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The paper focuses on the seasonal oil accumulation in traditional and super-high

density (SHD) olive plantations and its modelling employing image-based linear

models. For these purposes, at 7-10-day intervals, fruit samples (cultivar

Arbequina, Fasola, Frantoio, Koroneiki, Leccino, Maiatica) were pictured and

images segmented to extract the Red (R), Green (G), and Blue (B) mean pixel

values which were re-arranged in 35 RGB-derived colorimetric indexes (CIs).

After imaging, the samples were crushed and oil concentration was determined

(NIR). The analysis of the correlation between oil and CIs revealed a differential

hysteretic behavior depending on the covariates (CI and cultivar). The hysteresis

area (Hyst) was then quantified and used to rank theCIs under the hypothesis that

CIs with the maximum or minimum Hyst had the highest correlation coefficient

and were the most suitable predictors within a general linear model. The results

show that the predictors selected according to Hyst-based criteria had high

accuracy as determined using a Global Performance Indicator (GPI) accounting

for various performance metrics (R2, RSME, MAE). The use of a general linear

model here presented is a new computational option integrating current

methods mostly based on artificial neural networks. RGB-based image

phenotyping can effectively predict key quality traits in olive fruit supporting

the transition of the olive sector towards a digital agriculture domain.
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1 Introduction

Olive crop is considered the cornerstone of Mediterranean

agriculture for history, culture, nutrition, and economy. At

present, about 90% of the world’s olive groves, covering over 10

million hectares, are located in the Mediterranean region and it is

nowadays globally expanding also towards the Southern

Hemisphere (Torres et al., 2017), likely because table olives and

oil are increasingly recognized as functional food within the

context of a healthy lifestyle (Accardi et al., 2016; Agrawal et al.,

2017). Aside from that geographical expansion, olive crops are

undergoing a business model transformation including plantation

design and management (Lo Bianco et al., 2021). Following this,

the most common traditional olive groves (70-200 trees ha−1) are

not frequent in new plantations (Carmona-Torres et al., 2023). On

the other hand, the most recent popular choice is the

establishment of Super High-Density (SHD) plantations (780-

2254 trees ha−1) mechanically pruned and harvested aiming at

high yields with low cost per production unit (Dıéz et al., 2016).

This planting system requires irrigation, trees with low vigor, high

productivity, and suitability for mechanical harvesting (low fruit

detachment force and low fruit injury rate) (Rallo et al., 2013).

However, in the last decades, within hundreds of traditional

cultivars only less than a dozen have been selected as

appropriate for SHD plantations (Centeno et al., 2019;

Olint, 2024).

The majority of traditional and the total of SHD olive groves

are grown for olive oil production (IOC, 2024) and yields (amount

of fruit and oil) are dependent on tree fruit load and fruit oil

content (Lopez-Bernal et al., 2021). In addition, the genetic

potential of olive cultivar, climatic conditions (air temperature,

precipitation, solar radiation), and cultural practices (plantation

design, irrigation, fertilization, pruning, pest management) are

among the factors that define oil accumulation rate and the final

output (Rosati et al., 2023). Using the human-based visual

assessment of fruit color change is convenient for determining

fruit maturity stage but it is prone to human subjectivity and error.

Hence, to overcome such limitations RGB imaging can

successfully be employed for the determination of maturity

index (Ezenarro et al., 2023). However, RGB-based maturity

index is not always coupled to oil content and it is a cultivar-

dependent trait, requiring further research for predicting olive oil

content from image processing (Navas-Lopez et al., 2019;

Montanaro et al., 2023). This feature can be estimated with high

accuracy using NIR spectroscopy devices (Lee et al., 2018) that are

nowadays available in some olive mills too. However, destructive

fruit sampling is required, not to mention the cost of purchasing

and maintenance of the equipment. Hence, a fast, simple, non-

destructive and field scale method for fruit oil content

determination would be highly appreciated by the olive industry

(Montanaro et al., 2023). In line with this, a single non-destructive

maturity index based on the absorbance spectrum has been

applied on single, intact olives of the Leccino cultivar (Cinosi

et al., 2023). In recent years, great progress has been achieved in

farm practice optimization using drones, multispectral and

thermal cameras, and sensors (e.g., proximal, remote, optical,
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in-planta) mainly for decision-making in irrigation, fertilization,

and pest management (Tsouros et al., 2019). However, their

application in olive oil estimation is still limited. In addition,

this digital approach provides large-scale data, collected fast and

non-destructively but requires investment in equipment and

technical skills. In contrast with this, simple Red, Green, and

Blue (RGB) imaging has shown promising results within

affordable plant phenotyping, combining low cost and ease of

use and widely accessible, since this technology is even onboard in

smartphones (Reynolds et al., 2019). Within a plant science

context, RGB imaging provides valuable information on various

traits including plant water status (Zakaluk and Ranjan, 2008),

foliar disease classification and severity (Alves et al., 2022), and

ripening monitoring via chlorophyll concentration estimation in

annual (Luis Fernando et al., 2020) and perennial (Hoda et al.,

2022) crops. Recently, RGB images have been employed to

estimate some fruit quality traits such as oil and phenols in olive

(Montanaro et al., 2023) and sugars content in grapevine (Wei

et al., 2022). These findings showed the seasonal pattern of RGB is

not linear causing a hysteretic correlation between RGB bands and

the quality trait and in turn a looping behavior of the input-output

plot in sensu Morris (2012).

