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Fusarium head blight (FHB) is a devastating disease of wheat, causing yield losses,

reduced grain quality, and mycotoxin contamination. Breeding can mitigate the

severity of FHB epidemics, especially with genomics-assisted methods. The

mechanisms underlying resistance to FHB in wheat have been extensively studied,

including phenological traits and genome-wide markers associated with FHB

severity. Here, we aimed to improve genomic prediction for FHB resistance across

breeding programs by incorporating FHB-correlated traits and FHB-associated loci

as model covariates. We combined phenotypic data on FHB severity, anthesis date,

and plant height with genome-wide marker data from five Central European winter

wheat breeding programs for genome-wide association studies (GWAS) and

genomic prediction. Within all populations, FHB was correlated with anthesis date

and/or plant height, and a marker linked to the semi-dwarfing locus Rht-D1 was

detected with GWAS for FHB. Including the Rht-D1 marker, anthesis date, and/or

plant height as covariates in genomic prediction modeling improved prediction

accuracy not only within populations but also in cross-population scenarios.
KEYWORDS

wheat, Fusarium head blight, genomic prediction, trait covariates, Rht-D1,
GWAS, GBLUP
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1 Introduction

Fusarium head blight (FHB) is a fungal disease of wheat

(Triticum aestivum) caused by several species of Fusarium,

including Fusarium culmorum and Fusarium graminearum

(Moreno-Amores et al., 2020b). FHB can lead to yield losses due

to reduced grain quality and contamination with mycotoxins, such

as deoxynivalenol, which are harmful to human and animal health

(Buerstmayr et al., 2020). The inheritance of resistance to FHB is

quantitative and complex, controlled by many small-effect loci

across the genome. Phenological and morphological traits, such as

anthesis date, plant height, and anther retention, have also been

implicated as passive mechanisms influencing FHB resistance

(Buerstmayr et al., 2020). Notable examples are the reduced

height (Rht) genes Rht-B1 and Rht-D1, which have been widely

introgressed into elite wheat germplasm but have pleiotropic effects

on plant height, anther retention, and FHB resistance, where lines

with the semi-dwarfing allele have reduced plant height, increased

anther retention, and greater susceptibility to FHB (Srinivasachary

et al., 2009; Buerstmayr and Buerstmayr, 2016, 2022; He et al., 2016;

Akohoue et al., 2022).

Genomics can assist breeding for resistance to FHB. For well-

validated, medium- and major-effect quantitative trait loci (QTL),

marker-assisted selection (MAS) can be used to introgress favorable

alleles from FHB resistance QTL into desirable cultivars

(Buerstmayr et al., 2020). For example, the QTL Fhb1 and

Qfhs.ifa-5A, which confer type 2 and type 1 resistance,

respectively, have been successfully deployed in breeding

programs (Buerstmayr and Buerstmayr, 2022). However, the

complex inheritance and genotype-by-environment interactions

underlying resistance to FHB can reduce heritability estimates

and can complicate the identification of associated single

nucleotide polymorphisms (SNPs) via genome-wide association

studies (GWAS) and QTL mapping (Buerstmayr et al., 2020). In

addition, the process of identifying, validating, and employing MAS

for one or more FHB resistance QTL is relatively slow and costly

(Poland and Rutkoski, 2016). Genomic prediction/selection is a

powerful and efficient tool for plant breeding, accelerating the

breeding cycle and increasing genetic gain for quantitative traits,

such as FHB resistance (Heffner et al., 2010; Heslot et al., 2015;

Poland and Rutkoski, 2016; Crossa et al., 2017; Buerstmayr et al.,

2020). In contrast to MAS, which considers the effects of individual

loci, genomic prediction leverages genome-wide data on SNPs to

predict breeding values for the trait(s) of interest (Poland and

Rutkoski, 2016; Buerstmayr et al., 2020). One of the most widely

used genomic prediction models is genomic best linear unbiased

prediction (GBLUP), in which the phenotype is modeled against a

relationship matrix estimated from genome-wide SNPs (Meuwissen

et al., 2001; Poland and Rutkoski, 2016).

Previous studies have reported that including FHB-correlated

traits, which tend to have higher heritability, or FHB-associated

SNPs can improve genomic prediction accuracy for FHB resistance

(Arruda et al., 2016; Larkin et al., 2020, 2021; Moreno-Amores et al.,

2020b, 2020a; Zhang et al., 2021; Akohoue et al., 2022). Several

studies have reported results on genomic prediction of FHB

resistance within populations, but few have assessed cross-
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population prediction (Rutkoski et al., 2012; Jiang et al., 2015;

Mirdita et al., 2015; Arruda et al., 2016; Herter et al., 2019; Liu et al.,

2019; Moreno-Amores et al., 2020b; Verges et al., 2020, 2021; Larkin

et al., 2020, 2021; Moreno-Amores et al., 2020a; Sneller et al., 2021;

Zhang et al., 2021, 2022; Akohoue et al., 2022; Winn et al., 2023;

Garcia-Abadillo et al., 2023).

We sought to leverage the wide existing knowledge on FHB for

the improvement of genomic prediction of resistance to FHB across

wheat breeding programs. Here, we combined phenotypic (FHB

severity, anthesis date, and plant height) and genome-wide SNP

data on five Central European winter wheat populations from

Austrian and German seed companies, the Bavarian State Research

Centre for Agriculture, and the Horizon 2020 SusCrop—ERA-NET

“WheatSustain” project for GWAS and genomic prediction. We

evaluated whether the inclusion of FHB-correlated traits (i.e., plant

height and anthesis date) and/or the Rht-D1 SNP (identified via

GWAS) as covariates in GBLUP improved prediction accuracy for

FHB severity in comparison to standard GBLUP in cross-validated

(within-population) and cross-population scenarios. To our

knowledge, our study is the first to combine both FHB-correlated

traits and FHB-associated loci in genomic prediction for FHB. In

addition, we describe novel methods for harmonizing data across

variable experimental conditions and breeding programs for genomic

prediction of FHB within and between populations.
2 Materials and methods

2.1 Germplasm

We evaluated breeding material from five winter wheat

breeding programs in this study: the WheatSustain training set

(WTS) and advanced lines (F6–F8) from the breeding programs of

the Bavarian State Research Center for Agriculture (LfL), Saatzucht

Donau GmbH & CoKG (Probstdorf/Reichersberg, Austria; SZD),

Saatzucht Josef Breun GmbH & CoKG (Herzogenaurach, Germany;

BRE), and Secobra Saatzucht GmbH (Feldkirchen, Germany; SEC).

The SZD population comprised 2,279 lines. From each of the

German breeding programs, advanced lines from two consecutive

breeding cycles were evaluated in 2020 and 2021. The 2020 and

2021 breeding cycles from BRE, LfL, and SEC comprised 446 and

543, 148 and 143, and 516 and 269 lines, respectively. Hereafter, the

three German breeding programs will be cumulatively referred to as

the German population (DEU). WTS comprised 230 winter wheat

cultivars and breeding lines, which were chosen with the aim of

capturing the genetic variation present in Central and Northern

European winter wheat (Isidro y Sánchez and Akdemir, 2021;

Garcia-Abadillo et al., 2023).
2.2 Phenotyping

The WheatSustain training set was evaluated across seven

location-year environments, as described in a previous study

(Garcia-Abadillo et al., 2023) (Supplementary Table S1). Briefly,

WTS was grown in a randomized complete block design with two
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replications in 2020 and 2021 in Tulln an der Donau, Austria and

Vollebekk, Norway and in 2020 in Reichersberg, Austria, and in

non-replicated trials in Feldkirchen, Germany in 2020 and 2021.

