were compared

between both parents for each seed development stage. The highest

number (44,176) and the lowest number (27,678) of DEGs were
FIGURE 2

Distribution of SNP and InDel association values on chromosomes. (A) the distribution of SNPs. (B) the distribution of InDels. LS bulk means
distribution of SNP- or InDel-index values of heaviest seed bulk on chromosomes, SS bulk means distribution of SNP- or InDel-index values of
lightest seed bulk on chromosomes, LS-SS bulk means distribution of △ (SNP- or InDel-index) value on chromosomes, where the blue line
represents the 95% CI threshold.
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found between 7981 and SY at 15 and 30 DAP, respectively

(Supplementary Table S5). 33,478, 29,078, 29,421 and 35,581

DEGs were detected at 20, 25, 35 and 40 DAP (Supplementary

Table S5). The number of up- and down-regulated DEGs in the

seeds at each stage between both parents is shown in Figure 3A.

A total of 7,679 DEGs were shared with each seed developmental

stage (Supplementary Data Sheet S4), among which 2,278 belonged to

the transcription factor gene families, with the top 10 TFs being

Pkinase, RRM_1, Pkinase Tyr, Myb_DNA-binding, p450, AAA,

2OG-FeII_Oxy, DEAD, Epimerase and F-box (Figure 3B). Except for

these DEGs classified as TF family, the 2,792 of 7,679 DEGs were also

annotated. Among these, there were 6 DEGs identified up-regulated

and 19 DEGs down-regulated in accession 7981 at six development

stages (Figure 3C). Gene annotation showed that the 6 DEGs were

PF01439:Metallothionein and 2 DEGs annotated in PF09184:PPP4R2

and PF08700:Vps51/Vps67, and the 19 down-regulated DEGs

were PF02536:mTERF, PF06423:GWT1, PF14705:Costars, PF09111:

SLIDE, PF08879:WRC|PF08880:QLQ, PF08511:COQ9, PF04900:Fcf1,

PF04046:PSP, PF03066:Nucleoplasmin, PF02630:SCO1/SenC,

PF02114:Phosducin, PF02099:Josephin, PF01871:AMMECR1 and

PF00258:Flavodoxin, respectively (Figure 3C).

To investigate the biological processes and pathways, these DEGs

are involved in the Gene Ontology (GO) annotation and KEGG

annotation were conducted (Figure 4). The top 5 most enriched GO

and KEGG items by DEGs in six compared groups were further

analyzed. A total of 61 GO items identified were classified into three

categories of biological process, cellular component and molecular

function (Figure 4A). In the biological process class, most of the DEGs

were associated with ion transmembrane transport-, nucleotide-,

purine-, pyridine- or ribosome-related processes. Among the cellular
Frontiers in Plant Science 06
component terms, the GO terms “envelope”, “membrane coat”,

“mitochondrial envelope”, “oxidoreductase complex”, “photosystem”,

and “thylakoid” were most enriched. Among the molecular function

terms, the significantly overrepresented items were protein

heterodimerization activity, isomerase activity and motor activity

(Figure 4A). KEGG annotation indicated that most of the DEGs

were enriched in the ribosome, fatty acid biosynthesis, arginine

biosynthesis and arginine and proline metabolism pathways 15~20

DAP, while the five pathways associated with the most enriched genes

were photosynthesis, photosynthesis-antenna proteins, biosynthesis of

amino acids, glycolysis/gluconeogenesis, carbon metabolism, and

carbon fixation 25-40 DAP (Figure 4B).
3.6 Putative candidate genes for TSW in
B. juncea

As mentioned above, the BSA-seq analysis reveals that thirty

five significant SNPs located in thirty two genes and fifty eight

significant InDels in fifty one genes were associated with TSW.

Meanwhile, the transcriptome profiling showed that there were

7,679 DEGs between two accessions contrasting in seed weight.

Integrated analysis of the above BSA-seq and RNA-seq data

identified nine genes (BjuA10g15340S , BjuA10g15660S ,

BjuA10g18580S, BjuA10g18950S, BjuA10g18960S, BjuA10g23440S,

BjuA10g24560S, BjuA05g24310S, BjuA10g16420S) which showed

difference in structure and/or expression level (Table 3,

Figure 4A). Among these genes, BjuA10g18960S and

BjuA10g23440S harbored nonsynonymous SNPs. The former

encodes the BolA-like protein, while the latter encodes the
TABLE 2 The eight SNPs and four InDels within the candidate region and located in exon.