The hysteresis phenomena is relatively common in electronics

(e.g., Morris, 2012), geophysics (e.g., Paterson et al., 2018), and

human health (e.g., Ross et al., 2016). Within plant science, some

physiological responses to stimuli show a hysteresis such as the

efficiency of photosynthetic apparatus triggered by light

availability (Serôdio et al., 2022), the diurnal transpiration

(Amato et al., 2021). The hysteresis phenomenon has been also

reported in field studies in cherry and olive explaining the diurnal

growth of fruit in response to VPD (Khosravi et al., 2021;

Zucchini et al., 2021).

In addition, the pattern of leaf area index and RGB (satellite,

drones) derived indexes might be hysteretic (Peichl et al., 2015;

Gong et al., 2021).

However, the hysteresis issue within imaging of fruit quality was

not adequately considered. The hysteretic pattern of olive fruit

quality traits (oil, phenols) in response to R, G, and B pixel values

has been previously recognized over two growing seasons

(Montanaro et al., 2023) but did not receive so much attention.

Similarly, in a study on Vitis spp. although the pattern of color

bands subtended a hysteretic response of the analyzed trait, the

hysteresis did not enter the discussion (Wei et al., 2022).

The non-linearity of a predictor (e.g., the seasonal RGB) is

challenging within a modelling exercise. Hence, based on the ability

of artificial neural networks (ANNs) to cope with nonlinear

problems (Wei et al., 2022), RGB imaging and ANNs have been

combined to determine key olive fruit quality traits (Ram et al.,

2010; Montanaro et al., 2023).

The application of ANNs is increasing in various sectors

including agriculture (Attri et al., 2024). However, ANNs not

always provide a solution based on a mechanistic approach, and

often require a pre-processing step to minimize embedded

constraints such as overfitting (Bejani and Ghatee, 2021). In

addition, a general linear model (GLM) may perform as well or

even better than the ANN and will save time (Özesmi et al., 2006).
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Following this, additional models such as GLM are desirable to

expand the set of available computational processes for predicting

fruit quality traits from images.

Based on this background, this paper presents a protocol

accounting for the hysteresis for the selection of RGB-based

predictors to be used in GLM.
2 Materials and methods

2.1 Sampling and determination of
oil concentration

Experiments were carried out during the 2023 season in olive

groves located in Southern Italy (Metapontino area). Starting from

the end of July, olive samples were collected every 7-10 days till the

end of November. At each sampling point, ~300 g bulk samples

(×3) were collected from super-high density (SHD, 1.5 × 4 m)

groves of the 4-year-old cultivar Arbequina and Koroneiki, Fasola

(8.5 × 9 m, ~70-year old), Frantoio (6 × 6 m, 20-year old), Leccino

(6 × 6 m, 30-year old) and Maiatica (10 × 10 m, ~60-year old)

plants. Olive groves were irrigated and managed according to local

practices. Olive fruits were collected from the various sides of the

canopy of 5-6 trees. After the imaging acquisition (described in

detail in subsequent section), each fruit sample was ground (skin

+flesh+stone) into a paste with a hammer mill, and about 75 g of a

well-mixed subsample of paste was used for a single determination

of extractable fat matter (oil, % fresh weight), and water content (%

fresh weight) using OliviaTM instrument (FOSS, Hillerød,

Denmark) (Montanaro et al., 2023).
2.2 Imaging and colorimetric indexes

Image acquisition and data extraction followed Montanaro

et al. (2023). Briefly, each sample (×3 subsample) was placed on a

blue background and pictured using a Nikon D5100 digital camera

(16.9 Mpixels, AF-P DX Nikkor 18-55 mm, f/3.5-5.6 G VR, Nikon,

Tokyo, Japan) and a X-Rite ColorChecker enclosed in a photo

studio box. The box (Ombar Photography Light Box) was

equipped with LED 5500K, 100 LEDs on top, and sheltered

through a light diffuser to avoid direct illumination of samples.

Each picture includes a variable number of olive fruit depending

on cultivar and sampling time. Namely, the mean fruit number ( ±

SE) for the initial and last sampling point was: 169.4 ± 5.61 and

97.2 ± 2.8 in Arbequina, 47.4 ± 3.3 and 36.8 ± 0.6 in Fasola, 97. ±

4.7 and 57.2 ± 1.7 in Frantoio, 195.2 ± 7.1 and 111.2 ± 4.7 in

Koroneiki, 118.2 ± 6.5 and 71.2 ± 2 in Leccino, 81.8 ± 4.8 and 51.5

± 1.4 in Maiatica. The olives were not rotated hence the one side of

each fruit was pictured. A total of 245 images were collected as

JPEG. Images were then segmented to remove the background

using ImageJ 1.53t version (Schindelin et al., 2019), and the

“measure RGB” plugin to measure the mean pixel values of Red

(R), Green (G), and Blue (B) primary color. The primary colours

were then recombined producing 35 colorimetric indexes (CI)