The DEU material was evaluated in non-replicated trials in

Feldkirchen, Germany in 2020 and 2021. The SZD population

was evaluated in Tulln an der Donau, Austria in a randomized

incomplete block design with two replications per year from 2015 to

2022, with an overlap of approximately 30 lines from one year to the

next and most lines evaluated in only one year.

In the Feldkirchen trials, all plots were spray inoculated with an

F. culmorum conidial suspension with a concentration of 1.5 × 104

conidia/mL on 22, 27, and 30 May and on 2 and 8 June in 2020 and

on 8, 12, 15, and 22 June in 2021. In the Tulln an der Donau trials,

all plots were spray inoculated every other day throughout the

entire anthesis period with an F. culmorum conidial suspension

with a concentration of 2.5 × 104 conidia/mL, and a high level of

humidity was maintained with an automated mist irrigation system

for 20 h after each inoculation (Buerstmayr et al., 2011; Moreno-

Amores et al., 2020a). In the Vollebekk trials, grain spawn inoculum

(oat kernels infected with F. graminearum) was applied across the

field at the booting stage with a density of 10 g/m2 followed by daily

mist irrigation in the evening until three to four weeks after anthesis

(Lu et al., 2013; Tekle et al., 2018). In Reichersberg, grain spawn

inoculum (maize kernels infected with F. graminearum) was

applied across the field four to five weeks before head emergence

with a density of 25–30 g/m2 (Buerstmayr et al., 2011).

In all trials, the anthesis date (AD) of each plot was recorded when

half of the spikes reached anthesis in the plot. In all trials, except for

Tulln an derDonau 2016 andReichersberg2020, the plant height (PH)

of eachplotwasmeasured at physiologicalmaturity. In all Tulln ander

Donau trials, Fusarium head blight severity (FHB) was scored on a

percentage scale (0%–100% infection) at six time points relative to the

AD of each plot (approximately 10, 14, 18, 22, 26, and 30 days post-

anthesis). In the Feldkirchen 2020 trials, all plots were scored for FHB

on 25 and 29 June and on 2 July. In the Feldkirchen 2021 trials, the

breeding plots were scored for FHB on 24 June and on 5, 12, and 16

July, while the WTS plots were scored on 24 June and 1, 6, 12, and 18

July. In the Reichersberg 2020 trial, all plots were scored for FHB on 9

July. In theVollebekk trials, FHBwas scoredoneachplot once between

6 June and 1 July in 2020 and between 12 and 23 July in 2021.
2.3 Genotyping

All lines from WTS were genotyped, while a subset from the

DEU and SZD breeding programs was selected for genotyping
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(Table 1). Genomic DNA was extracted from one-week-old

seedlings and sent for genotyping at TraitGenetics GmbH

(Gatersleben, Germany) (Shahinnia et al., 2022; Garcia-Abadillo

et al., 2023). Lines from DEU and WTS were genotyped with the

25K Infinium iSelect array (TraitGenetics GmbH, Gatersleben,

Germany), while the SZD material was genotyped with the 7K

array (TraitGenetics GmbH, Gatersleben, Germany), which is a

subset of the 25K array (Shahinnia et al., 2022; Garcia-Abadillo

et al., 2023). The physical positions of the SNPs had been previously

called against the Chinese Spring reference genome (IWGSC RefSeq

v1.0) (IWGSC, 2018; Shahinnia et al., 2022). The SNP data from the

25K array for DEU had been previously filtered for polymorphism,

proportion missing < 10%, and minor allele frequency (MAF) > 5%

by Shahinnia et al. (2022), resulting in 17,040 SNPs for further

analysis. The SZD and WTS data were filtered using the same

criteria as DEU, resulting in 6,709 and 19,656 SNPs for further

analysis on SZD and WTS, respectively (Supplementary Table S2).
2.4 Phenotypic analysis

Because FHB was scored differently across trials, we sought to

harmonize the phenotypic data. First, we calculated the number of

days between the AD and the date of each FHB observation for each

plot (days to score, DTS) due to the sigmoidal relationship between

the number of days since initial Fusarium infection during anthesis

and FHB symptom severity (Garcia-Abadillo et al., 2023). The DTS

values were then assigned to 10 time points, approximating the FHB

scoring time points used in the Tulln an der Donau trials: (−1) DTS

≤ 0, (0) 0 < DTS ≤ 8, (1) 8 < DTS ≤ 12, (2) 12 < DTS ≤ 16, (3) 16 <

DTS ≤ 20, (4) 20 < DTS ≤ 24, (5) 24 < DTS ≤ 28, (6) 28 < DTS ≤ 32,

(7) 32 < DTS ≤ 36, and (8) DTS > 36. We then estimated the

variance of the FHB observations for each time point within each

trial. Garcia-Abadillo et al. (2023) previously analyzed the WTS

data described here and found that using FHB data from the time

point with the greatest variance in FHB was optimal for genomic

prediction across trials. As such, we used FHB data from the time

point with the greatest FHB variance within each trial for further

analysis. With this strategy, we were able to harmonize the FHB

data across trials, with the majority (98%) of the lines present in the

full dataset used for further genotype–phenotype analysis (Table 1).

All AD and PH data were used for further analysis.

For the SZD and WTS populations, which were evaluated in

multi-environment trials, we fit the following phenotypic mixed

model for each trait with the “breedR” package (Muñoz and

Sanchez, 2020) in R (R Core Team, 2020):
TABLE 1 Number of genotypes available for genomic prediction, number of environments in which Fusarium head blight (FHB) severity was
evaluated, and genomic heritability for FHB, anthesis date, and plant height within three populations.

Population N genotypes N environments FHB h2g AD h2g PH h2g

DEU 1991 2 0.42 0.72 0.39

SZD 643 8 0.50 0.49 0.53

WTS 230 7 0.72 0.99 0.44
FHB, Fusarium head blight; AD, anthesis date; PH, plant height; h2g, genomic heritability; DEU, German population; SZD, Saatzucht Donau; WTS, WheatSustain training set.
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yijk = m + Geni + Envj + Rep½Env�jk + GenEnvij + e

where yijk is the FHB, AD, or PH of each plot; µ is the overall

mean; Geni is the fixed effect of genotype i; Envj is the random effect

of environment (year for SZD trials, location–year for WTS trials) j,

Rep[Env]jk is the random effect of replication k nested within

environment j, GenEnvij is the random effect of the interaction

between genotype i and environment j, and e is the error. Genotype
best linear unbiased estimates (BLUEs) for each trait were extracted

for further use in GWAS and genomic prediction.

We calculated trait correlations (r) between genotype BLUEs

(SZD and WTS) or plot-level values (DEU) for FHB, AD, and PH

within each population as:

r =
cor(trait1, trait2)ffiffiffiffiffiffiffiffiffi

h21h
2
2

p

where cor(trait1,trait2) is the Pearson’s correlation between trait

1 and trait 2, and h21 and h22 are the genomic heritability of trait 1

and trait 2, respectively (Sodini et al., 2018). We estimated genomic

heritability (h2) for each trait within each population using the

unbiased average semivariance (ASV) method (Feldmann et al.,

2022). First, we fit a mixed model for each trait as:

yi = m + Geni + e

where yi is the response vector of genotype BLUEs (SZD and

WTS) or plot-level values (DEU) for FHB, AD, or PH; µ is the overall

mean; Geni is the random effect of genotype i; and e is the error. The
variance of the genotype term was modeled as Ks2a, where K is the

realized additive genomic relationship matrix and s2a is the estimated

additive genomic variance (Yu et al., 2006; Endelman and Jannink,

2012). We scaled K with the ASV method as:

KASV =
K

½(j − 1)−1tr(K)�
where KASV is the ASV-scaled genomic relationship matrix and

j is the number of genotypes. We then extracted the genotypic (s2
g)

and residual (s2e) variances to calculate h2 =
s2
g

s2
g +s 2

e
.