SNP Chr. Pos. REF ALT Type of mutation Associated gene Gene description

1 A10 14360757 G C nonsynonymous SNV BjuA10g14470S –

2 A10 15706305 G A nonsynonymous SNV BjuA10g16450S PF02171:Piwi domain
PF16488:Argonaute linker 2 domain

3 A10 16745753 G A nonsynonymous SNV BjuA10g18390S PF14365:Domain of unknown function (DUF4409)

4 A10 17075651 A G nonsynonymous SNV BjuA10g18960S PF01722:BolA-like protein

5 A10 17858118 G A nonsynonymous SNV BjuA10g20540S PF13041:PPR repeat family
PF01535:PPR repeat

6 A10 19294411 G C nonsynonymous SNV BjuA10g23440S PF02518:Histidine kinase

7 A10 19294420 T A nonsynonymous SNV BjuA10g23440S PF02518:Histidine kinase

8 A10 19294448 G C nonsynonymous SNV BjuA10g23440S PF02518:Histidine kinase

InDel Chromosome Pos REF ALT Type of mutation Related gene Gene description

1 A05 26913983
26913988

CCTCCC – nonframeshift deletion BjuA05g30130S –

2 A10 7749369 – CC frameshift insertion BjuA10g08890S PF00215:Orotidine 5’-phosphate decarboxylase/
HUMPS family|PF00318:Ribosomal protein S2

3 A10 14426783 – A frameshift insertion BjuA10g14570S PF13041:PPR repeat family

4 A10 18666735 – CAG nonframeshift insertion BjuA10g22200S PF02045:CCAAT-binding transcription factor
(CBF-B/NF-YA) subunit B
– means no data detected.
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HSP90-like ATPase (Table 3, Figure 5A). Notably, the expression of

BjuA10g18960S and BjuA10g23440S was significantly higher in

Sichuan Yellow than in 7981 (Figure 5C), which was confirmed

by qRT−PCR analysis (Figure 5B).
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4 Discussion

Seed weight is one of yield components in B. juncea.

Development of seed weight and seed size is a precise and
FIGURE 4

The Gene ontology classification and KEGG enrichment of DEGs. (A) The top 5 GO items most significantly enriched by DEGs at six seed
development stages. (B) The top 5 KEGG items most significantly enriched by DEGs at six seed development stages.
FIGURE 3

Analysis of differentially expressed genes (DEGs) at six seed development stages. (A) The number of up- and down-regulated DEGs. (B) The
Transcription factor gene family of the most DEG. (C) The heatmap of DEGs.
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complex regulated process and controlled by cues from maternal

and zygotic tissues with some environmental influence (Li and Li,

2016). A recombinant inbred line (RIL) population was used to

decrease the environmental influence in mapping QTLs for

thousand grain weight (TGW) in wheat (Tahmasebi et al., 2017;

Heidari et al., 2011). Identification of QTLs related to seed weight

and/or size will contribute to improvement in crop yield. At present,

the genomic regions and/or candidate genes regulating seed size in

B. juncea have been identified using marker-based bi-parental

quantitative trait loci (QTL) mapping or genome-wide association

studies (Dhaka et al., 2017; Kang et al., 2021; Kumar and Bisht,

2020; Ramchiary et al., 2007; Sra et al., 2019). In addition, Namrata

and his colleagues performed QTL analysis using B. juncea bi-

parental doubled-haploid populations and identified 65 QTLs and

numerous candidate genes influencing seed weight (Dhaka et al.,

2017). However, more studies are needed to identify more genes

for seed weight in B. juncea. In this study, we attempted to identify

new candidate genes for TSW through BSA-seq of F2 progeny
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combined with transcriptome profiling of both parents 7981 and

Sichuan Yellow.

BSA-seq is a method of constructing lineage populations

containing extreme phenotypic traits, comparing their

polymorphic loci by sequencing the parents and selected progeny

with extreme trait values, and locating candidate intervals based on

differences in allele frequencies (Zhang et al., 2018). We used this

method in the present study and revealed chromosomes A01, A02,

A03, A05, A07, A09, A10, B01, B02 and B04 probably carried the

intervals for TSW in B. juncea. Consistent with the previous

findings, the QTLs for TSW found by Namrata et al. were

distributed on chromosomes A03, A07, A10 and B03 in B. juncea

(Dhaka et al., 2017). The chromosomes A07, A08 and A09 contain

highly significant QTLs for TSW in B. rapa (L.) (Alemu et al., 2024).