(Supplementary Table S1).
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2.3 Modelling oil concentration

The R, G, and B mean pixel values were used as predictors of the

olive oil concentration (%FW) (Y) according to the following linear

model:

Y
e

Red + Green + Blue (1)

After checking for collinearity employing the analysis of

variance inflation factor (VIF) (Chatterjee and Simonoff, 2013),

the model [1] was reduced removing the predictor(s) having the

VIF>5 (Marcoulides and Raykov, 2019). Additional models,

employing a colorimetric index (CI) as predictor, had the

following general formula:

Y
e

CI (2)

Each CI candidate predictor (Supplementary Table S1) was

selected based on the Fitness Index (FI) determined as:

FI = abs(Hyst) + abs(r) (3)

where Hyst represents the hysteresis index (see Equation 4) and

r the Spearman’s rank correlation test calculated over the Y and CI

pairs. The values of Hyst were calculated according to (Kosmulski

et al., 2009 and Serôdio et al., 2022) based on the normalized

difference between the upward (increasing CI values) and

downward (decreasing CI) phases of the hysteresis:

Hyst   =   (hyst _ area – (Tot _ area – hyst _ area))=Tot _ area (4)

The hyst_area represents the area under the reverse harm of the

curve fitting the Y (oil concentration) vs CI scatter of the points

occurring after the maximum CI (CI_max) was detected (i.e.,

decreasing CI). The Tot_area is the area under the curve fitting

all the Y, CI pairs and was calculated assuming a rotation of the

“hysteretic” harm attributing to the original decreasing CI point a

new synthetic CI value (CI_syn) based on their original value

(CI_orig) and CI_max:

CI _ syn = CI _max + (CI _max –CI _ orig) (5)

Hence, the original decreasing CI values detected after the max

CI was reached, were rotated having a synthetic increasing CI value.

As an example, using data of the cultivar Arbequina and BplusG

colorimetric index the Figure 1 visualizes how the various

components of Hyst (Equation 4) have been determined.

According to Serôdio et al. (2022), the values of Hyst ranged from

1 to -1, with negative values corresponding to negative hysteresis

(clockwise hysteresis) and positive values corresponding to positive

hysteresis (counterclockwise or hysteresis; downward phase higher

than upward phase).

The selection of the CI to be evaluated as predictor was than

based on their Fitness Index (Equation 3). Namely the CI having a

FI falling in the top 1st quintile were selected as predictor (see

Equation 2).

Each model (m) in Equations 1 and 2 was tested within each

cultivar and its performance appraised by the coefficient of

determination (R2), the root mean squared error (RMSE), and the

mean absolute error (MAE) which were then combined in the
frontiersin.org
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Global Performance Indicator (GPI) (Montanaro et al., 2023 and

references therein). Briefly, the GPI was determined considering the

[0, 1] normalized values of R2, RMSE, and MAE (i):

GPIm =o
5

j=1
   a(�Oi − Oij)   (6)

where a equals -1 for i  = R2 and 1 for RMSE and MAE, Oi and
�Oi were the value and the median, respectively. The median was

calculated over the five iterations (j) (see below). After the GPI were

determined, considering that “the more the accuracy of the model

the higher the value of the GPI” (Despotovic et al., 2015), the

models were ranked according to GPI.

All the dataset in each cultivar (45, 40, 40, 45, 45, 30 in

Arbequina, Fasola, Frantoio, Koroneiki, Leccino and Maiatica,

respectively) was randomly split into training (70%) and testing

(30%). The training was used for model parametrization

(minimizing the squared residuals) between RGB-based CI

(covariate) and olive oil concentration (response variable). The

same training and testing datasets were used as benchmark dataset

across the various models preventing any stochastic effect due to

random splitting. In addition, to account for the randomness of the

training (and testing) dataset, this random subsampling was

repeated five times according to Montanaro et al. (2023).
2.4 Statistical analysis