2.5 Population structure analysis

We used TASSEL version 5.2.85 (Bradbury et al., 2007) to assess

population structure across the 3,088 lines from the five breeding

programs/populations. We first estimated a distance matrix for the

3,088 lines from the 7K SNP data and then conducted

multidimensional scaling (MDS) analysis on the distance matrix.

We extracted the eigenvalues of the first five coordinates and the

corresponding coordinate values for the 3,088 lines. MDS revealed

that the BRE, LfL, and SEC material clustered into one population,

hereafter referred to as the German (DEU) population, which was

used for further genotype–phenotype analysis.
2.6 Genome-wide association analysis

We used TASSEL version 5.2.85 (Bradbury et al., 2007) for

GWAS of FHB, AD, and PH within each of the three populations.
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We fit the following mixed model:

yi = m + bSNPi + Geni + e

where yi is the response vector of genotypeBLUEs (SZDandWTS)

or plot-level values (DEU) for FHB, AD, or PH; µ is the overall mean;

SNPi is thefixed effect of eachSNP(codedas−1, 0, 1);b is the regression
coefficient for eachSNP;Geni is the randomeffectof genotype i; and e is
the error. The variance of the genotype term was modeled as Ks2a,
where K is the realized additive relationship matrix and s2a is the

estimated additive genetic variance (Yu et al., 2006; Endelman and

Jannink, 2012). We extracted the SNP p-values and effect estimates

from each GWAS model. For multiple test correction of the SNP p-

values, we conducted a false discovery rate (FDR; a=0.05) analysis for
each GWAS model with the “qvalue” package (Storey, 2015) in R (R

Core Team, 2020).We used the 25K SNP data for GWASwithin DEU

andWTS and the 7K SNP data for GWAS within SZD.
2.7 Genomic prediction modeling

We used the “remlf90” function in the “breedR” package

(Muñoz and Sanchez, 2020) in R (R Core Team, 2020) for all

genomic prediction modeling described hereafter. Within each

population, we fit the following basic GBLUP mixed model for

FHB with five-fold cross-validation with 10 replications:

yi = m + Geni + e

where yi is the response vector of genotypeBLUEs (SZDandWTS)

or plot-level values (DEU) for FHB, AD, or PH; µ is the overall mean;

Geni is the random effect of genotype i; and e is the error. The variance
of the genotype termwasmodeled asKASVs2a, whereKASV is the ASV-

scaled realized additive relationship (kinship) matrix and s2a is the
estimated additive genetic variance (Yu et al., 2006; Endelman and

Jannink, 2012; Feldmann et al., 2022). Within each fold of each

replication, the values of the validation genotypes were set to missing

in the yi response vector. The kinship matrix was estimated from all

genotypes in the population. From eachmodel, we estimated genomic

heritability (h2g) as described previously. We extracted the genotype

best linear unbiased predictors (BLUPs) from each model as the

genomic estimated breeding values (GEBVs) and then calculated

prediction accuracy (PA) as:

PA =
cor(obs, pred)ffiffiffiffiffi

h2g
q

where cor(obs,pred) is the Pearson’s correlation between the

observed (FHB BLUEs or plot phenotypes) and predicted (GEBVs)

values of the validation genotypes and h2g is the genomic heritability.

We also fit the following “trait-assisted”GBLUPmixed model with

five-fold cross-validation with 10 replications within each population:

yi = m + bc1C1i + Geni + e and

yi = m + bc1C1i + bc2C2i + Geni + e

where yi is the response vector of genotype FHB BLUEs (SZD

and WTS) or plot-level FHB values (DEU), µ is the overall mean,
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C1-2i are the BLUEs for AD or PH of genotype i, bc1–2 are the

regression coefficients for the C1–2 terms,Geni is the random effect of

genotype i, and e is the error. The variance of the genotype term was

modeled as KASVs2a, where KASV is the ASV-scaled realized additive

relationship (kinship) matrix and s2a is the estimated additive genetic

variance (Yuet al., 2006; Endelmanand Jannink, 2012; Feldmannet al.,

2022). Within each population, AD and PH were modeled alone and

together. Within each fold of each replication, the values of the

validation genotypes were set to missing in the yi response vector.

BLUEs (SZD andWTS) or plot-level values (DEU) for AD and/or PH

from all genotypes in the population were included in C1i and/or C2i.

Thekinshipmatrixwas estimated fromall genotypes in thepopulation.

From each trait-assistedmodel, we extracted the genotype BLUPs and

the regression coefficient(s) of the trait covariate(s) and calculated the

GEBV of each genotype as

GEBV = BLUP + bc1C1 or

GEBV = BLUP + bc1C1 + bc2C2

where BLUP is the genotype BLUP, bc1–2 are the regression

coefficients for AD or PH, and C1–2 are the genotype BLUES (SZD

and WTS) for AD or PH or plot-level AD or PH values (DEU). We

calculated PA as described previously.

A SNP linked to the Rht-D1 locus was the only SNP significantly

associated with FHB in GWAS in all three populations. We tested the

use of the Rht-D1 SNP as a covariate in all GBLUP and trait-assisted

GBLUPmodels previously described, within population with five-fold

cross-validation with 10 replications. All terms remain unchanged for

each of the previously describedmodels, except for the inclusion of the

Rht-D1SNPasbRhtRhti, whereRhti is thefixedeffect of theRht-D1SNP
andbRht is the corresponding regressioncoefficient.Withineach foldof

each replication, the values of the validation genotypes were set to

missing in the yi response vector. SNP values and BLUEs (SZD and

WTS) or plot-level values (DEU) forADand/orPH fromall genotypes

in the population were included in Rhti and C1i and/or C2i,

respectively. The kinship matrix was estimated from all genotypes in

the population. From each model, we extracted the genotype BLUPs

and the regression coefficients of the trait and Rht-D1 covariates and

calculated the GEBV of each genotype as

GEBV = BLUP + bc1C1 + bRhtRht or

GEBV = BLUP + bc1C1 + bc2C2 + bRhtRht

where BLUP is the genotype BLUP, bc1–2 are the regression

coefficients for AD or PH and C1–2 are the genotype BLUES (SZD

and WTS) for AD or PH or plot-level AD or PH values (DEU), bRht is
the regression coefficient for the Rht-D1 SNP, and Rht is the SNP value

(alleles coded as −1, 0, 1). We calculated PA as described previously.