In addition, the YLD-related QTLs were identified on chromosome

A05 in B. napus (Ding et al., 2012). The candidate genes associated

with seed yield in the candidate region of chromosome A02 were

also identified in rapeseed (Pal et al., 2021). Therefore, the SNPs and
TABLE 3 The candidate genes related to TSW identified by analysis of BSA-Seq and RNA-Seq.

Candidate
SNPs/InDels

Gene_id Variant Chr. Pos. Ref Alt Log2FC Gene description

SNPs BjuA10g15340S Down stream A10 14959347 T C -8.05 ––

BjuA10g15660S Up stream A10 15187411 G A -1.83 ––

BjuA10g18580S Up stream A10 16851683 A C -2.97 ––

BjuA10g18580S Up stream A10 16851690 G A -2.97 ––

BjuA10g18950S Up stream A10 17073204 A T -1.91 PF01026:TatD related DNase;
PF00651:BTB/POZ domain|
PF03000:NPH3 family

BjuA10g18960S Non
synonymous

A10 17075651 A G -2.90 PF01722:BolA-like protein

BjuA10g23440S Non
synonymous

A10 19294411 G C -5.45 PF00072:Response regulator
receiver domain;
PF00512:His Kinase A
(phosphoacceptor)domain;
PF02518:Histidine kinase,
DNAgyraseB,and HSP90
like ATPase

BjuA10g23440S Non
synonymous

A10 19294420 T A -5.45 same as above

BjuA10g23440S Non
synonymous

A10 19294448 G C -5.45 same as above

BjuA10g24560S Down stream A10 19829498 A G -3.33 PF03171:2OG-Fe(II) oxygenase
superfamily;
PF14226:non-haem dioxygenase
in morphine synthesis
N-terminal

InDels BjuA05g24310S Up stream A05 23019187 AAAA – -4.58 PF13621:Cupin-like domain

BjuA05g24310S Up stream A05 23019190 – – -4.58 same as above

BjuA10g16420S Up stream A10 15695620 A – -4.69 PF03447:Homoserine
dehydrogenase, NAD binding
domain;
PF00742:
Homoserine dehydrogenase
– and –– mean no data detected. Log2FC is the mean of Log2FC at six comparison groups.
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Indels associated with TSW and corresponding chromosomal

intervals detected in this study will provide a foundation for fine

mapping for the genes involved in seed weight in B. juncea.

Although the BSA method is commonly used for initial

localization of genes with a relatively wide range and the bulked

samples used in current study are not enough. The locations of

TSW in B. juncea detected in current study also can further study

for help breeding for TSW in Brassica combined with methods such

as genetic mapping, molecular marker integration or amplified

populations for further screening of genes within the range.

Among these candidate SNPs and InDels, seven SNPs with

nonsynonymous mutations and three InDels were located in exons

of annotated genes (Table 3). The BjuA10g16450S, with a SNP of

nonsynonymous mutation, encodes Argonaute (AGO) protein

possessing the PIWI-domain. The AGO protein is the central

component of plant development, and its PIWI domain is

required for target mRNA cleavage and therefore regulate the

major processes in plant development (Mallory and Vaucheret,

2006; Baumberger and Baulcombe, 2005; Qi et al., 2005; Mallory

et al., 2009). The new gene BjuA10g22200S identified in this study,

whose exon has an InDel, encodes a CCAAT-binding transcription

factor. The CCAAT-binding transcription factor controls various
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aspects of embryo and post-embryo development, and seed

development and maturation in Arabidopsis (Tang et al., 2021;

Tian et al., 2020). Moreover, subunits A, B, and C of the CCAAT-

binding transcription factor increase the grain yield of wheat (Qu

et al., 2015). The grain yield is always closely associated with TKW,

and the QTLs for TKW were frequently associated with QTLs for

grain yield (GY) in wheat (Shariatipour et al., 2021).The PPR repeat

protein encoding genes, BjuA10g20540S and BjuA10g14570S

harbored one candidate SNP with a nonsynonymous mutation

and one candidate InDel with a frameshift insertion, respectively,

The PPR repeat protein known as the PPR motif localized to

mitochondria and/or chloroplasts and mediates diverse aspects of

plant organelles and seed development in plants (Small and Peeters,

2000; Barkan and Small, 2014; Li et al., 2021; Schmitz-Linneweber

and Small, 2008).Loss of function of PPR proteins usually leads to

defects in embryogenesis and/or endosperm development and

inhibits seed development (Li et al., 2014; Sosso et al., 2012).

Deficiency of the mitochondrial P-type PPR protein EMP10

severely disturbs embryo and endosperm development, resulting

in an empty pericarp or papery seeds in maize (Cai et al., 2017).