A one-way ANOVA was used to examine the differences

between treatments after checking the hypothesis of normality

(Shapiro-Wilk’s test) and equal variance (Levene’s test) tested at p

= 0.05. Following the failure of the test of the ANOVA

assumptions, the nonparametric Kruskal–Wallis’ test was

employed. The residuals of each single model were calculated as

the difference between observed and fitted values. Residuals from

the five iterations were pooled before the analysis which was

conducted to evaluate their randomness and constancy of

variance. All data analysis and plotting were conducted in R (R

Core Team, 2021).
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3 Results

3.1 Seasonal variation in oil concentration
and R, G, B

Oil concentration linearly increased in all cultivars from ~ 5%

FW recorded at the end of July up to an asymptotic value of ~ 15.5%

(Arbequina, Koroneiki, Fasola, Leccino) recorded on November

11th and earlier (October 10th) in Fasola cultivar (Figure 2). It is

worth noting that the final oil concentration approached ~ 20% and

~ 24% in Maiatica and Frantoio, respectively (Figure 2). Fruit

development (fresh weigth per single olive fruit) and water

content (%) are reported in Supplementary Figure S1. The R, G,

and B mean pixel values showed a nonlinear pattern throughout the

experiment in all cultivars with an initial increasing trend followed

by a decreasing one. However, in Maiatica the G color band was

stable at about 150 mean pixel value for almost the whole season

and declined only at the last measuring point (Figure 2). The R, and

G color bands abruptly declined by the end of October in Fasola and

Arbequina, while such a change was recorded about one month

earlier in Frantoio and Leccino (Figure 2), early in the season (end

of September) (Figure 2). In addition, the pattern of the R mean

pixel value in Koroneiki and Maiatica missed the late season

declining part (Figure 2). As concerning the trend of G color

band in Koroneiki and Maiatica, it showed the less evident

seasonal variation compared to that in the other cultivars

(Figure 2). Particularly, in Maiatica the G had a narrow sesonal

range (from ~ 116 to ~ 125). Generally, the B color band in all

cultivars showed a less pronounced declining pattern compared to

that of R and G. In addition, in Maiatica the B color band start soon

to decline if a transient increase at about mid Septemeber is exluded.

Figure 2 also shows the similarity of B trend in Arbequina

and Koroneiki.

Figure 3 reports the seasonal R, G, and B mean pixel values

normalized per unit of oil concentration. It can be noted a similar

declining pattern across the examined cultivars and color bands,

moreover an initial ~ 45% increase in R, G, and B values is shown at

least for those cultivars sampled also at the end of July (i.e., Arbequina
FIGURE 1

Example of the process for the determination of the arguments of the Hyst index function (Equation 4) employing the seasonal dataset of the
cultivar Arbequina and the BpluG colorimetric index. In (A) it is reported the original scatterplot of the correlation between oil concentration (%FW)
and the BplusG colorimetric index, the dashed line indicates the time direction (start → end) of the season, the maximum value of the BplusG is
indicated by the arrow and was considered the beginning of the reversing direction (hysteresis harm); (B) the points occurring after the BpluG max,
were identified (purple dots) and plotted assuming no hysteresis; (C) the whole points were fitted (continuous line) determining the area under the
curve (AUC) which was labeled as Tot_area; (D) the portion of the AUC belonging the hysteretic (purple) points was determined and labeled
as Hyst_area.
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Koroneiki, Leccino) (Figure 3). The SHD cultivars (Arbequina and

Koroneiki) showed the higher pixel per unit oil compared to the other

cultivars consistently in most of the sampling occasions, in addition

the normalized R and G in these SHD cultivars remain comparable in

about 60% of sampling times (Figure 3). In addition, a temporal shift

of the R, G, and B normalized values can be envisaged across

cultivars, particularly in Leccino that normalized value start to

decline 2-3 weeks late (Figure 3).

Correlation between the seasonal R, G, and B color bands and

oil concentration showed a nonlinear hysteretic pattern
Frontiers in Plant Science 05
(Figures 4–6). In contrast with this, the trend of the R color

band in Koroneiki and Maiatica (Figure 4) does not show

hysteresis. The timing of the onset of the hysteresis differed

across cultivars and color bands. However, it was consistently

advanced in Leccino (end of August, beginning of September)

compared to that recorded in all other cultivars (end of October).

Values of Spearman’s correlation coefficient (r) determined

over the abovementioned correlation between oil concentration and

R, G, and B color bands and all the other RGB-based CIs (Figures 4,

6) are reported in Figure 7. In parallel with the r, the relative
FIGURE 3

Mean (left) Red, (middle) Green, and (right) Blue pixel value normalized per unit of fruit oil concentration (%FW) recorded in various olive cultivars
grown in super-high density (Arbequina, Koroneiki) and traditional plantation systems (Fasola, Frantolio, Leccino, Maiatica). Comparing cultivars
within the same sampling time, the different letter indicates significant differences (Kruskal–Wallis’ test, p< 0.05).
FIGURE 2

Values of the mean oil (%FW) (•) and Red (R), Green (G), and Blue (B) mean pixel values recorded throughout the season in olive cultivars from
traditional (Fasola, Frantoio, Leccino, Maiatica) and super-high density (Arbequina, Koroneiki) plantation systems. Vertical bars are standard error and
are visible when larger than symbol or line.
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hysteresis area in each cultivar was determined and reported in

Figure 7, too.

Focusing on the highest r values in Arbequina, 10 CIs showed a

r ranging from -0.85 to -0.94, and in the other three ones it ranged

from 0.81 to 0.91. For the other cultivars, the number of CIs falling in

a similar range was 17 in Fasola and Frantoio, while it was nine in

Koroneiki and Maiatica and five in Leccino. In addition, Figure 7

shows a good correspondence between r andHyst across the CIs and
Frontiers in Plant Science 06
color bands. In line with this, pooling the whole seasonal datasets

across all cultivars, the correlation between Hyst and r showing that

r values closest to 1 or -1 corresponded to values with no (Hyst = -1)

or early hysteresis (Hyst close to 1) (Figure 8). The Figure 9 reports

the Fitness Index (FI) which combines the relative hysteresis area

(Hyst index) and r determined over the correlation between each of

the 35 CIs and oil concentration. The first quintile of CIs or color

bands, i.e. the 20% of CIs with the highest FI, (see red dotted line in
FIGURE 5

Correlation between mean pixel values of the Green color band and oil concentration (%FW) in various olive cultivars. In each cultivar, data from all
sampling times were grouped before fitting (cubic smoothing spline), and arrows over the fitting line indicate time direction.
FIGURE 4