We also tested all previously described GBLUP and trait-

assisted GBLUP models with and without Rht-D1 between all

pairs of populations. For each model and for each pair of

populations, one population was modeled as the training

population and the other as the validation population, and vice

versa. For each between-population model, the values of the

validation genotypes were set to missing in the yi response vector.
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Depending on the model (see previous model descriptions), SNP

values and/or BLUEs (SZD and WTS) or plot-level values (DEU)

for AD and/or PH from all genotypes from both the training and

validation populations were included in Rhti and/or C1i and/or C2i,

respectively. The kinship matrix was estimated from all genotypes

from both the training and validation populations. We calculated

GEBVs and PA as described previously.
3 Results

3.1 Limited population structure among
breeding programs

The first and second MDS coordinates explained 28% and 23% of

the total variance, respectively. MDS revealed limited population

structure, with the first coordinate showing some separation between

the Austrian breeding program of Saatzucht Donau (SZD) and the

material fromtheGermanbreedingprogramsofSaatzuchtBreun(BRE),

the Bavarian State Research Center for Agriculture (LfL), and Secobra

Saatzucht (SEC) (Figure 1). BRE, LfL, and SEC were highly genetically

related and clustered into one German (DEU) population. The SZD

material had greater genetic diversity than the DEU population and the

WheatSustain training set (WTS), as demonstrated by the variation

amongSZD lines on thefirst coordinate (Figure 1).The genetic variation

present in WTS overlapped that of the Austrian and German breeding

programs (Figure 1).
3.2 Moderate to high heritability for and
correlations between FHB severity,
anthesis date, and plant height

Genomic heritability (h2 = 0.42–0.99) was moderate to high for

all traits (Table 1). WTS had the highest heritability for FHB
FIGURE 1

Scatterplot of the first two coordinates from a multidimensional
scaling analysis of 3088 lines from the WheatSustain training set
(WTS) and the winter wheat breeding programs of Saatzucht Josef
Breun (BRE), the Bavarian State Research Center for Agriculture (LfL),
Secobra Saatzucht (SEC), and Saatzucht Donau (SZD) using 7K
SNP data.
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(h2 = 0.72) and AD (h2 = 0.99), while SZD had the highest

heritability for PH (h2 = 0.53) (Table 1). Trait correlations were

consistent across populations (Table 2). FHB was significantly

positively correlated with AD (r = 0.42–0.64) and negatively

correlated with PH (r = −[0.22–0.30]) (Table 2). AD and PH

were significantly positively correlated within DEU and SZD (r =

0.38–0.53), but not within WTS (Table 2).
3.3 Rht-D1 semi-dwarfing locus associated
with FHB severity, anthesis date, and
plant height

Within all three populations, one locus (TG0011) was

significantly associated with FHB and PH (Figure 2; Table 3;

Supplementary Figure S1). Two identical SNPs (TG0011a and

TG0011b) underlay this locus within DEU and WTS, which were

genotyped with the 25K SNP chip. Only one TG0011 SNP was

available for SZD, which was genotyped with the 7K SNP subset.

TG0011 is a marker linked to the Rht-D1 semi-dwarfing gene on

chromosome 4D at 18,781,253 bp (Corsi et al., 2021). The wild-type

allele reduced FHB by 3%–25% and increased PH by 5–10 cm,

relative to the semi-dwarf allele (Table 3). Although TG0011 was

significantly associated with AD only within WTS, the wild-type

allele was associated with reduced AD in all populations (Table 3).

The Rht-D1 wild-type and semi-dwarfing alleles were

approximately equally represented in the DEU material, while the

Rht-D1 wild-type allele was the major allele within SZD and

WTS (Table 3).

W i t h i n DEU and WTS , t h r e e i d e n t i c a l SNP s

(RAC875_rep_c105718_672, RAC875_rep_c105718_585, and

RAC875_rep_c105718_304) on chromosome 4D at 25,989,047–

25,989,414 bp were significantly associated with FHB and PH

(Figure 2; Table 3; Supplementary Figure S1). Because SZD was

genotyped with fewer SNPs than DEU and WTS, only the

RAC875_rep_c105718_672 SNP was available. Within SZD,

RAC875_rep_c105718_672 was significantly associated with PH, but
Frontiers in Plant Science 06
not with FHB or AD (Table 3). Similar to TG0011, these three SNPs

had opposite allele effects on FHB (−[3–6]%) and PH (3–4

cm) (Table 3).

Within WTS, one SNP (AX-94943274) on chromosome 3B at

795,570,750 bp was significantly associated with FHB, but not with

AD or PH (Figure 2; Table 3; Supplementary Figure S1). AX-

94943274 had a moderate effect size on FHB (−6%) and a low MAF

(6%) withinWTS. This SNP was not included in GWAS within SZD

and DEU because it was not on the 7K SNP chip used to genotype

SZD and because it had been previously filtered (MAF< 5%) from

DEU (Shahinnia et al., 2022).

3.4 Anthesis date, plant height, and Rht-D1
can aid genomic prediction of FHB

Cross-validated (CV) genomic prediction accuracy (PA) for

FHB was high (PA = 0.69–0.96) and similar across populations

(Table 4). Overall, all trait- and Rht-D1-assisted models significantly

improved PA in comparison to GBLUP, except for GBLUP+PH

(Table 4). AD-assisted models had lower h2 than all other models

overall (Table 4). Within all populations, GBLUP+AD, GBLUP

+AD+Rht, GBLUP+AD+PH, and GBLUP+AD+PH+Rht improved

PA by 7%–25% compared to standard GBLUP (Table 4). Within

DEU and SZD, GBLUP models including Rht-D1 and/or PH

without AD did not significantly change PA compared to GBLUP

(Table 4). Within DEU, GBLUP+AD and GBLUP+AD+PH did not

have significantly different PA than their counterparts including

Rht-D1, suggesting that AD was the key trait for improving PA

(Table 4). Within SZD, GBLUP+AD+PH and GBLUP+AD+PH

+Rht had 8–10% higher PA than GBLUP+AD and GBLUP+AD

+Rht, indicating that modeling both AD and PH as covariates

maximized PA (Table 4). Within WTS, models including Rht-D1

had marginally better PA (3%–8%) than their counterparts without

Rht-D1 (Table 4). In addition, AD-assisted models, with or without

PH, had the best PA within WTS, suggesting that the combination

of both AD and Rht-D1 as covariates can improve prediction

accuracy. Genomic heritability was consistent across models

within DEU (Table 4). Within SZD and WTS, AD-assisted

models yielded lower h2 than models not including AD as a

covariate (Table 4). Within WTS, Rht-D1-assisted models had

marginally lower h2 than their counterparts without Rht-

D1 (Table 4).

Between-population genomic prediction modeling had

moderate to high accuracy for FHB (PA = 0.24–0.79) (Table 5).

Including trait and/or Rht-D1 as covariates improved PA by 2%–

38% over GBLUP for all pairs of populations (Table 5). AD-assisted

models, with or without PH and/or Rht-D1, had the best PA for

nearly all pairs of populations; the exception was the scenario where

WTS was the training set and SZD was the validation set, for which

PH-assisted models had the highest PA (Table 5). For three

training/validation sets (DEU/WTS, SZD/DEU, and WTS/DEU),

Rht-D1-assisted models had better PA than their counterparts not

including Rht-D1 (Table 5). Under most scenarios, the different

models and training/validation sets did not appear to impact h2

(Table 5). However, AD-assisted models yielded lower h2 under

scenarios where WTS was the training population (Table 5).
TABLE 2 Correlations between Fusarium head blight severity, anthesis
date, and plant height within three populations.