Moreover, the P-type protein PPR5 was recently identified as a

regulator required for endosperm development in rice, and ppr5
FIGURE 5

Candidate gens for thousand-seed weight (TSW) identified by BSA-seq and RNA-seq analysis. (A) The genomic location of candidate genes. (B) The
expression level of candidate genes. (C) The expression of two most likely candidate genes for TSW.
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mutants develop small starch grains (Zhang et al., 2019). These

results showed that the PIWI domain, PPR repeat protein, and

CCAAT-binding transcription factor-encoding genes related to the

candidate SNPs/InDels identified in this study mostly participated

in seed development, even in grain yield.

More than 7,000 DEGs were identified between the B. juncea

accessions 7981 and the Sichuan Yellow at whole seed development

stages. There are more DEGs at the S1 stage than at the other stages

(Figure 3A). This is consistent with the study by Mathur and

colleagues showing that more genes regulate seed development at

the early seed stage in B. juncea (Mathur et al., 2022). Among the

7,679 DEGs common to the six comparison groups, 2,278 belonged

to the 445 transcription factors (TF) family. Several DEGs were

associated with the transcription factors Pkinase, RRM_1 and P450

(Figure 3B). The P450/CYP78A and P450/CYP79B1 had

significantly higher expression in the high- than in low-yield

rapeseed (Brassica napus L.) and are known to regulate seed yield

by affecting anther and pollen development, seed ripening, seed size,

and seed weight regulation (Salami et al., 2024). The P450/CYP78A

gene family such as AtCYP78A5, AtCYP78A6 and AtCYP78A9 has

been proven to be highly related to seed size in Arabidopsis (Wang

et al., 2015). Moreover, transcriptome profiling has shown that

cytochrome P450 superfamily protein-encoding genes are

candidate genes associated with increased seed size in peanut (Liu

et al., 2022c). Protein kinases and phosphatases are responsible for

several cellular events mediated by protein phosphorylation and

dephosphorylation. Among these events are cell growth and

differentiation and cellular metabolism (MaChado et al., 2002).

RRM is an RNA recognition motif and is abundant in RNA-binding

proteins (RBPs). Gene Ontology enrichment analysis of barley

RBPs indicated that these proteins were in all major cellular

compartments and were associated with key biological processes,

including translation, splicing, seed development and stress

signaling (Mahalingam and Walling, 2020). In addition,

disrupting the RNA binding activity of the RZ-1C protein, which

contains RNA recognition motifs (RRMs), in Arabidopsis results in

phenotypes that include delayed seed germination, reduced stature,

and serrated leaves (Wu et al., 2016).

Yield is strongly correlated with biomass, which is mainly

determined by photosynthetic efficiency (Heyneke and Fernie,

2018). The introduction of photorespiratory bypass agents into

potato (Solanum tuberosum), Camelina sativa, and tobacco

(Nicotiana tabacum) plants was found to increase photosynthesis,

biomass yield, and tuber/seed yield (Dalal et al., 2015; Nölke et al.,

2014). The photorespiratory bypass (GOC) related gene OsGLO3

encoding glycolate oxidase 3 can significantly increases the

photosynthesis efficiency and grain yield in rice (Shen et al., 2019;

Wang et al., 2020). Our study showed that the expression of the

glycolate oxidase 3 (FMN_dh)-encoding gene (FMN_dh) was

upregulated in 7981 at six seed development stages (Figure 3B).

Similarly, the glyoxalase-encoding genes (BjuB03g21960S and

BjuB04g27610S) were also upregulated in 7981. Glyoxalase I

(GLYI) and glyoxalase II (GLYII) play a vital role in the chemical

detoxification of methylglyoxal (MG) in biological systems (Liu

et al., 2022a). Overexpression of the glyoxalase gene OsGlyI

improved abiotic stress tolerance and grain yield in rice
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(Zeng et al., 2016). One study suggested that OsGLYI3 is

specifically expressed in rice seeds and may be effective in

promoting natural aging and longevity (Liu et al., 2022a).

Metallothioneins (MTs) are polypeptide-encoded genes involved

in plant growth, development, seed formation, and diverse stress

responses (Liu et al., 2022b). One study revealed that the gene

encoding metallothionein in maize may be regulated by abscisic

acid (ABA) (Niu et al., 2022). During seed germination, storage

proteins are decomposed to provide raw materials and energy for

seedling growth. Metallothionein reduces the disulfide bond density

of storage proteins, but increases their solubility and contribute to

their mobilization (Aspart et al., 1984). The metallothionein-

encoding genes (BjuA02g40930S, BjuA05g34100S, BjuB01g04670S,

and BjuB05g36620S) were upregulated in 7981. From these results,

we speculated that the genes encoding glyoxalate oxidase 3,

glyoxalase and metallothionein may affect the difference in seed

phenotype between the two B. juncea accessions investigated.