Correlation between mean pixel values of the Red color band and oil concentration (%FW) in various olive cultivars. In each cultivar, data from all
sampling times were grouped before fitting (cubic smoothing spline), and arrows over the fitting line indicate time direction.
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FIGURE 7

Values of the Spearman’s coefficient (rho) of the correlation between mean pixel values of the Red, Green Blue color band or other RGB-derived
indexes and oil concentration (%FW) and of the relative hysteresis area (Hyst) in various olive cultivars.
FIGURE 6

Correlation between mean pixel values of the Blue color band and oil concentration (%FW) in various olive cultivars. In each cultivar, data from all
sampling times were grouped before fitting (cubic smoothing spline), and arrows over the fitting line indicate time direction.
Frontiers in Plant Science frontiersin.org07
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Figure 9) had the following FI range: 1.69:1.93 (Arbequina),

1.86:1.89 (Fasola), 1.91: 1.96 (Frantoio), 1.44:1.93 (Koroneiki),

1.58:1.89 (Leccino), and 1.68:1.88 (Maiatica). Interestingly,

Arbequina and Koroneiki cultivars share several common CIs
Frontiers in Plant Science 08
falling in that range (“NGRDI” , “VARI” , “mio_stRGB”

“mio_ndRGB”, “NG”, “GR”, “GLI”). Similarly, Fasola and

Frantoio had common CIs (“NG”, “GB”,”GLI”,”NDGBI”) and

Leccino and Maiatica (“NGRDI”, “VARI”, “GR”).
3.2 Image-based olive oil
predicting models

The selection of predictors employed in olive oil modeling was

based on FI (combination of r and relative hysteresis area). These

predictors generated models with a median accuracy (R2) of 0.80-

0.84 in Arbequina, Frantoio, Leccino, of about 0.77 in Fasola and

Koroneiki, of 0.91 in Maiatica. (Figure 10). Similarly, combining

Red, Green, and Blue in a single linear model (Y~ Red + Green +

Blue) was effective in predicting the olive oil concentration with a

median R2 values about 0.90-0.96 in Arbequina, Fasola, and

Maiatica, of about 0.83-0.87 in Frantoio, Koroneiki, and

Leccino (Figure 10).

Detailed scatter plots between predicted:true oil show that the

model Y~ Red + Green + Blue was able to explain about 83-96% of

the total variance (Figure 11). However, the analysis of VIF revealed

the collinearity (VIF>5) between some predictors in Fasola,

Frantoio, Koroneiki, and Leccino (Table 1). Hence, for these

cultivars a reduced model was then employed discharging the

predictor with the highest VIF at the cost of reducing the R2,

except for the Fasola (Figure 12). All the scatterplots of the predicted

~ true olive oil correlation employing as predictor the CI or color
FIGURE 9

Variation of the Fitness Index (FI, Equation 2) of the various colorimetric indexes and color bands to serve as predictors of the olive oil in Arbequina,
Fasola, Frantoio, Koroneiki, Leccino, and Maiatica cultivars. The dashed horizontal lines limit the FI of the 1st quintile of the CIs.
FIGURE 8

Scatterplot between the relative hysteresis area determined through
the Equation 4 and the Spearman’s rank correlation test (r, rho)
calculated over the correlation between each of the 35 CIs and oil
concentrations in all cultivars. The continuous fitting line represents
a general additive model, the whole data (n= 210) were pooled
before fitting, dashed lines represent the 95% confidence bands.
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band selected using the FI are reported in Supplementary Figures

S2:S7 along with their residuals (Supplementary Figures S8:S13).

The overall accuracy of each predicting model was then appraised

by the GPI collating the results of R2, MAE, and RMSE (Figure 13).

The GPIs were sorted in ascending order within the same cultivar,

facilitating the interpretation of results considering that the higher

GPI the better is the overall accuracy of the model.
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4 Discussion

This study reports on seasonal oil accumulation in olive

cultivars grown under traditional and SHD plantations and its

image-based linear modeling contributing to progress towards

digital olive crop science. In olive crop, there is a seasonal change

in oil concentration and other quality traits (e.g., phenolic
FIGURE 11

Scatterplot of the predicted ~ true oil (%FW) correlation of the model Y~ Red+Green+Blue (Equation 1). Values of the R2 are the mean determined
over the five iterations. The dashed line represents the 1:1 straight line.
FIGURE 10

Distribution of R2 values of the predicted ~ true oil (%FW) correlation achieved after the five iterations of the model Y’~ CI (Equation 2) using the
“selected” and all the other colorimetric indexes (“other CI”), and the Y~ R+G+B model and the reduced version (Y~ G+B for Fasola, Frantoio,
Leccino and Y~ R+B for Koroneiki). Note that each model type is plotted next to each other within the same cultivar separated by the dashed line
and that the “selected” CI models were those identified based on the first quintile distribution of the fitness index (Equation 3, Figure 9).
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compounds, Roshani et al., 2016), hence information on the

occurrence of these traits is pivotal to schedule the harvest time

according to the entrepreneur’s target. For this purpose, there is an

increasing development of crop management tools including those

based on imaging assisting in fast and reliable monitoring of olive

fruit traits (Gracia and León, 2011; Bellincontro et al., 2013).