Population Traits Correlation

DEU FHB/AD 0.42*

FHB/PH −0.22*

AD/PH 0.38*

SZD FHB/AD 0.64*

FHB/PH −0.27*

AD/PH 0.53*

WTS FHB/AD 0.56*

FHB/PH −0.30*

AD/PH 0.03
*p< 0.0001; FHB, Fusarium head blight; AD, anthesis date; PH, plant height; DEU, German
population; SZD, Saatzucht Donau; WTS, WheatSustain training set.
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The number of genotypes varied widely among populations, with

DEU (N=1991) and WTS (230) having a nearly nine-fold difference in

population size (Table 1). Within population, population size was

negatively correlated with PA (r = –0.14; p< 0.0001), and the smallest

population (WTS) had the best PA and highest h2 overall (Table 4).
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Between populations, the ratio of training versus validation set size was

positively correlated with PA (r = 0.65; p< 0.0001), and the largest

population (DEU) had the best PA as the training set but the lowest h2

(Table 5). In addition, WTS was the best predicted validation

population (PA = 0.67–0.79), while DEU had the worst PA as the
TABLE 3 Allele frequency and effects on Fusarium head blight (FHB) severity, anthesis date, and plant height of loci significantly associated with FHB
within three populations.

Locus Chr. Pos. (bp) Pop. Allele 1
(freq.)

Allele
2 (freq.)

FHB
(%)

AD
(days)

PH
(cm)

AX-94943274 3B 795,570,750 WTS G (0.06) T (0.94) −5.15† −0.72 4.36

TG0011 4D 18,781,253 DEU G (0.47) T (0.53) −4.5† −0.72 6.49†

SZD G (0.93) T (0.07) −25.09† −1.28 10.33†

WTS G (0.63) T (0.37) −3.11† −1.31† 4.55†

RAC875_rep_c105718 4D 25,989,047–25,989,414 DEU C (0.42) T (0.58) −3.31† −0.51 3.15†

SZD C (0.77) T (0.23) −6.43 0.08 3.33†

WTS C (0.54) T (0.46) −2.86† −0.30 4.29†
†Locus significantly associated with trait in GWAS within population (FDR-adjusted p< 0.05); GWAS, genome-wide association study; FHB, Fusarium head blight; AD, anthesis date; PH, plant
height; DEU, German population; SZD, Saatzucht Donau; WTS, WheatSustain training set; allele effects correspond to the effect of allele 1 relative to allele 2.
FIGURE 2

Manhattan plots of genome-wide association studies for Fusarium head blight severity within the German (DEU), Saatzucht Donau (SZD), and
WheatSustain training set (WTS) populations, with single nucleotide polymorphism (SNP) physical positions on the x-axis, SNP −log10(p-values) on
the y-axis, and red horizontal lines denoting the false discovery rate threshold for SNP significance.
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validation population (PA = 0.24–0.38) under between-population

genomic prediction (Table 5).
4 Discussion

Here, we evaluated the use of trait and SNP covariates in genomic

prediction of FHB resistance within and between three Central

European winter wheat breeding populations. Anthesis date and/or
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plant height were genetically correlated with FHB in all populations.

The semi-dwarfing locus Rht-D1 was associated with FHB and plant

height in all three populations and with anthesis date in WTS. The

allele effects of the Rht-D1 SNP on the three traits matched their

corresponding phenotypic correlations. The negative correlation

between FHB and plant height has been reported many times, while

anthesis date has been found to be both negatively and positively

correlated with FHB, depending on the population and seasonal

weather conditions (Mirdita et al., 2015; Buerstmayr et al., 2020;
TABLE 5 Prediction accuracy and genomic heritability for Fusarium head blight severity of GBLUP models with and without trait and Rht-D1
covariates between three populations.

Model Training: DEU Training: SZD Training: WTS

Validation: SZD Validation:
WTS

Validation:
DEU

Validation:
WTS

Validation:
DEU

Validation: SZD

PA h2 PA h2 PA h2 PA h2 PA h2 PA h2

GBLUP 0.44 0.36 0.58 0.41 0.13 0.82 0.52 0.70 0.29 0.69 0.50 0.50

GBLUP+Rht 0.44 0.37 0.78 0.41 0.17 0.81 0.54 0.69 0.35 0.63 0.44 0.44

GBLUP+AD 0.74 0.35 0.81 0.41 0.30 0.80 0.74 0.67 0.43 0.46 0.31 0.31

GBLUP+AD+Rht 0.71 0.36 0.93 0.41 0.32 0.79 0.72 0.69 0.47 0.43 0.28 0.28

GBLUP+PH 0.39 0.37 0.63 0.41 0.16 0.81 0.60 0.60 0.26 0.74 0.57 0.57

GBLUP+PH+Rht 0.46 0.37 0.79 0.42 0.18 0.80 0.59 0.68 0.29 0.70 0.52 0.52

GBLUP+AD+PH 0.78 0.35 0.89 0.41 0.33 0.76 0.84 0.63 0.46 0.49 0.33 0.33

GBLUP+AD
+PH+Rht

0.77 0.35 0.96 0.41 0.34 0.76 0.83 0.63 0.47 0.48 0.32 0.32

Overall
(training/val. set)

0.59 ±
0.17
abc

0.36 ±
0.01
c

0.79 ±
0.14
a

0.41 ±
0
c

0.24 ±
0.09
d

0.79 ±
0.02
a

0.67 ±
0.13
ab

0.67 ±
0.03
b

0.38 ±
0.09
cd

0.58 ±
0.12
b

0.54 ±
0.24
bc

0.41 ±
0.11
c

fron
Means ± standard deviations for PA and h2 are displayed. For comparisons of PA or h2 among sets of training and validation sets, groups within the last table row that are not connected by the
same letter are significantly different (Tukey’s HSD test, p< 0.05). For comparisons among populations across all models, groups within the last table row that are not connected by the same letter
are significantly different (Tukey’s HSD test, p< 0.05). DEU, German population; SZD, Saatzucht Donau; WTS, WheatSustain training set; GBLUP, genomic best linear unbiased prediction; AD,
anthesis date; PH, plant height; Rht, Rht-D1 single nucleotide polymorphism; PA, prediction accuracy; h2, genomic heritability.
TABLE 4 Prediction accuracy and genomic heritability for Fusarium head blight severity of GBLUP models with and without trait and Rht-D1
covariates within three populations.

Model DEU SZD WTS Overall

PA h2 PA h2 PA h2 PA h2

GBLUP 0.73 ± 0.08 B 0.40 ± 0.02 a 0.72 ± 0.10 d 0.51 ± 0.04 a 0.69 ± 0.13 d 0.73 ± 0.06 a 0.71 ± 0.11 e 0.55 ± 0.14 a

GBLUP+Rht 0.75 ± 0.07 B 0.40 ± 0.02 a 0.75 ± 0.10 d 0.50 ± 0.04 a 0.76 ± 0.12 cd 0.67 ± 0.06 b 0.75 ± 0.10 d 0.52 ± 0.12 a

GBLUP+AD 0.80 ± 0.07 A 0.40 ± 0.02 a 0.82 ± 0.09 bc 0.47 ± 0.04 b 0.87 ± 0.16 b 0.52 ± 0.09 cd 0.83 ± 0.12 c 0.46 ± 0.08 b

GBLUP+AD+Rht 0.82 ± 0.06 A 0.40 ± 0.02 a 0.84 ± 0.09 b 0.47 ± 0.04 b 0.92 ± 0.16 ab 0.49 ± 0.08 d 0.86 ± 0.12 bc 0.45 ± 0.07 b

