AUTHOR=Lamb Austin , Kurtz Evan , Glenn Priscilla , McKinley Brian A. , Mullet John TITLE=Bioenergy sorghum nodal root bud development: morphometric, transcriptomic and gene regulatory network analysis JOURNAL=Frontiers in Plant Science VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1456627 DOI=10.3389/fpls.2024.1456627 ISSN=1664-462X ABSTRACT=
Bioenergy sorghum’s large and deep nodal root system and associated microbiome enables uptake of water and nutrients from and deposition of soil organic carbon into soil profiles, key contributors to the crop’s resilience and sustainability. The goal of this study was to increase our understanding of bioenergy sorghum nodal root bud development. Sorghum nodal root bud initiation was first observed on the stem node of the 7th phytomer below the shoot apex. Buds were initiated near the upper end of the stem node pulvinus on the side of the stem opposite the tiller bud, then additional buds were added over the next 6-8 days forming a ring of 10-15 nascent nodal root buds around the stem. Later in plant development, a second ring of nodal root buds began forming on the 17th stem node immediately above the first ring of buds. Overall, nodal root bud development can take ~40 days from initiation to onset of nodal root outgrowth. Nodal root buds were initiated in close association with vascular bundles in the rind of the pulvinus. Stem tissue forming nascent nodal root buds expressed sorghum homologs of genes associated with root initiation (