Here, a common RGB sensor was employed to predict the

seasonal oil (%FW) in fruit. These results were translated in oil

per unit of R, G, and B mean pixel values (Figure 3) highlighting the

effect of cultivar on that normalized value. Results are challenging to

compare because of limited literature existing on this specific point.

However, such cultivar-dependency of olive oil yield on RGB color

fits with López-Huertas et al. (2021) who showed that the amount of

olive oil extracted from 12 cultivars differed even though they had

the same color class determined through the popular destructive

Jaén method. Following this finding, results pointed out that the

weight of R, G, and B as model predictors would differ according to

the cultivar and that a genetic component should be considered in

model architecture. However, this remains to be specifically tested.

The SHD cultivars examined are commonly cropped at a global

scale (Dıéz et al., 2016) increasing the significance of this study.

Similarly, the traditional cultivars included globally cultivated ones

(i.e., Leccino and Frantoio) (Barranco et al., 2000). The seasonal

variation in oil is consistent with the literature in both SHD and

traditional cultivars (Lopez-Bernal et al., 2021) highlighting a

sigmoidal pattern in all cultivars. However, the asymptote of that

curve was reached earlier in Leccino confirming it is an early

ripening variety (Barranco et al., 2000).

The development of image-based models designed to predict fruit

quality traits (e.g., oil concentration) is the subject of recent increasing
Frontiers in Plant Science 10
interest within a digital agricultural domain which often employs

artificial neural networks (ANNs) (Montanaro et al., 2023; Ebrahimi

et al., 2024; Yang et al., 2024). However, ANNs remain still a sort of

“black box” with a poor mechanistic approach in selecting the

predictors, even though it is powerful in minimizing the error of

the prediction including in nonlinear problems (Nagesh et al., 2024).

In addition, ANNs might require a high level of computational efforts

and a pre-process of the predictors but sometimes performing

similarly to a GLM to the extent that a comparison between ANN

andGLM is recommended (Özesmi et al., 2006; McQuisten and Peek,

2009). Following this, the present GLM-based olive oil predicting

model might integrate existing ones which are mainly based on

ANNs (Ram et al., 2010; Montanaro et al., 2023).

In this study, the hysteretic (nonlinear) relationship existing

between olive oil and R, G, and B color bands and other RGB-

derived colorimetric indexes was pointed out. Generally, hysteresis is

triggered by the history of the value of a response variable in relation to

previous values of the input variable and it is a recognised problem in

electronics (e.g., Morris, 2012), geophysics (e.g., Paterson et al., 2018),

and human health (e.g., Ross et al., 2016). In addition, in plant science

research several studies are recognizing hysteretic behavior of variables

responding to stimuli. For example, examining the efficiency

of photosynthetic apparatus in response to light availability

(Serôdio et al., 2022), the diurnal signal sourced by organic sensors

tracking sap mineral concentration in response to daily course of

transpiration (Amato et al., 2021), and the response of soil CO2

emission to temperature (Dusza et al., 2020). In addition, the

hysteresis is reported for the behavior of leaf area index and

RGB (satellite, drones) derived indexes in rice and boreal mires

(Peichl et al., 2015; Gong et al., 2021). However, in fruit quality
TABLE 1 Mean ( ± SE) of parameters determined for the predictors of the model Y~ Red + Green + Blue after five iterations performed over five
random subsets of the training dataset in each olive cultivars.

Arbequina Fasola Frantoio Koroneiki Leccino Maiatica

coeff_(Intercept) 2.71 ± 0.16 -0.76 ± 0.77 8.54 ± 0.24 8.91 ± 0.66 28 ± 0.42 -11.76 ± 1.01

coeff_Red 0.28 ± 0 0.06 ± 0.04 0.37 ± 0.02 0.46 ± 0 0.33 ± 0.01 0.52 ± 0

coeff_Green -0.25 ± 0 -0.1 ± 0.01 -0.32 ± 0.01 -0.44 ± 0.01 -0.28 ± 0 -0.18 ± 0.01

coeff_Blue 0.15 ± 0.01 0.46 ± 0.03 0.16 ± 0.01 0.2 ± 0.01 -0.26 ± 0.01 -0.12 ± 0

pval_(Intercept) 0.27 ± 0.03 0.62 ± 0.14 0.04 ± 0.01 0.29 ± 0.03 0 ± 0 0.11 ± 0.03

pval_Red 0 ± 0 0.46 ± 0.16 0 ± 0 0 ± 0 0 ± 0 0 ± 0

pval_Green 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

pval_Blue 0 ± 0 0 ± 0 0.03 ± 0.01 0.03 ± 0.01 0 ± 0 0.01 ± 0

AIC 113.35 ± 1.92 116.61 ± 2.28 153.37 ± 0.59 137.45 ± 0.55 122.97 ± 0.91 79.57 ± 0.98

VIF_Red 3.4 ± 0.08 22.7 ± 0.68 7.29 ± 0.23 2.76 ± 0.05 22.89 ± 0.62 2.19 ± 0.04

VIF_Green 2.13 ± 0.05 14.45 ± 0.23 5.93 ± 0.18 8.23 ± 0.33 19.09 ± 0.47 1.26 ± 0.02