GBLUP+PH 0.73 ± 0.08 B 0.40 ± 0.02 a 0.75 ± 0.10 d 0.50 ± 0.04 a 0.74 ± 0.10 cd 0.77 ± 0.06 a 0.74 ± 0.09 de 0.56 ± 0.16 a

GBLUP+PH+Rht 0.75 ± 0.07 B 0.40 ± 0.02 a 0.77 ± 0.10 cd 0.49 ± 0.04 ab 0.77 ± 0.10 bc 0.73 ± 0.06 a 0.76 ± 0.09 d 0.54 ± 0.15 a

GBLUP+AD+PH 0.82 ± 0.06 A 0.39 ± 0.02 a 0.92 ± 0.10 a 0.42 ± 0.05 c 0.94 ± 0.13 ab 0.54 ± 0.09 c 0.89 ± 0.11 ab 0.45 ± 0.09 b

GBLUP+AD+PH+Rht 0.83 ± 0.06 A 0.40 ± 0.02 a 0.92 ± 0.09 a 0.42 ± 0.05 c 0.96 ± 0.14 a 0.52 ± 0.09 cd 0.90 ± 0.12 a 0.45 ± 0.08 b

Overall 0.78 ± 0.08 C 0.40 ± 0.02 c 0.81 ± 0.12 b 0.47 ± 0.05 b 0.83 ± 0.16 a 0.62 ± 0.13 a
Within each population, each model was five-fold cross-validated (CV) with 10 replications. Means ± standard deviations for PA and h2 are displayed. For comparisons among CVmodels within
each population and across all populations, groups within each table column that are not connected by the same letter are significantly different (Tukey’s HSD test, p< 0.05). For comparisons
among populations across all models, groups within the last table row that are not connected by the same letter are significantly different (Tukey’s HSD test, p< 0.05). DEU, German population;
SZD, Saatzucht Donau; WTS, WheatSustain training set; GBLUP, genomic best linear unbiased prediction; AD, anthesis date; PH, plant height; Rht, Rht-D1 single nucleotide polymorphism; PA,
prediction accuracy; h2, genomic heritability. All significance letters should be in lowercase.
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Moreno-Amores et al., 2020b, 2020a). The Rht-D1 gene has been

previously shown to have pleiotropic effects on plant height and FHB

resistance by several studies (Srinivasachary et al., 2009; Buerstmayr

and Buerstmayr, 2016, 2022; He et al., 2016; Akohoue et al., 2022).

Cross-validated, within-population PA in our study was

comparable to PA for FHB reported in previous studies using

GBLUP or ridge regression BLUP, a model similar to GBLUP, in

cross-validated scenarios (Rutkoski et al., 2012; Jiang et al., 2015;

Mirdita et al., 2015; Arruda et al., 2016; Crossa et al., 2017; Herter et al.,

2019; Liuet al., 2019;Moreno-Amores et al., 2020a, 2020b;Verges et al.,

2020, 2021; Larkin et al., 2020, 2021; Sneller et al., 2021; Zhang et al.,

2021, 2022; Akohoue et al., 2022; Winn et al., 2023; Garcia-Abadillo

et al., 2023). We found that trait- and Rht-D1-assisted models

improved prediction over standard GBLUP in all scenarios.

Incorporating FHB-associated SNPs or FHB-correlated traits in

genomic prediction modeling has been reported to significantly

improve cross-validated PA in some previous studies, but not in

others (Rutkoski et al., 2012; Arruda et al., 2016; Herter et al., 2019;

Larkin et al., 2020, 2021; Moreno-Amores et al., 2020b, 2020a; Zhang

et al., 2022; Garcia-Abadillo et al., 2023).

The SZD andWTS populations had higher overall cross-validated

PA and h2 than DEU (Table 4). Unlike the German breeding

populations, the SZD and WTS populations were evaluated under

replicated, multi-environment trials. As such, the estimation of

genotypic resistance in SZD and WTS was likely more precise than

in the German material, leading to better genomic prediction within

population. Although the three populations were not all grown in the

same trials and the experimental parameters differed across

environments and breeding programs, we believe that our methods

were sufficient for harmonizing the phenotypic data for further cross-

population analysis. We found similar levels of trait correlations,

heritability, and GWAS effect estimates across the three populations,

and between-population genomic prediction had moderate to high

accuracy. Differences in between-population PA can result from a

combination of shared genetic and environmental variance. For

example, WTS was grown in the same environments as DEU and

SZD, and its population structure overlapped that of the German and

Austrian breeding programs, whichmay have led to its high PA as the

validation set under between-population prediction. On the contrary,

although the experimental conditions of the DEU population were

generally less controlled than thoseofWTSandSZD,DEUwas thebest

training set under between-population prediction scenarios.

Similar to previous reports on within- and cross-population

genomic prediction for FHB, PA tended to be lower between

populations than within populations (Hoffstetter et al., 2016;

Schulthess et al., 2018; Moreno-Amores et al., 2020a; Verges et al.,

2020; Sneller et al., 2021). Cross-population genomic prediction tends

to be less accurate than within populations, as genome-wide linkage

disequilibrium (LD) structure will differ among populations,

ultimately changing associations between traits and markers

(Buerstmayr et al., 2020; Isidro y Sánchez and Akdemir, 2021). In

general, increased relatedness between the training and validation

populations tends to yield higher PA for FHB resistance, which was

further supported by our findings (Hoffstetter et al., 2016; Schulthess

et al., 2018; Herter et al., 2019; Buerstmayr et al., 2020; Verges et al.,

2020). However, genomic relatedness alone did not capture all shared
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variation between populations, as demonstrated by the improvement

ofGBLUPincludinganthesis date and/or theRht-D1SNPas covariates

in most between-population scenarios. Trait correlations shared

among populations are not subject to the same dynamics as LD

structure, and our results indicate that FHB-correlated traits can

complement genomic prediction for FHB, which may be the result

of linkage between or pleiotropy at QTL for FHB resistance and FHB-

correlated traits (Schulthess et al., 2018; Steiner et al., 2019; Moreno-

Amores et al., 2020b, 2020a; Verges et al., 2020; Sneller et al., 2021;

Zhang et al., 2022). Here, the allele effects of the Rht-D1 SNP on FHB

and FHB-correlated traits were shared among populations and

including Rht-D1 SNP as a covariate improved PA, suggesting that

linkage phase at this locus was similar across populations (Herter

et al., 2019).

Here, we sought to minimize the confounding effects of maturity

on FHB severity by timing Fusarium inoculations and FHB scoring

based on anthesis. However, AD was correlated with FHB, and AD-

assisted models improved genomic prediction between and within

populations, suggesting that our experimental procedures did not fully

control the phenological relationship between anthesis timing and

FHB symptom development. Previous studies found that modeling

phenology and environmental patterns improved genomic prediction

for FHB (Moreno-Amores et al., 2020a; Garcia-Abadillo et al., 2023),

further demonstrating the importance of phenotyping phenological

traits such as AD in FHB trials.

To our knowledge, our study is the first to (a) model both FHB-

correlated traits and Rht-D1 together as covariates in genomic

prediction for FHB resistance in a (b) harmonized dataset of diverse

FHB trials from both public and private breeding programs. Although

the phenotypic data generated by the partners of the WheatSustain

consortium differed with respect to the number/timing of FHB

observations and trial environmental parameters (location, year, and

inoculation method), our methods allowed not only for the

harmonization of the dataset across trials but also for moderate to

high PA for FHB between breeding programs. For collaborations

between breeding companies and/or public institutions, we

recommend that cross-population genomic prediction for FHB

resistance be aided by the agronomically important and easily

measurable traits of plant height and anthesis date and by markers

for semi-dwarfing genes.
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SUPPLEMENTARY FIGURE 1

Quantile-quantile plots of the expected vs. the observed SNP p-values from
GWAS of FHB severity within the German (DEU), Saatzucht Donau (SZD) and

WheatSustain training set (WTS) populations.