Nine genes were found to be both candidate SNP/InDel-located

genes and differentially expressed genes between the two accessions

at each seed development stages. The annotation showed that these

genes encode the 2OG-Fe(II) oxygenase superfamily protein, BTB/

POZ domain, cupin-like domain, homoserine dehydrogenase,

BolA-like protein and histidine kinase. The 2OG-Fe (II)

dioxygenase superfamily is the second largest protease family in

plants and the genes encoding 2OG-Fe(II) dioxygenase GA2ox,

GA3ox, and GA20ox are the key enzymes involved in gibberellin

(GA) biosynthesis and play fundamental roles in plant growth and

development (Ding et al., 2020; Hedden and Thomas, 2012; Han

and Zhu, 2011). In addition, the gene AHT1 encoding ABA-

HYPERSENSITIVE BTB/POZ PROTEIN 1, which contains a

BTB/POZ domain, was upregulated more than 2.5 times by

abscisic acid (ABA) in Arabidopsis, and the loss of AHT1 led to

retardation of the germination process (Kim et al., 2016). Although

few reports have demonstrated that the 2OG-Fe (II) oxygenase and

BTB/POZ domain-containing genes directly affect seed weight and

size, the regulation of these two genes during seed development

deserves further study because of their important role in

plant growth.

In the present study, the histidine kinase- and BolA-like protein

encoding genes BjuA10g23440S and BjuA10g18960S were not only

DEGs but also candidate SNP-related genes, and the SNPs in two

genes were nonsynonymous (Table 3). The plant phytohormone

cytokinin is a key growth regulator involved in the regulation of a

wide range of developmental processes, including root and shoot

growth, photomorphogenesis, flowering timing, senescence, seed

development, and even crop yield (Kim et al., 2016). The histidine

kinase is the key components of the phosphorelay in cytokinin

signaling (Mok and Mok, 2001). Arabidopsis His-kinases (AHKs)

were shown to play redundant or specific roles in the regulation of

root and shoot growth, leaf aging and seed size (Riefler et al., 2006).

QTL mapping found one major QTL for TSW, cqSW.A03-2 in B.

napus. The histidine kinase gene (BnaA03G37960D) is likely to be a

candidate gene for cqSW. A03-2 locus (Wang et al., 2020).

Interestingly, consistent with the above study, the histidine

kinase-encoding gene BjuA10g23440S identified in our study was

also a candidate TSW gene in B. juncea. BolA-like proteins are
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ubiquitous and are present in numerous organisms, ranging from

bacteria to higher eukaryotes (Qin et al., 2015). However, the

physiological function of BolA proteins in plants has yet to be

elucidated. The bola3 mutant does not exhibit any notable

phenotype under normal growth conditions but rather grows

better than the wild type under some stresses (Qin et al., 2015).

The BolA-like protein-encoding gene BjuA10g18960S was also a

putative candidate gene related to TSW as shown in this study. The

regulatory effect of BolA-like proteins on seed weight is worthy of

further study.
5 Conclusions

Ten regions associated with TSW were identified on

chromosomes A01, A02, A03, A05, A07, A09, A10, B01, B02 and

B04 by BSA-seq. Thirty five candidate SNPs and fifty eight

candidate InDels were located in thirty two and fifty one genes,

respectively. Candidate SNP/InDel-related genes containing the

PIWI domain, the pentatricopeptide repeat (PPR) protein and the

CCAAT-binding transcription factor-encoding genes were

identified and may participate in the regulation of seed

development. The DEGs, including the Pkinase, RRM_1 and

P450 TF families, were identified, while the genes encoding

glyoxalate oxidase 3, glyoxalase and metallothionein were found

to be significantly upregulated in the heavy-seed line 7981 at each

seed development stages. Combined with RNA-seq and

comparative transcriptome analysis of both parents contrasting in

seed weight, nine candidate genes for TSW were identified, among

which the histidine kinase- and the BolA-like protein-encoding

genes BjuA10g18960S and BjuA10g23440S are most likely candidate

genes for seed weight in B. juncea. Our study paves a way for

cloning of genes for seed weight and marker-assisted selection for

bold seed in B. juncea.
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