VIF_Blue 1.93 ± 0.05 7.07 ± 0.55 2.29 ± 0.06 6.07 ± 0.2 2.19 ± 0.07 2.1 ± 0.03

R2 0.92 ± 0.02 0.91 ± 0.02 0.83 ± 0.01 0.85 ± 0.01 0.88 ± 0.01 0.96 ± 0.01

MAE_response 109.33 ± 0.58 154.83 ± 0.88 292.35 ± 2.05 128.47 ± 0.94 128.45 ± 0.47 207.64 ± 1.26

RMSE.glm_response 119.05 ± 0.59 169.28 ± 1.21 316.1 ± 1.84 140.97 ± 1.21 141.48 ± 0.53 226.48 ± 1.82
Characters in bold indicate VIF>5.
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TABLE 2 Mean ( ± SE) of parameters determined for the predictors of the reduced model Y~ Green + Blue (Fasola, Frantoio, Leccino) and Y~ Red +
Blue (Koroneiki) after five iterations performed over five random subsets of the training dataset in various olive cultivars.

Fasola Frantoio Koroneiki Leccino

coeff_(Intercept) 0.45 ± 0.3 10.53 ± 0.5 -25.28 ± 0.1 25.61 ± 0.48

Coeff_Red NA NA 0.360 ± 0.0 NA

coeff_Green -0.08 ± 0 -0.17 ± 0 NA -0.1 ± 0

coeff_Blue 0.51 ± 0 0.38 ± 0.01 ± 0 -0.08 ± 0.01

pval_(Intercept) 0.72 ± 0.1 0.04 ± 0.01 0 ± 0 0 ± 0

pval_Red NA NA -0.110 NA

pval_Green 0 ± 0 0 ± 0 0 ± 0 0 ± 0

pval_Blue 0 ± 0 0 ± 0 0.1 ± 0.01 0.31 ± 0.05

AIC 116.12 ± 2.66 167.18 ± 0.99 153.16 ± 0.36 146.43 ± 0.33

VIF_Red NA NA 2.03 ± 0.03 NA

VIF_Green 1.02 ± 0 1 ± 0 NA 1.63 ± 0.03

VIF_Blue 1.02 ± 0 1 ± 0 2.03 ± 0.03 1.63 ± 0.03

R2 0.93 ± 0.02 0.78 ± 0.03 0.74 ± 0.01 0.81 ± 0.01

MAE_response 154.72 ± 0.91 292.58 ± 1.99 128.53 ± 0.93 128.59 ± 0.45

RMSE.glm_response 169.13 ± 1.24 316.49 ± 1.85 141.28 ± 1.19 141.84 ± 0.59
F
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NA, Not Applicable.
FIGURE 12

Scatterplot of the predicted ~ true oil (%FW) correlation achieved using the reduced model Y~ Green+Blue (Fasola, Frantoio, Leccino) and Y~ Red
+Blue (Koroneiki) after the VIF analysis (Tables 1 and 2). The dashed line represents the 1:1 straight line.
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science and imaging, hysteresis has not been adequately considered

(Wei et al., 2022; Montanaro et al., 2023).

Hence, here a protocol was developed for the selection of image-

based predictors to be used in linear models and accounting for the

hysteresis. In a formal hysteresis, the loop of the variable tends to be

closed meaning that the last point overlaps the initial one (Morris,

2012). In Khosravi et al. (2022), to characterize the shape of the

diurnal hysteresis loop of the olive fruit diameter and VPD three

definitions were suggested “partial, incomplete, and complete”. In

the present study, the hysteretic loop of the oil concentration was

incomplete. To explain this observation, it should be considered

that the olive oil final accumulation value (ending point of the

hysteresis) is always greater than the initial one due to biological

processes (Lopez-Bernal et al., 2021). A similar not-closed hysteresis

was also recognized analyzing the time dependence of the light
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response of photosynthesis in algae (Serôdio et al., 2022) and of

methane flux in the alpine meadow (Chen et al., 2020).

In the present study, hysteresis appeared to quantitatively

depend on the cultivar:CI (or color band) combination. For

example, the correlation between R mean pixel values and oil in

Koroneiki and Maiatica showed no hysteresis compared to other

cultivars (Figure 4), anticipating it could be a good predictor. In

contrast, the R color band was found to be the best predictor only in

Maiatica (R2 = 0.93, Supplementary Figure S6), while in Koroneiki

other CIs (i.e., NG, GLI) had an overall better prediction capability

(Figure 13, Supplementary Figure S4). Considering the differential

changes of the seasonal R, G, and B mean pixel values, the

application of additive linear models in the form of Y ~ R+G+B

would be substantial in phenotyping oil concentration even in the

case of hysteresis. This was the case in all analyzed cultivars (Table 1)
FIGURE 13