SUPPLEMENTARY FIGURE 2

Linkage disequilibrium plot of chromosome 4D in the German population,
with R2 values in the upper diagonal and p-values in the lower diagonal. The

region flanked by the significant SNPs from GWAS of FHB severity is outlined
in black.

SUPPLEMENTARY FIGURE 3

Linkage disequilibrium plot of chromosome 4D in the Saatzucht Donau

population, with R2 values in the upper diagonal and p-values in the lower
diagonal. The region flanked by the significant SNPs from GWAS of FHB

severity is outlined in black.

SUPPLEMENTARY FIGURE 4

Linkage disequilibrium plot of chromosome 4D in the WheatSustain training
set, with R2 values in the upper diagonal and p-values in the lower diagonal.

The region flanked by the significant SNPs from GWAS of FHB severity is
outlined in black.
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Campos, G., et al. (2017). Genomic selection in plant breeding: methods, models, and
perspectives. Trends Plant Sci. 22, 961–975. doi: 10.1016/j.tplants.2017.08.011
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1454473/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1454473/full#supplementary-material
https://doi.org/10.1007/s00122-022-04219-4
https://doi.org/10.1007/s11032-016-0508-5
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1094/PHYTO-05-16-0200-R
https://doi.org/10.1007/s00122-022-04088-x
https://doi.org/10.1007/s00122-011-1584-x
https://doi.org/10.1111/pbr.12797
https://doi.org/10.1007/s00122-021-03781-7
https://doi.org/10.1007/s00122-021-03781-7
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.3389/fpls.2024.1454473
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Morales et al. 10.3389/fpls.2024.1454473
Endelman, J. B., and Jannink, J.-L. (2012). Shrinkage estimation of the realized
relationship matrix. G3 Genes Genomes Genet. 2, 1405–1413. doi: 10.1534/
g3.112.004259

Feldmann, M. J., Piepho, H. P., and Knapp, S. J. (2022). Average semivariance
directly yields accurate estimates of the genomic variance in complex trait analyses. G3
Genes Genomes Genet. 12, jkac080. doi: 10.1093/g3journal/jkac080

Garcia-Abadillo, J., Morales, L., Buerstmayr, H., Michel, S., Lillemo, M., Holzapfel, J.,
et al. (2023). Alternative scoring methods of fusarium head blight resistance for
genomic assisted breeding. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1057914

He, X., Singh, P. K., Dreisigacker, S., Singh, S., Lillemo, M., and Duveiller, E. (2016).
Dwarfing genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility
and low anther extrusion in two bread wheat populations. PLoS One 11, 1–14.
doi: 10.1371/journal.pone.0162499

Heffner, E. L., Lorenz, A. J., Jannink, J. L., and Sorrells, M. E. (2010). Plant breeding
with genomic selection: Gain per unit time and cost. Crop Sci. 50, 1681–1690.
doi: 10.2135/cropsci2009.11.0662

Herter, C. P., Erhard, H., Sonja, E., Viktor, K., Tobias, K., and Miedaner, T. (2019).
Accuracy of within − and among − family genomic prediction for Fusarium head blight
and Septoria tritici blotch in winter wheat. Theor. Appl. Genet. 132, 1121–1135.
doi: 10.1007/s00122-018-3264-6

Heslot, N., Jannink, J.-L., and Sorrells, M. E. (2015). Perspectives for genomic
selection applications and research in plants. Crop Sci. 55, 1–12. doi: 10.2135/
cropsci2014.03.0249

Hoffstetter, A., Cabrera, A., Huang, M., and Sneller, C. (2016). Optimizing training
population data and validation of genomic selection for economic traits in soft winter
wheat. G3 Genes Genomes Genet. 6, 2919–2928. doi: 10.1534/g3.116.032532

Isidro y Sánchez, J., and Akdemir, D. (2021). Training set optimization for sparse
phenotyping in genomic selection: a conceptual overview. Front. Plant Sci. 12.
doi: 10.3389/fpls.2021.715910

Jiang, Y., Zhao, Y., Rodemann, B., Plieske, J., Kollers, S., Korzun, V., et al. (2015).
Potential and limits to unravel the genetic architecture and predict the variation of
Fusarium head blight resistance in European winter wheat (Triticum aestivum L.).
Heredity. 114, 318–326. doi: 10.1038/hdy.2014.104

Larkin, D. L., Holder, A. L., Mason, R. E., Moon, D. E., Brown-Guedira, G., Price, P.
P., et al. (2020). Genome-wide analysis and prediction of Fusarium head blight
resistance in soft red winter wheat. Crop Sci. 60, 2882–2900. doi: 10.1002/csc2.20273

Larkin, D. L., Mason, R. E., Moon, D. E., Holder, A. L., Ward, B. P., and Brown-
Guedira, G. (2021). Predicting Fusarium head blight resistance for advanced trials in a
soft red winter wheat breeding program with genomic selection. Front. Plant Sci. 12.
doi: 10.3389/fpls.2021.715314

Liu, Y., Salsman, E., Fiedler, J. D., Hegstad, J. B., Green, A., Mergoum, M., et al.
(2019). Genetic mapping and prediction analysis of FHB resistance in a hard red spring
wheat breeding population. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01007

Lu, Q., Lillemo, M., Skinnes, H., He, X., Shi, J., Ji, F., et al. (2013). Anther extrusion
and plant height are associated with Type I resistance to Fusarium head blight in bread
wheat line “Shanghai-3/Catbird.“. Theor. Appl. Genet. 126, 317–334. doi: 10.1007/
s00122-012-1981-9

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total
genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.
doi: 10.1093/genetics/157.4.1819

Mirdita, V., He, S., Zhao, Y., Korzun, V., and Bothe, R. (2015). Potential and limits of
whole genome prediction of resistance to Fusarium head blight and Septoria tritici
blotch in a vast Central European elite winter wheat population. Theor. Appl. Genet.
128, 2471–2481. doi: 10.1007/s00122-015-2602-1

Moreno-Amores, J., Michel, S., Löschenberger, F., and Buerstmayr, H. (2020a).
Dissecting the contribution of environmental influences, plant phenology, and disease
resistance to improving genomic predictions for Fusarium head blight resistance in
wheat. Agronomy 10, 2008. doi: 10.3390/agronomy10122008

Moreno-Amores, J., Michel, S., Miedaner, T., Longin, C. F. H., and Buerstmayr, H.
(2020b). Genomic predictions for Fusarium head blight resistance in a diverse durum
Frontiers in Plant Science 11
wheat panel: an effective incorporation of plant height and heading date as covariates.
Euphytica 216, 1–19. doi: 10.1007/s10681-019-2551-x

Muñoz, F., and Sanchez, L. (2020). breedR: Statistical Methods for Forest Genetic
Resources Analysts. Available online at: https://github.com/famuvie/breedR. (Accessed
August 9, 2024).

Poland, J., and Rutkoski, J. (2016). Advances and challenges in genomic selection for
disease resistance. Annu. Rev. Phytopathol. 54, 79–98. doi: 10.1146/annurev-phyto-
080615-100056

R Core Team (2020). R: A Language and Environment for Statistical Computing.
Available online at: www.R-project.org. (Accessed August 9, 2024).