Ranking according to Global Performance Indicator (GPI) of the RGB-based additive linear models (Y~ R+G+B) or of the reduced version (Y~ G+B,
Y~ R+B), or employing a single color band (Red), and of the Y~ CI (top quintile selected colorimetric indexes Figure 9) in olive cultivar from
traditional (Fasola, Frantoio, Leccino, Maiatica) and super-high density (Arbequina, Koroneiki) plantations. In each panel, the red dot indicates the
colorimetric index with the highest Fitness Index (Figure 9).
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showing that the model variance was able to explain up to 96% of the

total variance, similarly to the prediction accuracy achieved using

ANN (Montanaro et al., 2023). However, in a model having more

than one predictor, the stability of coefficients might be corrupted if

predictors are more related to each other than to the response

variable; hence the use of a reduced version of the model is advisable

(Chatterjee and Simonoff, 2013). In line with this, analysis of the

variance inflation revealed the collinearity existing between

predictors (i.e., VIF>5) in Fasola, Frantoio, Koroneiki and Leccino

cultivars (Table 1). Hence, a reduced version of the model (Y ~ R+B,

or Y ~ G+B) was proposed for these cultivars in Table 2 to counteract

the collinearity issue even if reducing the accuracy at least in some

cultivars. That is, comparing these cultivars suffering collinearity in

Tables 1 and 2, it can be highlighted that the simplified model

increased the AIC by approx. 10-20% and reduced the R2 by approx.

6-12%. Hence, minimising the number of predictors would at the

same time minimise the risk of collinearity. Moreover, it is implicit

in the VIF formula that models employing only one predictor (e.g., Y

~ CI, Equation 2) have no risk of collinearity. In line with this, the

recombination of the R, G, and B generating the various CIs to be

used as predictors would at the same time keep the advantage of

multiple image information (i.e., color bands) avoiding the potential

instability of model coefficients due to collinearity. In line with

this, several CIs that were almost entirely derived from a previous

study (Montanaro et al., 2023) were examined. The justification of

the formulation of these CIs is grounded on existing correlative

information between changes in R, G, and B and the occurrence of

changes in pigments concentration, fatty substances accumulation,

sugar concentrations, etc. (see Montanaro et al., 2023).

The number of possible RGB-derived indexes is relatively large

making their selection a critical step also when used as input

features of ANN requiring additional computational efforts. For

example, in Montanaro et al. (2023), the CIs were selected after a

PCA- or SPCA-based pre-processing with the purpose to minimise

the risk of overfitting embedded in ANNs (Warne et al., 2004).

In the present study, new selection criteria were introduced

relying on the quantification of the hysteresis generated by the

correlation between oil concentration and CIs. Hence, a value to the

hysteretic oil concentration in response to each CI was attributed

using the Hyst index (Equation 4). In parallel with this, the

coefficient of correlation was determined over the same

distribution. The Figure 7 reports the paired Hyst and r values

determined over all the cultivars and CIs revealing that the highest

coefficient of correlation (i.e., r close to -1 or 1) corresponded to the

highest hysteresis (1 or -1). Such correspondence was consistent

across the whole dataset as showed by the Figure 8. In this study, it

was reported the hysteretic response of oil concentration across six

cultivars and up to 35 CIs integrating current knowledge in image-

based fruit phenotyping in olive. The variability of Hyst values

recorded across cultivars and CIs is likely to be attributable to

different ripening time of these cultivars and their interaction with

the environment, but this remain to be specifically examined.

To simultaneously account for the impact of CI on both

hysteresis and r, the FI has been proposed to support the selection

of CI (Figure 9). Based on the FI, specific models and CI were
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identified allowing a prediction accuracy (R2) comparable to that

achieved in a previous paper adopting ANN (Montanaro et al., 2023).

In the present work, the GPI was employed to simultaneously

account within the same cultivar for multiple accuracy indicators (R2,

MAE, RMSE) as reported by Despotovic et al. (2015). Analysis revealed

that within each cultivar there is a good agreement between the GPI-

based rank of models/predictors and that of the FI. That is, the

predictors with the highest FI (see red dots in Figure 13) rank 1st-

2nd according to GPI. Cosidering that “The more the accuracy of the

model the higher the value of the GPI” (Despotovic et al., 2015) results

support the suitability of FI in selecting the best predictors. However, in

Arbequina and Koroneiki cultivar a criticism might rise because the

highest FI did not match the top GPI-based rank of predictors. To

explain this apparent discrepancy, it could be considered that 7/8

(Koroneiki) and 6/7 FIs (Arbequina) falling in the top quintile had a

relatively short range of FI (i.e., 1.86:1.93) (Figure 9).

This paper reports for Mediterranean traditional and SHD olive

systems the seasonal pattern of oil accumulation contributing to

expand existing information on this topic. This study also examined

the application of a GLM to predict the oil concentration using R, G,

and B and RGB-based colorimetric indexes. For this purpose, this

paper provides a new pipeline to achieve the selection of the most

suitable predictor. The pipeline includes the quantification of the

hysteretic correlation between the response variable and the CIs

adopting for the first time in olive crop science a procedure similar

to that used in other research fields (e.g., electronics, human health).

The predictions have an overall accuracy comparable to that of

ANN models requiring additional computational efforts.
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