Rutkoski, J., Benson, J., Jia, Y., Brown-guedira, G., Jannink, J., and Sorrells, M. (2012).
Evaluation of genomic prediction methods for Fusarium head blight resistance in
wheat. Plant Genome 5, 51–61. doi: 10.3835/plantgenome2012.02.0001

Schulthess, A. W., Zhao, Y., Longin, C. F. H., and Reif, J. C. (2018). Advantages and
limitations of multiple − trait genomic prediction for Fusarium head blight severity in
hybrid wheat (Triticum aestivum L.). Theor. Appl. Genet. 131, 685–701. doi: 10.1007/
s00122-017-3029-7

Shahinnia, F., Geyer, M., Schuermann, F., Rudolphi, S., Holzapfel, J., Kempf, H., et al.
(2022). Genome-wide association study and genomic prediction of resistance to stripe
rust in current Central and Northern European winter wheat germplasm. Theor. Appl.
Genet. 135, 3583–3595. doi: 10.1007/s00122-022-04202-z

Sneller, C., Ignacio, C., Ward, B., Rutkoski, J., and Mohammadi, M. (2021). Using
genomic selection to leverage resources among breeding programs: consortium-based
breeding. Agronomy. 11 (8), 1555. doi: 10.3390/agronomy11081555

Sodini, S. M., Kemper, K. E., Wray, N. R., and Trzaskowski, M. (2018). Comparison
of genotypic and phenotypic correlations: Cheverud’s conjecture in humans. Genetics
209, 941–948. doi: 10.1534/genetics.117.300630

Srinivasachary,, Gosman, N., Steed, A., Hollins, T. W., Bayles, R., Jennings, P., et al.
(2009). Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their
influence on resistance to Fusarium head blight. Theor. Appl. Genet. 118, 695–702.
doi: 10.1007/s00122-008-0930-0

Steiner, B., Michel, S., Maccaferri, M., Lemmens, M., Tuberosa, R., Buerstmayr, H.,
et al. (2019). Exploring and exploiting the genetic variation of Fusarium head blight
resistance for genomic − assisted breeding in the elite durum wheat gene pool. Theor.
Appl. Genet. 132, 969–988. doi: 10.1007/s00122-018-3253-9

Storey, J. D. (2015). qvalue: Q-value estimation for false discovery rate control.
Available online at: https://github.com/jdstorey/qvalue. (Accessed August 9, 2024).

Tekle, S., Lillemo, M., Skinnes, H., Reitan, L., Buraas, T., and Bjørnstad, Å. (2018).
Screening of oat accessions for fusarium head blight resistance using spawn-inoculated
field experiments. Crop Sci. 58, 143–151. doi: 10.2135/cropsci2017.04.0264

Verges, V. L., Brown-guedira, G. L., and Van Sanford, D. A. (2021). Genome-wide
association studies combined with genomic selection as a tool to increase Fusarium
head blight resistance in wheat. Crop Breeding Genet. Genomics. 3 (4), e210007.
doi: 10.20900/cbgg20210007

Verges, V. L., Lyerly, J., Dong, Y., and Van Sanford, D. A. (2020). Training
population design with the use of regional Fusarium head blight nurseries to predict
independent breeding lines for FHB traits. Front. Plant Sci. 11. doi: 10.3389/
fpls.2020.01083

Winn, Z. J., Lyerly, J. H., Brown-Guedira, G., Murphy, J. P., and Mason, R. E. (2023).
Utilization of a publicly available diversity panel in genomic prediction of Fusarium
head blight resistance traits in wheat. Plant Genome 16, 1–18. doi: 10.1002/tpg2.20353

Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., et al. (2006).
A unified mixed-model method for association mapping that accounts for multiple
levels of relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/ng1702

Zhang, J., Gill, H. S., Brar, N. K., Halder, J., Ali, S., Liu, X., et al. (2022). Genomic
prediction of Fusarium head blight resistance in early stages using advanced breeding
lines in hard winter wheat. Crop J. 10, 1695–1704. doi: 10.1016/j.cj.2022.03.010

Zhang, W., Boyle, K., Brule-Babel, A., Fedak, G., Gao, P., Djama, Z. R., et al. (2021).
Evaluation of genomic prediction for Fusarium head blight resistance with a multi-
parental population. Biol. (Basel). 10, 1–17. doi: 10.3390/biology10080756
frontiersin.org

https://doi.org/10.1534/g3.112.004259
https://doi.org/10.1534/g3.112.004259
https://doi.org/10.1093/g3journal/jkac080
https://doi.org/10.3389/fpls.2022.1057914
https://doi.org/10.1371/journal.pone.0162499
https://doi.org/10.2135/cropsci2009.11.0662
https://doi.org/10.1007/s00122-018-3264-6
https://doi.org/10.2135/cropsci2014.03.0249
https://doi.org/10.2135/cropsci2014.03.0249
https://doi.org/10.1534/g3.116.032532
https://doi.org/10.3389/fpls.2021.715910
https://doi.org/10.1038/hdy.2014.104
https://doi.org/10.1002/csc2.20273
https://doi.org/10.3389/fpls.2021.715314
https://doi.org/10.3389/fpls.2019.01007
https://doi.org/10.1007/s00122-012-1981-9
https://doi.org/10.1007/s00122-012-1981-9
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1007/s00122-015-2602-1
https://doi.org/10.3390/agronomy10122008
https://doi.org/10.1007/s10681-019-2551-x
https://github.com/famuvie/breedR
https://doi.org/10.1146/annurev-phyto-080615-100056
https://doi.org/10.1146/annurev-phyto-080615-100056
http://www.R-project.org
https://doi.org/10.3835/plantgenome2012.02.0001
https://doi.org/10.1007/s00122-017-3029-7
https://doi.org/10.1007/s00122-017-3029-7
https://doi.org/10.1007/s00122-022-04202-z
https://doi.org/10.3390/agronomy11081555
https://doi.org/10.1534/genetics.117.300630
https://doi.org/10.1007/s00122-008-0930-0
https://doi.org/10.1007/s00122-018-3253-9
https://github.com/jdstorey/qvalue
https://doi.org/10.2135/cropsci2017.04.0264
https://doi.org/10.20900/cbgg20210007
https://doi.org/10.3389/fpls.2020.01083
https://doi.org/10.3389/fpls.2020.01083
https://doi.org/10.1002/tpg2.20353
https://doi.org/10.1038/ng1702
https://doi.org/10.1016/j.cj.2022.03.010
https://doi.org/10.3390/biology10080756
https://doi.org/10.3389/fpls.2024.1454473
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Leveraging trait and QTL covariates to improve genomic prediction of resistance to Fusarium head blight in Central European winter wheat
	1 Introduction
	2 Materials and methods
	2.1 Germplasm
	2.2 Phenotyping
	2.3 Genotyping
	2.4 Phenotypic analysis
	2.5 Population structure analysis
	2.6 Genome-wide association analysis
	2.7 Genomic prediction modeling

	3 Results
	3.1 Limited population structure among breeding programs
	3.2 Moderate to high heritability for and correlations between FHB severity, anthesis date, and plant height
	3.3 Rht-D1 semi-dwarfing locus associated with FHB severity, anthesis date, and plant height
	3.4 Anthesis date, plant height, and Rht-D1 can aid genomic prediction of FHB

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


